1
|
Bermúdez-Puga S, Mendes B, Ramos-Galarza JP, Oliveira de Souza de Azevedo P, Converti A, Molinari F, Moore SJ, Almeida JR, Pinheiro de Souza Oliveira R. Revolutionizing agroindustry: Towards the industrial application of antimicrobial peptides against pathogens and pests. Biotechnol Adv 2025; 82:108605. [PMID: 40368115 DOI: 10.1016/j.biotechadv.2025.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/09/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Antibiotics are essential chemicals for medicine and agritech. However, all antibiotics are small molecules that pathogens evolve antimicrobial resistance (AMR). Alternatively, antimicrobial peptides (AMPs) offer potential to overcome or evade AMR. AMPs provide broad-spectrum activity, favourable biosafety profiles, and a rapid and efficient mechanism of action with low resistance incidence. These properties have driven innovative applications, positioning AMPs as promising contributors to advancements in various industrial sectors. This review evaluates the multifaceted nature of AMPs and their biotechnological applications in underexplored sectors. In the food industry, the application of AMPs helps to suppress the growth of microorganisms, thereby decreasing foodborne illnesses, minimizing food waste, and prolonging the shelf life of products. In animal husbandry and aquaculture, incorporating AMPs into the diet reduces the load of pathogenic microorganisms and enhances growth performance and survival rates. In agriculture, AMPs provide an alternative to decrease the use of chemical pesticides and antibiotics. We also review current methods for obtaining AMPs, including chemical synthesis, recombinant DNA technology, cell-free protein synthesis, and molecular farming, are also reviewed. Finally, we look to the peptide market to assess its status, progress, and transition from the discovery stage to benefits for society and high-quality products. Overall, our review exemplifies the other side of the coin of AMPs and how these molecules provide similar benefits to conventional antibiotics and pesticides in the agritech sector.
Collapse
Affiliation(s)
- Sebastián Bermúdez-Puga
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Bruno Mendes
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AH, UK
| | - Jean Pierre Ramos-Galarza
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - Pamela Oliveira de Souza de Azevedo
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Simon J Moore
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - José R Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador; School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| | - Ricardo Pinheiro de Souza Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, Rua do Lago 250, Cidade Universitária, São Paulo 05508-000, SP, Brazil.
| |
Collapse
|
2
|
Rice AJ, Sword TT, Chengan K, Mitchell DA, Mouncey NJ, Moore SJ, Bailey CB. Cell-free synthetic biology for natural product biosynthesis and discovery. Chem Soc Rev 2025; 54:4314-4352. [PMID: 40104998 PMCID: PMC11920963 DOI: 10.1039/d4cs01198h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 03/20/2025]
Abstract
Natural products have applications as biopharmaceuticals, agrochemicals, and other high-value chemicals. However, there are challenges in isolating natural products from their native producers (e.g. bacteria, fungi, plants). In many cases, synthetic chemistry or heterologous expression must be used to access these important molecules. The biosynthetic machinery to generate these compounds is found within biosynthetic gene clusters, primarily consisting of the enzymes that biosynthesise a range of natural product classes (including, but not limited to ribosomal and nonribosomal peptides, polyketides, and terpenoids). Cell-free synthetic biology has emerged in recent years as a bottom-up technology applied towards both prototyping pathways and producing molecules. Recently, it has been applied to natural products, both to characterise biosynthetic pathways and produce new metabolites. This review discusses the core biochemistry of cell-free synthetic biology applied to metabolite production and critiques its advantages and disadvantages compared to whole cell and/or chemical production routes. Specifically, we review the advances in cell-free biosynthesis of ribosomal peptides, analyse the rapid prototyping of natural product biosynthetic enzymes and pathways, highlight advances in novel antimicrobial discovery, and discuss the rising use of cell-free technologies in industrial biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Andrew J Rice
- Department of Biochemistry, School of Medicine - Basic Sciences, Vanderbilt University Medical Research Building-IV, Nashville, Tennessee, 37232, USA
| | - Tien T Sword
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Douglas A Mitchell
- Department of Biochemistry, School of Medicine - Basic Sciences, Vanderbilt University Medical Research Building-IV, Nashville, Tennessee, 37232, USA
- Department of Chemistry, Vanderbilt University, Medical Research Building-IV, Nashville, Tennessee, 37232, USA
| | - Nigel J Mouncey
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Simon J Moore
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Constance B Bailey
- School of Chemistry, University of Sydney, Camperdown, NSW, 2001, Australia.
