1
|
Fittolani G, Kutateladze DA, Loas A, Buchwald SL, Pentelute BL. Automated Flow Synthesis of Artificial Heme Enzymes for Enantiodivergent Biocatalysis. J Am Chem Soc 2025; 147:4188-4197. [PMID: 39840443 PMCID: PMC11912879 DOI: 10.1021/jacs.4c13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The remarkable efficiency with which enzymes catalyze small-molecule reactions has driven their widespread application in organic chemistry. Here, we employ automated fast-flow solid-phase synthesis to access catalytically active full-length enzymes without restrictions on the number and structure of noncanonical amino acids incorporated. We demonstrate the total syntheses of iron-dependent Bacillus subtilis myoglobin (BsMb) and sperm whale myoglobin (SwMb). The synthetic enzymes displayed excellent enantioselectivity and yield in carbene transfer reactions. Absolute control over enantioselectivity in styrene cyclopropanation was achieved using synthetic L- and D-BsMb mutants, which delivered each enantiomer of cyclopropane product in identical and opposite enantiomeric enrichment. BsMb mutants outfitted with noncanonical amino acids were used to facilitate detailed structure-activity relationship studies, revealing a previously unrecognized hydrogen-bonding interaction as the primary driver of enantioselectivity in styrene cyclopropanation. We anticipate that our approach will advance biocatalysis by providing reliable and rapid access to fully synthetic enzymes possessing noncanonical amino acids.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dennis A Kutateladze
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Baldensperger T, Preissler M, Becker CFW. Non-enzymatic posttranslational protein modifications in protein aggregation and neurodegenerative diseases. RSC Chem Biol 2025; 6:129-149. [PMID: 39722676 PMCID: PMC11667106 DOI: 10.1039/d4cb00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Highly reactive metabolic intermediates and other small molecules frequently react with amino acid side chains, leading to non-enzymatic posttranslational modifications (nPTMs) of proteins. The abundance of these modifications increases under high metabolic activity or stress conditions and can dramatically impact protein structure and function. Although protein quality control mechanisms typically mitigate the effects of these impaired proteins, in long-lived and degradation-resistant proteins, nPTMs accumulate. In some cases, such as cataract development and diabetes, clear links between nPTMs, aging, and disease progression have been established. In neurodegenerative diseases such as Alzheimer's and Parkinson's disease, a key question is whether accumulation of nPTMs is a cause or consequence of protein aggregation. This review focuses on major nPTMs found on proteins with central roles in neurodegenerative diseases such as α-synuclein, β-amyloid, and tau. We summarize current knowledge on the formation of these modifications and discuss their potential impact on disease onset and progression. Additionally, we examine what is known to date about how nPTMs impair cellular detoxification, repair, and degradation systems. Finally, we critically discuss the available methodologies to systematically investigate nPTMs at the molecular level and outline suitable approaches to study their effects on protein aggregation. We aim to foster more research into the role of nPTMs in neurodegeneration by adapting methodologies that have proven successful in studying enzymatic posttranslational modifications. Specifically, we advocate for site-specific incorporation of these modifications into target proteins using advanced chemical and molecular biology techniques.
Collapse
Affiliation(s)
- Tim Baldensperger
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| | - Miriam Preissler
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Währinger Str. 42 1090 Vienna Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Str. 38 1090 Vienna Austria
| |
Collapse
|
3
|
Kim JC, Kim Y, Cho S, Park HS. Noncanonical Amino Acid Incorporation in Animals and Animal Cells. Chem Rev 2024; 124:12463-12497. [PMID: 39541258 DOI: 10.1021/acs.chemrev.3c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Noncanonical amino acids (ncAAs) are synthetic building blocks that, when incorporated into proteins, confer novel functions and enable precise control over biological processes. These small yet powerful tools offer unprecedented opportunities to investigate and manipulate various complex life forms. In particular, ncAA incorporation technology has garnered significant attention in the study of animals and their constituent cells, which serve as invaluable model organisms for gaining insights into human physiology, genetics, and diseases. This review will provide a comprehensive discussion on the applications of ncAA incorporation technology in animals and animal cells, covering past achievements, current developments, and future perspectives.
Collapse
Affiliation(s)
- Joo-Chan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - YouJin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Suho Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Brouwer B, Della-Felice F, Illies JH, Iglesias-Moncayo E, Roelfes G, Drienovská I. Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis. Chem Rev 2024; 124:10877-10923. [PMID: 39329413 PMCID: PMC11467907 DOI: 10.1021/acs.chemrev.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Biocatalysis has become an important component of modern organic chemistry, presenting an efficient and environmentally friendly approach to synthetic transformations. Advances in molecular biology, computational modeling, and protein engineering have unlocked the full potential of enzymes in various industrial applications. However, the inherent limitations of the natural building blocks have sparked a revolutionary shift. In vivo genetic incorporation of noncanonical amino acids exceeds the conventional 20 amino acids, opening new avenues for innovation. This review provides a comprehensive overview of applications of noncanonical amino acids in biocatalysis. We aim to examine the field from multiple perspectives, ranging from their impact on enzymatic reactions to the creation of novel active sites, and subsequent catalysis of new-to-nature reactions. Finally, we discuss the challenges, limitations, and promising opportunities within this dynamic research domain.
Collapse
Affiliation(s)
- Bart Brouwer
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Franco Della-Felice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jan Hendrik Illies
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Emilia Iglesias-Moncayo
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ivana Drienovská
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Zhao Y, Zhang T, Zhu Y, Yin J, Omer R, Hemu X, Li W, Bi X. Recent Toolboxes for Chemoselective Dual Modifications of Proteins. Chemistry 2024; 30:e202402272. [PMID: 39037007 DOI: 10.1002/chem.202402272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Site-selective chemical modifications of proteins have emerged as a potent technology in chemical biology, materials science, and medicine, facilitating precise manipulation of proteins with tailored functionalities for basic biology research and developing innovative therapeutics. Compared to traditional recombinant expression methods, one of the prominent advantages of chemical protein modification lies in its capacity to decorate proteins with a wide range of functional moieties, including non-genetically encoded ones, enabling the generation of novel protein conjugates with enhanced or previously unexplored properties. Among these, approaches for dual or multiple modifications of proteins are increasingly garnering attention, as it has been found that single modification of proteins is inadequate to meet current demands. Therefore, in light of the rapid developments in this field, this review provides a timely and comprehensive overview of the latest advancements in chemical and biological approaches for dual functionalization of proteins. It further discusses their advantages, limitations, and potential future directions in this relatively nascent area.
Collapse
Affiliation(s)
- Yiping Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tianmeng Zhang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Yujie Zhu
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Juan Yin
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, Zhejiang, China
| | - Rida Omer
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xinya Hemu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Majekodunmi T, Britton D, Montclare JK. Engineered Proteins and Materials Utilizing Residue-Specific Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:9113-9135. [PMID: 39008623 PMCID: PMC11327963 DOI: 10.1021/acs.chemrev.3c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The incorporation of noncanonical amino acids into proteins and protein-based materials has significantly expanded the repertoire of available protein structures and chemistries. Through residue-specific incorporation, protein properties can be globally modified, resulting in the creation of novel proteins and materials with diverse and tailored characteristics. In this review, we highlight recent advancements in residue-specific incorporation techniques as well as the applications of the engineered proteins and materials. Specifically, we discuss their utility in bio-orthogonal noncanonical amino acid tagging (BONCAT), fluorescent noncanonical amino acid tagging (FUNCAT), threonine-derived noncanonical amino acid tagging (THRONCAT), cross-linking, fluorination, and enzyme engineering. This review underscores the importance of noncanonical amino acid incorporation as a tool for the development of tailored protein properties to meet diverse research and industrial needs.
Collapse
Affiliation(s)
- Temiloluwa Majekodunmi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
- Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
7
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
8
|
Liu F, He L, Dong S, Xuan J, Cui Q, Feng Y. Artificial Small Molecules as Cofactors and Biomacromolecular Building Blocks in Synthetic Biology: Design, Synthesis, Applications, and Challenges. Molecules 2023; 28:5850. [PMID: 37570818 PMCID: PMC10421094 DOI: 10.3390/molecules28155850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Enzymes are essential catalysts for various chemical reactions in biological systems and often rely on metal ions or cofactors to stabilize their structure or perform functions. Improving enzyme performance has always been an important direction of protein engineering. In recent years, various artificial small molecules have been successfully used in enzyme engineering. The types of enzymatic reactions and metabolic pathways in cells can be expanded by the incorporation of these artificial small molecules either as cofactors or as building blocks of proteins and nucleic acids, which greatly promotes the development and application of biotechnology. In this review, we summarized research on artificial small molecules including biological metal cluster mimics, coenzyme analogs (mNADs), designer cofactors, non-natural nucleotides (XNAs), and non-natural amino acids (nnAAs), focusing on their design, synthesis, and applications as well as the current challenges in synthetic biology.
Collapse
Affiliation(s)
- Fenghua Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling He
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Xuan
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Sisila V, Indhu M, Radhakrishnan J, Ayyadurai N. Building biomaterials through genetic code expansion. Trends Biotechnol 2023; 41:165-183. [PMID: 35908989 DOI: 10.1016/j.tibtech.2022.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 01/24/2023]
Abstract
Genetic code expansion (GCE) enables directed incorporation of noncoded amino acids (NCAAs) and unnatural amino acids (UNAAs) into the active core that confers dedicated structure and function to engineered proteins. Many protein biomaterials are tandem repeats that intrinsically include NCAAs generated through post-translational modifications (PTMs) to execute assigned functions. Conventional genetic engineering approaches using prokaryotic systems have limited ability to biosynthesize functionally active biomaterials with NCAAs/UNAAs. Codon suppression and reassignment introduce NCAAs/UNAAs globally, allowing engineered proteins to be redesigned to mimic natural matrix-cell interactions for tissue engineering. Expanding the genetic code enables the engineering of biomaterials with catechols - growth factor mimetics that modulate cell-matrix interactions - thereby facilitating tissue-specific expression of genes and proteins. This method of protein engineering shows promise in achieving tissue-informed, tissue-compliant tunable biomaterials.
Collapse
Affiliation(s)
- Valappil Sisila
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mohan Indhu
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Janani Radhakrishnan
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) Central Leather Research Institute (CLRI), Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
10
|
Lugtenburg T, Gran-Scheuch A, Drienovská I. Non-canonical amino acids as a tool for the thermal stabilization of enzymes. Protein Eng Des Sel 2023; 36:gzad003. [PMID: 36897290 PMCID: PMC10064326 DOI: 10.1093/protein/gzad003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Biocatalysis has become a powerful alternative for green chemistry. Expanding the range of amino acids used in protein biosynthesis can improve industrially appealing properties such as enantioselectivity, activity and stability. This review will specifically delve into the thermal stability improvements that non-canonical amino acids (ncAAs) can confer to enzymes. Methods to achieve this end, such as the use of halogenated ncAAs, selective immobilization and rational design, will be discussed. Additionally, specific enzyme design considerations using ncAAs are discussed along with the benefits and limitations of the various approaches available to enhance the thermal stability of enzymes.
Collapse
Affiliation(s)
- Tim Lugtenburg
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Alejandro Gran-Scheuch
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Ivana Drienovská
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
11
|
Gibbs CA, Fedoretz-Maxwell BP, Warren JJ. On the roles of methionine and the importance of its microenvironments in redox metalloproteins. Dalton Trans 2022; 51:4976-4985. [PMID: 35253809 DOI: 10.1039/d1dt04387k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amino acid residue methionine (Met) is commonly thought of as a ligand in redox metalloproteins, for example in cytochromes c and in blue copper proteins. However, the roles of Met can go beyond a simple ligand. The thioether functional group of Met allows it to be considered as a hydrophobic residue as well as one that is capable of weak dipolar interactions. In addition, the lone pairs on sulphur allow Met to interact with other groups, inluding the aforementioned metal ions. Because of its properties, Met can play diverse roles in metal coordination, fine tuning of redox reactions, or supporting protein structures. These roles are strongly influenced by the nature of the surrounding medium. Herein, we describe several common interactions between Met and surrounding aromatic amino acids and how they affect the physical properties of both copper and iron metalloproteins. While the importance of interactions between Met and other groups is established in biological systems, less is known about their roles in redox metalloproteins and our view is that this is an area that is ready for greater attention.