| |
Collapse
|
3
|
Brown DM, Phillips DA, Garcia DC, Arce A, Lucci T, Davies JP, Mangini JT, Rhea KA, Bernhards CB, Biondo JR, Blum SM, Cole SD, Lee JA, Lee MS, McDonald ND, Wang B, Perdue DL, Bower XS, Thavarajah W, Karim AS, Lux MW, Jewett MC, Miklos AE, Lucks JB. Semiautomated Production of Cell-Free Biosensors. ACS Synth Biol 2025; 14:979-986. [PMID: 40073441 DOI: 10.1021/acssynbio.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Cell-free synthetic biology biosensors have potential as effective in vitro diagnostic technologies for the detection of chemical compounds, such as toxins and human health biomarkers. They have several advantages over conventional laboratory-based diagnostic approaches, including the ability to be assembled, freeze-dried, distributed, and then used at the point of need. This makes them an attractive platform for cheap and rapid chemical detection across the globe. Though promising, a major challenge is scaling up biosensor manufacturing to meet the needs of their multiple uses. Currently, cell-free biosensor assembly during lab-scale development is mostly performed manually by the operator, leading to quality control and performance variability issues. Here we explore the use of liquid-handling robotics to manufacture cell-free biosensor reactions. We compare both manual and semiautomated reaction assembly approaches using the Opentrons OT-2 liquid handling platform on two different cell-free gene expression assay systems that constitutively produce colorimetric (LacZ) or fluorescent (GFP) signals. We test the designed protocol by constructing an entire 384-well plate of fluoride-sensing cell-free biosensors and demonstrate that they perform close to expected detection outcomes.
Collapse
Affiliation(s)
- Dylan M Brown
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel A Phillips
- Applied Synthetic Biology and Olfaction Branch, U.S. Army DEVCOM Chemical Biological Center, Gunpowder, Maryland 21010, United States
| | - David C Garcia
- Applied Synthetic Biology and Olfaction Branch, U.S. Army DEVCOM Chemical Biological Center, Gunpowder, Maryland 21010, United States
- Precise Systems, Lexington Park, Maryland 20653, United States
| | - Anibal Arce
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Tyler Lucci
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - John P Davies
- Decontamination Sciences Branch, U.S. Army DEVCOM Chemical Biological Center, Gunpowder, Maryland 21010, United States
| | - Jacob T Mangini
- University of Maryland, College Park, Maryland 20742, United States
| | - Katherine A Rhea
- Applied Synthetic Biology and Olfaction Branch, U.S. Army DEVCOM Chemical Biological Center, Gunpowder, Maryland 21010, United States
| | - Casey B Bernhards
- Applied Synthetic Biology and Olfaction Branch, U.S. Army DEVCOM Chemical Biological Center, Gunpowder, Maryland 21010, United States
| | - John R Biondo
- Applied Synthetic Biology and Olfaction Branch, U.S. Army DEVCOM Chemical Biological Center, Gunpowder, Maryland 21010, United States
- Precise Systems, Lexington Park, Maryland 20653, United States
| | - Steven M Blum
- Applied Synthetic Biology and Olfaction Branch, U.S. Army DEVCOM Chemical Biological Center, Gunpowder, Maryland 21010, United States
| | - Stephanie D Cole
- Applied Synthetic Biology and Olfaction Branch, U.S. Army DEVCOM Chemical Biological Center, Gunpowder, Maryland 21010, United States
| | - Jennifer A Lee
- Applied Synthetic Biology and Olfaction Branch, U.S. Army DEVCOM Chemical Biological Center, Gunpowder, Maryland 21010, United States
- Defense Threat Reduction Agency, Fort Belvoir, Virginia 22060, United States
| | - Marilyn S Lee
- Applied Synthetic Biology and Olfaction Branch, U.S. Army DEVCOM Chemical Biological Center, Gunpowder, Maryland 21010, United States
| | - Nathan D McDonald
- Biomanufacturing Branch, U.S. Army DEVCOM Chemical Biological Center, Gunpowder, Maryland 21010, United States
| | - Brenda Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Dale L Perdue
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Xavier S Bower
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew W Lux
- Applied Synthetic Biology and Olfaction Branch, U.S. Army DEVCOM Chemical Biological Center, Gunpowder, Maryland 21010, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Aleksandr E Miklos
- Applied Synthetic Biology and Olfaction Branch, U.S. Army DEVCOM Chemical Biological Center, Gunpowder, Maryland 21010, United States
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Nour El-Din H, Kettal M, Lam S, Granados Maciel J, Peters DL, Chen W. Cell-free expression system: a promising platform for bacteriophage production and engineering. Microb Cell Fact 2025; 24:42. [PMID: 39962567 PMCID: PMC11834285 DOI: 10.1186/s12934-025-02661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Cell-free expression is a technique used to synthesize proteins without utilising living cells. This technique relies mainly on the cellular machinery -ribosomes, enzymes, and other components - extracted from cells to produce proteins in vitro. Thus far, cell-free expression systems have been used for an array of biologically important purposes, such as studying protein functions and interactions, designing synthetic pathways, and producing novel proteins and enzymes. In this review article, we aim to provide bacteriophage (phage) researchers with an understanding of the cell-free expression process and the potential it holds to accelerate phage production and engineering for phage therapy and other applications. Throughout the review, we summarize the system's main steps and components, both generally and particularly for the self-assembly and engineering of phages and discuss their potential optimization for better protein and phage production. Cell-free expression systems have the potential to serve as a platform for the biosynthetic production of personalized phage therapeutics. This is an area of in vitro biosynthesis that is becoming increasingly attractive, given the current high interest in phages and their promising potential role in the fight against antimicrobial resistant infections.