Collapse
Affiliation(s)
- Curtis A Gibbs
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| | | | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| |
Collapse
|
12
|
Haernvall K, Fladischer P, Schoeffmann H, Zitzenbacher S, Pavkov-Keller T, Gruber K, Schick M, Yamamoto M, Kuenkel A, Ribitsch D, Guebitz GM, Wiltschi B. Residue-Specific Incorporation of the Non-Canonical Amino Acid Norleucine Improves Lipase Activity on Synthetic Polyesters. Front Bioeng Biotechnol 2022; 10:769830. [PMID: 35155387 PMCID: PMC8826565 DOI: 10.3389/fbioe.2022.769830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/07/2022] [Indexed: 11/19/2022] Open
Abstract
Environmentally friendly functionalization and recycling processes for synthetic polymers have recently gained momentum, and enzymes play a central role in these procedures. However, natural enzymes must be engineered to accept synthetic polymers as substrates. To enhance the activity on synthetic polyesters, the canonical amino acid methionine in Thermoanaerobacter thermohydrosulfuricus lipase (TTL) was exchanged by the residue-specific incorporation method for the more hydrophobic non-canonical norleucine (Nle). Strutural modelling of TTL revealed that residues Met-114 and Met-142 are in close vicinity of the active site and their replacement by the norleucine could modulate the catalytic activity of the enzyme. Indeed, hydrolysis of the polyethylene terephthalate model substrate by the Nle variant resulted in significantly higher amounts of release products than the Met variant. A similar trend was observed for an ionic phthalic polyester containing a short alkyl diol (C5). Interestingly, a 50% increased activity was found for TTL [Nle] towards ionic phthalic polyesters containing different ether diols compared to the parent enzyme TTL [Met]. These findings clearly demonstrate the high potential of non-canonical amino acids for enzyme engineering.
Collapse
Affiliation(s)
| | - Patrik Fladischer
- Acib–Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | | | | | - Tea Pavkov-Keller
- Acib–Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | | | | | | | - Doris Ribitsch
- Acib–Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Doris Ribitsch,
| | - Georg M. Guebitz
- Acib–Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Birgit Wiltschi
- Acib–Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
13
|
Adhikari A, Bhattarai BR, Aryal A, Thapa N, Kc P, Adhikari A, Maharjan S, Chanda PB, Regmi BP, Parajuli N. Reprogramming natural proteins using unnatural amino acids. RSC Adv 2021; 11:38126-38145. [PMID: 35498070 PMCID: PMC9044140 DOI: 10.1039/d1ra07028b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Unnatural amino acids have gained significant attention in protein engineering and drug discovery as they allow the evolution of proteins with enhanced stability and activity. The incorporation of unnatural amino acids into proteins offers a rational approach to engineer enzymes for designing efficient biocatalysts that exhibit versatile physicochemical properties and biological functions. This review highlights the biological and synthetic routes of unnatural amino acids to yield a modified protein with altered functionality and their incorporation methods. Unnatural amino acids offer a wide array of applications such as antibody-drug conjugates, probes for change in protein conformation and structure-activity relationships, peptide-based imaging, antimicrobial activities, etc. Besides their emerging applications in fundamental and applied science, systemic research is necessary to explore unnatural amino acids with novel side chains that can address the limitations of natural amino acids.
Collapse
Affiliation(s)
- Anup Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Bibek Raj Bhattarai
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Ashika Aryal
- Department of Chemistry, Birendra Multiple Campus, Tribhuvan University Bharatpur Chitwan Nepal
| | - Niru Thapa
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Puja Kc
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Ashma Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Sushila Maharjan
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Prem B Chanda
- Department of Chemistry and Physics, Southeastern Louisiana University Hammond Louisiana 70402 USA
| | - Bishnu P Regmi
- Department of Chemistry, Florida Agricultural and Mechanical University Tallahassee Florida 32307 USA
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| |
Collapse
|
14
|
Pan X, Yang J, Xie P, Zhang J, Ke F, Guo X, Liang M, Liu L, Wang Q, Gao X. Enhancement of Activity and Thermostability of Keratinase From Pseudomonas aeruginosa CCTCC AB2013184 by Directed Evolution With Noncanonical Amino Acids. Front Bioeng Biotechnol 2021; 9:770907. [PMID: 34733836 PMCID: PMC8558439 DOI: 10.3389/fbioe.2021.770907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
A keratinase from Pseudomonas aeruginosa (KerPA), which belongs to the M4 family of metallopeptidases, was characterised in this study. This enzyme was engineered with non-canonical amino acids (ncAAs) using genetic code expansion. Several variants with enhanced activity and thermostability were identified and the most prominent, Y21pBpF/Y70pBpF/Y114pBpF, showed an increase in enzyme activity and half-life of approximately 1.3-fold and 8.2-fold, respectively. Considering that keratinases usually require reducing agents to efficiently degrade keratin, the Y21pBpF/Y70pBpF/Y114pBpF variant with enhanced activity and stability under reducing conditions may have great significance for practical applications. Molecular Dynamics (MD) was performed to identify the potential mechanisms underlying these improvements. The results showed that mutation with pBpF at specific sites of the enzyme could fill voids, form new interactions, and reshape the local structure of the active site of the enzyme.
Collapse
Affiliation(s)
- Xianchao Pan
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Peijuan Xie
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Manyu Liang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Li Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qin Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Chemistry, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Vallée Y, Youssef-Saliba S. Sulfur Amino Acids: From Prebiotic Chemistry to Biology and Vice Versa. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1472-7914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractTwo sulfur-containing amino acids are included in the list of the 20 classical protein amino acids. A methionine residue is introduced at the start of the synthesis of all current proteins. Cysteine, thanks to its thiol function, plays an essential role in a very large number of catalytic sites. Here we present what is known about the prebiotic synthesis of these two amino acids and homocysteine, and we discuss their introduction into primitive peptides and more elaborate proteins.1 Introduction2 Sulfur Sources3 Prebiotic Synthesis of Cysteine4 Prebiotic Synthesis of Methionine5 Homocysteine and Its Thiolactone6 Methionine and Cystine in Proteins7 Prebiotic Scenarios Using Sulfur Amino Acids8 Introduction of Cys and Met in the Genetic Code9 Conclusion
Collapse
|
16
|
Beavers WN, DuMont AL, Monteith AJ, Maloney KN, Tallman KA, Weiss A, Christian AH, Toste FD, Chang CJ, Porter NA, Torres VJ, Skaar EP. Staphylococcus aureus Peptide Methionine Sulfoxide Reductases Protect from Human Whole-Blood Killing. Infect Immun 2021; 89:e0014621. [PMID: 34001560 PMCID: PMC8281210 DOI: 10.1128/iai.00146-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
The generation of oxidative stress is a host strategy used to control Staphylococcus aureus infections. Sulfur-containing amino acids, cysteine and methionine, are particularly susceptible to oxidation because of the inherent reactivity of sulfur. Due to the constant threat of protein oxidation, many systems evolved to protect S. aureus from protein oxidation or to repair protein oxidation after it occurs. The S. aureus peptide methionine sulfoxide reductase (Msr) system reduces methionine sulfoxide to methionine. Staphylococci have four Msr enzymes, which all perform this reaction. Deleting all four msr genes in USA300 LAC (Δmsr) sensitizes S. aureus to hypochlorous acid (HOCl) killing; however, the Δmsr strain does not exhibit increased sensitivity to H2O2 stress or superoxide anion stress generated by paraquat or pyocyanin. Consistent with increased susceptibility to HOCl killing, the Δmsr strain is slower to recover following coculture with both murine and human neutrophils than USA300 wild type. The Δmsr strain is attenuated for dissemination to the spleen following murine intraperitoneal infection and exhibits reduced bacterial burdens in a murine skin infection model. Notably, no differences in bacterial burdens were observed in any organ following murine intravenous infection. Consistent with these observations, USA300 wild-type and Δmsr strains have similar survival phenotypes when incubated with murine whole blood. However, the Δmsr strain is killed more efficiently by human whole blood. These findings indicate that species-specific immune cell composition of the blood may influence the importance of Msr enzymes during S. aureus infection of the human host.
Collapse
Affiliation(s)
- William N. Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ashley L. DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Andrew J. Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - K. Nichole Maloney
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keri A. Tallman
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alec H. Christian
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
18
|
Sisila V, Puhazhselvan P, Aarthy M, Sakkeeshyaa G, Saravanan P, Kamini NR, Ayyadurai N. Esterification of Polymeric Carbohydrate Through Congener Cutinase-Like Biocatalyst. Appl Biochem Biotechnol 2020; 193:19-32. [PMID: 32808247 DOI: 10.1007/s12010-020-03415-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/12/2020] [Indexed: 11/29/2022]
Abstract
Cutinase-like enzymes (CLEs) are bi-functional hydrolases, which share the conserved catalytic site of lipase and consensus pentapeptide sequence of cutinase. Here, we have genetically replaced the canonical amino acids (CAA) by their non-canonical fluorinated surrogates to biosynthesize a novel class of congener biocatalyst for esterification of polymeric carbohydrate with long-chain fatty acid. It is a new enzyme-engineering approach used to manipulate industrially relevant biocatalyst through genetic incorporation of new functionally encoded non-canonical amino acids (NCAA). Global fluorination of CLE improved its catalytic, functional, and structural stability. Molecular docking studies confirmed that the fluorinated CLE (FCLE) had developed a binding affinity towards different fatty acids compared with the parent CLE. Importantly, FCLE could catalyze starch oleate synthesis in 24 h with a degree of substitution of 0.3 ± 0.001. Biophysical and microscopic analysis substantiated the efficient synthesis of the ester by FCLE. Our data represent the first step in the generation of an industrially relevant fluorous multifunctional enzyme for facile synthesis of high fatty acid starch esters.
Collapse
Affiliation(s)
- Valappil Sisila
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Puhazhendi Puhazhselvan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India
| | | | - Perisamy Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - Numbi Ramudu Kamini
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India. .,Academy of Scientific and Innovative Research, Ghaziabad, India.
| |
Collapse
|
19
|
Yi D, Xing J, Gao Y, Pan X, Xie P, Yang J, Wang Q, Gao X. Enhancement of keratin-degradation ability of the keratinase KerBL from Bacillus licheniformis WHU by proximity-triggered chemical crosslinking. Int J Biol Macromol 2020; 163:1458-1470. [PMID: 32771518 DOI: 10.1016/j.ijbiomac.2020.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
Keratinases are valuable enzymes, given their application in keratin-rich waste recycling. Considering that keratinases usually require reducing agents to efficiently degrade keratin, improving the stability of keratinases under reducing conditions is highly desirable for practical applications. Here, we show that the introduction of several tyrosine derivatives containing para-substituted long-chain haloalkanes into the keratinase KerBL, which enabled proximity-triggered covalent crosslinking by rational design, could improve both the thermostability and autolytic resistance of the enzyme. After screening a series of noncanonical amino acid (ncAA)-based variants generated by rational design, two variants, N159C/Y260BprY and N159C/Y260BbtY, with enhanced keratinolytic activity were obtained. Both variants increased the Tm of the enzyme by approximately 10 °C. The potential mechanism underlying these improvements was investigated by molecular dynamics (MD) analysis. The results indicated that BprY-Cys and BbtY-Cys covalent bonds in the N159C/Y260TAG variant could significantly decrease the flexibility and fluctuations of the long loop (residues 151-162).
Collapse
Affiliation(s)
- Dong Yi
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Juan Xing
- Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yanping Gao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xianchao Pan
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Peijuan Xie
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jian Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qin Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
20
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
21
|
Diao J, Song X, Guo T, Wang F, Chen L, Zhang W. Cellular engineering strategies toward sustainable omega-3 long chain polyunsaturated fatty acids production: State of the art and perspectives. Biotechnol Adv 2020; 40:107497. [DOI: 10.1016/j.biotechadv.2019.107497] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022]
|
22
|
Wang T, Liang C, Xu H, An Y, Xiao S, Zheng M, Liu L, Nie L. Incorporation of nonstandard amino acids into proteins: principles and applications. World J Microbiol Biotechnol 2020; 36:60. [PMID: 32266578 DOI: 10.1007/s11274-020-02837-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/04/2020] [Indexed: 01/01/2023]
Abstract
The cellular ribosome shows a naturally evolved strong preference for the synthesis of proteins with standard amino acids. An in-depth understanding of the translation process enables scientists to go beyond this natural limitation and engineer translating systems capable of synthesizing proteins with artificially designed and synthesized non-standard amino acids (nsAA) featuring more bulky sidechains. The sidechains can be functional groups, with chosen biophysical or chemical activities, that enable the direct application of these proteins. Alternatively, the sidechains can be designed to contain highly reactive groups: enabling the ready formation of conjugates via a covalent bond between the sidechain and other chemicals or biomolecules. This co-translational incorporation of nsAAs into proteins allows for a vast number of possible applications. In this paper, we first systematically summarized the advances in the engineering of the translation system. Subsequently, we reviewed the extensive applications of these nsAA-containing proteins (after chemical modification) by discussing representative reports on how they can be utilized for different purposes. Finally, we discussed the direction of further studies which could be undertaken to improve the current technology utilized in incorporating nsAAs in order to use them to their full potential and improve accessibility across disciplines.
Collapse
Affiliation(s)
- Tianwen Wang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Chen Liang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Hongjv Xu
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Yafei An
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Sha Xiao
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Mengyuan Zheng
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Lu Liu
- College of International Education, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Lei Nie
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, Henan, China.
| |
Collapse
|
23
|
|
24
|
Collins CH, Cirino PC. Commemorating Frances Arnold. AIChE J 2020. [DOI: 10.1002/aic.16924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cynthia H. Collins
- Department of Chemical and Biological EngineeringRensselaer Polytechnic Institute Troy New York
| | - Patrick C. Cirino
- Department of Chemical & Biomolecular EngineeringUniversity of Houston Houston Texas
| |
Collapse
|
25
|
Drienovská I, Roelfes G. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nat Catal 2020. [DOI: 10.1038/s41929-019-0410-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Narancic T, Almahboub SA, O’Connor KE. Unnatural amino acids: production and biotechnological potential. World J Microbiol Biotechnol 2019; 35:67. [DOI: 10.1007/s11274-019-2642-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
|
27
|
Neu J, Nikonow H, Schmuttenmaer CA. Terahertz Spectroscopy and Density Functional Theory Calculations of dl-Norleucine and dl-Methionine. J Phys Chem A 2018; 122:5978-5982. [DOI: 10.1021/acs.jpca.8b04978] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jens Neu
- Yale University, Department of Chemistry, New Haven, Connecticut 06520, United States
| | - Heinrich Nikonow
- Yale University, Department of Chemistry, New Haven, Connecticut 06520, United States
| | - Charles A. Schmuttenmaer
- Yale University, Department of Chemistry, New Haven, Connecticut 06520, United States
- Yale University, Energy Science Institute (ESI), New Haven, Connecticut 06520, United States
| |
Collapse
|
28
|
Yao A, Reed SA, Koh M, Yu C, Luo X, Mehta AP, Schultz PG. Progress toward a reduced phage genetic code. Bioorg Med Chem 2018; 26:5247-5252. [PMID: 29609949 DOI: 10.1016/j.bmc.2018.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/14/2018] [Accepted: 03/23/2018] [Indexed: 12/23/2022]
Abstract
All known living organisms use at least 20 amino acids as the basic building blocks of life. Efforts to reduce the number of building blocks in a replicating system to below the 20 canonical amino acids have not been successful to date. In this work, we use filamentous phage as a model system to investigate the feasibility of removing methionine (Met) from the proteome. We show that all 24 elongation Met sites in the M13 phage genome can be replaced by other canonical amino acids. Most of these changes involve substitution of methionine by leucine (Leu), but in some cases additional compensatory mutations are required. Combining Met substituted sites in the proteome generally led to lower viability/infectivity of the mutant phages, which remains the major challenge in eliminating all methionines from the phage proteome. To date a total of 15 (out of all 24) elongation Mets have been simultaneously deleted from the M13 proteome, providing a useful foundation for future efforts to minimize the genetic code.
Collapse
Affiliation(s)
- Anzhi Yao
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Sean A Reed
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Minseob Koh
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Chenguang Yu
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Xiaozhou Luo
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Angad P Mehta
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Peter G Schultz
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
29
|
Li Y, Wang Z, Cirino PC. Design and characterization of new β-glucuronidase active site variants with altered substrate specificity. Biotechnol Lett 2018; 40:111-118. [DOI: 10.1007/s10529-017-2447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
|
30
|
Völler JS, Thi To TM, Biava H, Koksch B, Budisa N. Global substitution of hemeproteins with noncanonical amino acids in Escherichia coli with intact cofactor maturation machinery. Enzyme Microb Technol 2017; 106:55-59. [PMID: 28859810 DOI: 10.1016/j.enzmictec.2017.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Global substitution of canonical amino acids (cAAs) with noncanonical (ncAAs) counterparts in proteins whose function is dependent on post-translational events such as cofactor binding is still a methodically challenging and difficult task as ncAA insertion generally interferes with the cofactor biosynthesis machinery. Here, we report a technology for the expression of fully substituted and functionally active cofactor-containing hemeproteins. The maturation process which yields an intact cofactor is timely separated from cAA→ncAA substitutions. This is achieved by an optimised expression and fermentation procedure which includes pre-induction of the heme cofactor biosynthesis followed by an incorporation experiment at multiple positions in the protein sequence. This simple strategy can be potentially applied for engineering of other cofactor-containing enzymes.
Collapse
Affiliation(s)
- Jan-Stefan Völler
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany; Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Tuyet Mai Thi To
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany; Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Hernan Biava
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Nediljko Budisa
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany.
| |
Collapse
|
31
|
Agostini F, Völler J, Koksch B, Acevedo‐Rocha CG, Kubyshkin V, Budisa N. Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology. Angew Chem Int Ed Engl 2017; 56:9680-9703. [DOI: 10.1002/anie.201610129] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/13/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Federica Agostini
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Jan‐Stefan Völler
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | | | - Vladimir Kubyshkin
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Nediljko Budisa
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| |
Collapse
|
32
|
Biokatalyse mit nicht‐natürlichen Aminosäuren: Enzymologie trifft Xenobiologie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Kubyshkin V, Budisa N. Synthetic alienation of microbial organisms by using genetic code engineering: Why and how? Biotechnol J 2017; 12. [PMID: 28671771 DOI: 10.1002/biot.201600097] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/19/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022]
Abstract
The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Biocatalysis group, Institute of Chemistry, Technical University of Berlin, Germany
| | - Nediljko Budisa
- Biocatalysis group, Institute of Chemistry, Technical University of Berlin, Germany
| |
Collapse
|
34
|
Anderhuber N, Fladischer P, Gruber-Khadjawi M, Mairhofer J, Striedner G, Wiltschi B. High-level biosynthesis of norleucine in E. coli for the economic labeling of proteins. J Biotechnol 2016; 235:100-11. [PMID: 27107466 DOI: 10.1016/j.jbiotec.2016.04.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/14/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
Abstract
The residue-specific labeling of proteins with non-canonical amino acids (ncAA) is well established in shake flask cultures. A key aspect for the transfer of the methodology to larger scales for biotechnological applications is the cost of the supplemented ncAAs. Therefore, we established a scalable bioprocess using an engineered host strain for the biosynthesis of the methionine analog norleucine at titers appropriate for the efficient and economic labeling of proteins. To enhance the biosynthesis of norleucine, which is a side-product of the branched chain amino acid pathway, we deleted all three acetolactate synthase isoforms of the methionine auxotrophic Escherichia coli expression strain B834(DE3). Additionally, we overexpressed leuABCD to boost the biosynthesis of norleucine. We systematically analyzed the production of norleucine under the conditions for its residue-specific incorporation in bioreactor cultures that had a 30-fold higher cell density than shake flask cultures. Under optimized conditions, 5g/L norleucine was biosynthesized. This titer is two times higher than the standard supplementation with norleucine of a culture with comparable cell density. We expect that our metabolically engineered strain for the improved biosynthesis of norleucine in combination with the proposed bioprocess will facilitate the efficient residue-specific labeling of proteins at a reasonable price in scales beyond the shake flask.
Collapse
Affiliation(s)
- Niklaus Anderhuber
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
| | - Patrik Fladischer
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
| | - Mandana Gruber-Khadjawi
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria; Department of Organic Chemistry, Graz University of Technology, Stremayrgasse 9/4, A-8010 Graz, Austria
| | - Juergen Mairhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, and Department of Biotechnology, Muthgasse 18, A-1190 Vienna, Austria; enGenes Biotech GmbH, Mooslackengasse 17, A-1190 Vienna, Austria
| | - Gerald Striedner
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, and Department of Biotechnology, Muthgasse 18, A-1190 Vienna, Austria
| | - Birgit Wiltschi
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria.
| |
Collapse
|
35
|
Incorporation of non-canonical amino acids into proteins in yeast. Fungal Genet Biol 2016; 89:137-156. [DOI: 10.1016/j.fgb.2016.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/22/2022]
|
36
|
|
37
|
Synthetic biology for microbial production of lipid-based biofuels. Curr Opin Chem Biol 2015; 29:58-65. [PMID: 26479184 DOI: 10.1016/j.cbpa.2015.09.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022]
Abstract
The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.
Collapse
|
38
|
Ravikumar Y, Nadarajan SP, Hyeon Yoo T, Lee CS, Yun H. Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications. Biotechnol J 2015; 10:1862-76. [DOI: 10.1002/biot.201500153] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 09/02/2015] [Indexed: 12/22/2022]
|
39
|
Ravikumar Y, Nadarajan SP, Yoo TH, Lee CS, Yun H. Unnatural amino acid mutagenesis-based enzyme engineering. Trends Biotechnol 2015; 33:462-70. [PMID: 26088007 DOI: 10.1016/j.tibtech.2015.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 02/09/2023]
Abstract
Traditional enzyme engineering relies on substituting one amino acid by one of the other 19 natural amino acids to change the functional properties of an enzyme. However, incorporation of unnatural amino acids (UAAs) has been harnessed to engineer efficient enzymes for biocatalysis. Residue-specific and site-specific in vivo incorporation methods are becoming the preferred approach for producing enzymes with altered or improved functions. We describe the contribution of in vivo UAA incorporation methodologies to enzyme engineering as well as the future prospects for the field, including the integration of UAAs with other new advances in enzyme engineering.
Collapse
Affiliation(s)
- Yuvaraj Ravikumar
- School of Biotechnology, Department of Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| | | | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Chong-soon Lee
- School of Biotechnology, Department of Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| | - Hyungdon Yun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
40
|
Joel S, Turner KB, Daunert S. Glucose recognition proteins for glucose sensing at physiological concentrations and temperatures. ACS Chem Biol 2014; 9:1595-602. [PMID: 24841549 PMCID: PMC4215909 DOI: 10.1021/cb500132g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 05/19/2014] [Indexed: 11/30/2022]
Abstract
Advancements in biotechnology have allowed for the preparation of designer proteins with a wide spectrum of unprecedented chemical and physical properties. A variety of chemical and genetic methods can be employed to tailor the protein's properties, including its stability and various functions. Herein, we demonstrate the production of semisynthetic glucose recognition proteins (GRPs) prepared by truncating galactose/glucose binding protein (GBP) of E. coli and expanding the genetic code via global incorporation of unnatural amino acids into the structure of GBP and its fragments. The unnatural amino acids 5,5,5-trifluoroleucine (FL) and 5-fluorotryptophan (FW) were chosen for incorporation into the proteins. The resulting semisynthetic GRPs exhibit enhanced thermal stability and increased detection range of glucose without compromising its binding ability. These modifications enabled the utilization of the protein for the detection of glucose within physiological concentrations (mM) and temperatures ranging from hypothermia to hyperthermia. This ability to endow proteins such as GBP with improved stability and properties is critical in designing the next generation of tailor-made biosensing proteins for continuous in vivo glucose monitoring.
Collapse
Affiliation(s)
- Smita Joel
- Department
of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United
States
| | - Kendrick B. Turner
- Department
of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United
States
| | - Sylvia Daunert
- Department
of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, 1011 NW 15th Street, Miami, Florida 33136, United
States
| |
Collapse
|
41
|
Bernhardt R, Urlacher VB. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 2014; 98:6185-203. [PMID: 24848420 DOI: 10.1007/s00253-014-5767-7] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 01/08/2023]
Abstract
Cytochromes P450 (CYPs) belong to the superfamily of heme b containing monooxygenases with currently more than 21,000 members. These enzymes accept a vast range of organic molecules and catalyze diverse reactions. These extraordinary capabilities of CYP systems that are unmet by other enzymes make them attractive for biotechnology. However, the complexity of these systems due to the need of electron transfer from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) via redox partner proteins for the initial hydroxylation step limits a broader technical implementation of CYP enzymes. There have been several reviews during the past years tackling the potential CYPs for synthetic application. The aim of this review is to give a critical overview about possibilities and chances for application of these interesting catalysts as well as to discuss drawbacks and problems related to their use. Solutions to overcome these limitations will be demonstrated, and several selected examples of successful CYP applications under industrial conditions will be reviewed.
Collapse
Affiliation(s)
- Rita Bernhardt
- Institute of Biochemistry, Saarland University, 66123, Saarbrücken, Germany,
| | | |
Collapse
|
42
|
Kolev JN, Zaengle JM, Ravikumar R, Fasan R. Enhancing the efficiency and regioselectivity of P450 oxidation catalysts by unnatural amino acid mutagenesis. Chembiochem 2014; 15:1001-10. [PMID: 24692265 DOI: 10.1002/cbic.201400060] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Indexed: 01/28/2023]
Abstract
The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. We have investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. Four unnatural amino acids with diverse aromatic side chains were incorporated at 11 active-site positions of a substrate-promiscuous CYP102A1 variant. The resulting "uP450s" were then tested for their catalytic activity and regioselectivity in the oxidation of two representative substrates: a small-molecule drug and a natural product. Large shifts in regioselectivity resulted from these single mutations, and in particular, for para-acetyl-Phe substitutions at positions close to the heme cofactor. Screening this mini library of uP450s enabled us to identify P450 catalysts for the selective hydroxylation of four aliphatic positions in the target substrates, including a C(sp(3))-H site not oxidized by the parent enzyme. Furthermore, we discovered a general activity-enhancing effect of active-site substitutions involving the unnatural amino acid para-amino-Phe, which resulted in P450 catalysts capable of supporting the highest total turnover number reported to date on a complex molecule (34,650). The functional changes induced by the unnatural amino acids could not be reproduced by any of the 20 natural amino acids. This study thus demonstrates that unnatural amino acid mutagenesis constitutes a promising new strategy for improving the catalytic activity and regioselectivity of P450 oxidation catalysts.
Collapse
Affiliation(s)
- Joshua N Kolev
- Department of Chemistry, University of Rochester, Hutchison Hall, Rochester, NY 14620 (USA)
| | | | | | | |
Collapse
|
43
|
Ranaghan KE, Hung JE, Bartlett GJ, Mooibroek TJ, Harvey JN, Woolfson DN, van der Donk WA, Mulholland AJ. A catalytic role for methionine revealed by a combination of computation and experiments on phosphite dehydrogenase. Chem Sci 2014. [DOI: 10.1039/c3sc53009d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Novel role for methionine in enzyme catalysis.
Collapse
Affiliation(s)
- Kara E. Ranaghan
- Centre for Computational Chemistry
- School of Chemistry
- University of Bristol
- Bristol, UK
- School of Chemistry
| | - John E. Hung
- Department of Chemistry and The Howard Hughes Medical Institute
- University of Illinois at Urbana-Champaign
- Urbana, USA
| | | | | | - Jeremy N. Harvey
- Centre for Computational Chemistry
- School of Chemistry
- University of Bristol
- Bristol, UK
- School of Chemistry
| | - Derek N. Woolfson
- School of Chemistry
- University of Bristol
- Bristol, UK
- School of Biochemistry
- Medical Sciences
| | - Wilfred A. van der Donk
- Department of Chemistry and The Howard Hughes Medical Institute
- University of Illinois at Urbana-Champaign
- Urbana, USA
| | - Adrian J. Mulholland
- Centre for Computational Chemistry
- School of Chemistry
- University of Bristol
- Bristol, UK
- School of Chemistry
| |
Collapse
|
44
|
Deepankumar K, Nadarajan SP, Ayyadurai N, Yun H. Enhancing the biophysical properties of mRFP1 through incorporation of fluoroproline. Biochem Biophys Res Commun 2013; 440:509-14. [PMID: 24080380 DOI: 10.1016/j.bbrc.2013.09.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/11/2013] [Indexed: 12/17/2022]
Abstract
Here we enhanced the stability and biophysical properties of mRFP1 through a combination of canonical and non-canonical amino acid mutagenesis. The global replacement of proline residue with (2S, 4R)-4-fluoroproline [(4R)-FP] into mRFP1 led to soluble protein but lost its fluorescence, whereas (2S, 4S)-4-fluoroproline [(4S)-FP] incorporation resulted in insoluble protein. The bioinformatics analysis revealed that (4R)-FP incorporation at Pro63 caused fluorescence loss due to the steric hindrance of fluorine atom of (4R)-FP with the chromophore. Therefore, Pro63 residue was mutated with the smallest amino acid Ala to maintain non coplanar conformation of the chromophore and helps to retain its fluorescence with (4R)-FP incorporation. The incorporation of (4R)-FP into mRFP1-P63A showed about 2-3-fold enhancement in thermal and chemical stability. The rate of maturation is also greatly accelerated over the presence of (4R)-FP into mRFP1-P63A. Our study showed that a successful enhancement in the biophysical property of mRFP1-P63A[(4R)-FP] using non-canonical amino acid mutagenesis after mutating non-permissive site Pro63 into Ala.
Collapse
|
45
|
Zheng S, Kwon I. Controlling enzyme inhibition using an expanded set of genetically encoded amino acids. Biotechnol Bioeng 2013; 110:2361-70. [DOI: 10.1002/bit.24911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 03/16/2013] [Accepted: 03/22/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Shun Zheng
- Department of Chemical EngineeringUniversity of VirginiaCharlottesville, VA22904‐4741
| | - Inchan Kwon
- Department of Chemical EngineeringUniversity of VirginiaCharlottesville, VA22904‐4741
| |
Collapse
|
46
|
Kwon I, Lim SI. Non-Natural Amino Acids for Protein Engineering and New Protein Chemistries. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201200710] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Nadarajan SP, Mathew S, Deepankumar K, Yun H. An in silico approach to evaluate the polyspecificity of methionyl-tRNA synthetases. J Mol Graph Model 2012; 39:79-86. [PMID: 23228618 DOI: 10.1016/j.jmgm.2012.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/12/2012] [Accepted: 11/13/2012] [Indexed: 12/13/2022]
Abstract
Residue-specific incorporation is a technique used to replace natural amino acids with their close structural analogs, unnatural amino acids (UAAs), during protein synthesis. This is achieved by exploiting the substrate promiscuity of the wild type amino acyl tRNA synthetase (AARS) towards the close structural analogs of their cognate amino acids. In the past few decades, seleno-methionine was incorporated into proteins, using the substrate promiscuity of wild type AARSs, to resolve their crystal structures. Later, the incorporation of many UAAs showed that the AARSs are polyspecific to the close structural analogs of their cognate amino acids and that they maintain fidelity for the 19 natural amino acids. This polyspecificity helps to expand the use of this powerful tool to incorporate various UAA residues specifically through in vivo and in vitro approaches. Incorporation of UAAs is expensive, tedious and time-consuming. For the efficient incorporation of UAAs, it is important to screen substrate selectivity prior to their incorporation. As an initial study, using a docking tool, we analyzed the polyspecificity of the methionyl-tRNA synthetases (MetRSs) towards multiple reported and virtually generated methionine analogs. Based on the interaction result of these docking simulations, we predicted the substrate selectivity of the MetRS and the key residues responsible for the recognition of methionine analogs. Similarly, we compared the active site residues of the MetRSs of different species and identified the conserved amino acids in their active sites. Given the close similarity in the active site residues of these systems, we evaluated the polyspecificity of MetRSs.
Collapse
|
48
|
Recent advances in genetic code engineering in Escherichia coli. Curr Opin Biotechnol 2012; 23:751-7. [PMID: 22237016 DOI: 10.1016/j.copbio.2011.12.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 02/02/2023]
Abstract
The expansion of the genetic code is gradually becoming a core discipline in Synthetic Biology. It offers the best possible platform for the transfer of numerous chemical reactions and processes from the chemical synthetic laboratory into the biochemistry of living cells. The incorporation of biologically occurring or chemically synthesized non-canonical amino acids into recombinant proteins and even proteomes via reprogrammed protein translation is in the heart of these efforts. Orthogonal pairs consisting of aminoacyl-tRNA synthetase and its cognate tRNA proved to be a general tool for the assignment of certain codons of the genetic code with a maximum degree of chemical liberty. Here, we highlight recent developments that should provide a solid basis for the development of generalist tools enabling a controlled variation of chemical composition in proteins and even proteomes. This will take place in the frame of a greatly expanded genetic code with emancipated codons liberated from the current function or with totally new coding units.
Collapse
|
49
|
Abstract
Techniques to manipulate cellular gene expression such that amino acid analogs not encoded by the genetic code are incorporated into a polypeptide chain have recently gained increasing interest. The so-called noncanonical amino acids often have unusual properties that can be translated into target proteins by reprogrammed ribosomal protein synthesis. Residue-specific substitution of a specific canonical amino acid by its analogs provokes global effects in the resulting protein congeners that include improved stability or catalytic activity, reduced redox sensitivity, as well as altered spectral properties. Thus, the approach holds great promise for the engineering of synthetic proteins.This contribution describes a protocol for the incorporation of a noncanonical amino acid into a target protein expressed in an appropriate amino acid auxotrophic E. coli strain.
Collapse
|
50
|
Zheng S, Kwon I. Manipulation of enzyme properties by noncanonical amino acid incorporation. Biotechnol J 2011; 7:47-60. [PMID: 22121038 DOI: 10.1002/biot.201100267] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/22/2011] [Accepted: 09/22/2011] [Indexed: 11/07/2022]
Abstract
Since wild-type enzymes do not always have the properties needed for various applications, enzymes are often engineered to obtain desirable properties through protein engineering techniques. In the past decade, complementary to the widely used rational protein design and directed evolution techniques, noncanonical amino acid incorporation (NCAAI) has become a new and effective protein engineering technique. Recently, NCAAI has been used to improve intrinsic functions of proteins, such as enzymes and fluorescent proteins, beyond the capacities obtained with natural amino acids. Herein, recent progress on improving enzyme properties through NCAAI in vivo is reviewed and the challenges of current approaches and future directions are also discussed. To date, both NCAAI methods-residue- and site-specific incorporation-have been primarily used to improve the catalytic turnover number and substrate binding affinity of enzymes. Numerous strategies used to minimize structural perturbation and stability loss of a target enzyme upon NCAAI are also explored. Considering the generality of NCAAI incorporation, we expect its application could be expanded to improve other enzyme properties, such as substrate specificity and solvent resistance in the near future.
Collapse
Affiliation(s)
- Shun Zheng
- Department of Chemical Engineering University of Virginia, Charlottesville, VA 22904, USA
| | | |
Collapse
|