Collapse
Affiliation(s)
- Hanzada Nour El-Din
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada.
| | - Maryam Kettal
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
| | - Serena Lam
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
| | - José Granados Maciel
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
| | - Danielle L Peters
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
- Department of Biology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
5
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Ribeiro ALJL, Pérez-Arnaiz P, Sánchez-Costa M, Pérez L, Almendros M, van Vliet L, Gielen F, Lim J, Charnock S, Hollfelder F, González-Pastor JE, Berenguer J, Hidalgo A. Thermostable in vitro transcription-translation compatible with microfluidic droplets. Microb Cell Fact 2024; 23:169. [PMID: 38858677 PMCID: PMC11165818 DOI: 10.1186/s12934-024-02440-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/25/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND In vitro expression involves the utilization of the cellular transcription and translation machinery in an acellular context to produce one or more proteins of interest and has found widespread application in synthetic biology and in pharmaceutical biomanufacturing. Most in vitro expression systems available are active at moderate temperatures, but to screen large libraries of natural or artificial genetic diversity for highly thermostable enzymes or enzyme variants, it is instrumental to enable protein synthesis at high temperatures. OBJECTIVES Develop an in vitro expression system operating at high temperatures compatible with enzymatic assays and with technologies that enable ultrahigh-throughput protein expression in reduced volumes, such as microfluidic water-in-oil (w/o) droplets. RESULTS We produced cell-free extracts from Thermus thermophilus for in vitro translation including thermostable enzymatic cascades for energy regeneration and a moderately thermostable RNA polymerase for transcription, which ultimately limited the temperature of protein synthesis. The yield was comparable or superior to other thermostable in vitro expression systems, while the preparation procedure is much simpler and can be suited to different Thermus thermophilus strains. Furthermore, these extracts have enabled in vitro expression in microfluidic droplets at high temperatures for the first time. CONCLUSIONS Cell-free extracts from Thermus thermophilus represent a simpler alternative to heavily optimized or pure component thermostable in vitro expression systems. Moreover, due to their compatibility with droplet microfluidics and enzyme assays at high temperatures, the reported system represents a convenient gateway for enzyme screening at higher temperatures with ultrahigh-throughput.
Collapse
Grants
- 324439, 635595, 685474, 695669 and 10100560 European Commission
- 324439, 635595, 685474, 695669 and 10100560 European Commission
- 324439, 635595, 685474, 695669 and 10100560 European Commission
- 324439, 635595, 685474, 695669 and 10100560 European Commission
- 324439, 635595, 685474, 695669 and 10100560 European Commission
- 324439, 635595, 685474, 695669 and 10100560 European Commission
- 324439, 635595, 685474, 695669 and 10100560 European Commission
- 324439, 635595, 685474, 695669 and 10100560 European Commission
- 324439, 635595, 685474, 695669 and 10100560 European Commission
- 324439, 635595, 685474, 695669 and 10100560 European Commission
- 324439, 635595, 685474, 695669 and 10100560 European Commission
- 324439, 635595, 685474, 695669 and 10100560 European Commission
- 324439, 635595, 685474, 695669 and 10100560 European Commission
- BIO-2013-44963-R, RED2022-134755-T, CEX2021-001154-S Ministerio de Ciencia e Innovación
- BIO-2013-44963-R, RED2022-134755-T, CEX2021-001154-S Ministerio de Ciencia e Innovación
Collapse
Affiliation(s)
- Ana L J L Ribeiro
- Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Patricia Pérez-Arnaiz
- Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Mercedes Sánchez-Costa
- Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Nicolás Cabrera 1, 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Lara Pérez
- Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Nicolás Cabrera 1, 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Marcos Almendros
- Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Nicolás Cabrera 1, 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Liisa van Vliet
- Departament of Biochemistry, Cambridge University, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
- DropTech Ltd, 91 Canterbury Court, Cambridge, CB4 3QU, UK
| | - Fabrice Gielen
- DropTech Ltd, 91 Canterbury Court, Cambridge, CB4 3QU, UK
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
| | - Jesmine Lim
- Prozomix Ltd, Building 4, West End Ind. Estate, Haltwhistle, Northumberland, NE49 9HA, UK
| | - Simon Charnock
- Prozomix Ltd, Building 4, West End Ind. Estate, Haltwhistle, Northumberland, NE49 9HA, UK
| | - Florian Hollfelder
- Departament of Biochemistry, Cambridge University, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - J Eduardo González-Pastor
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra de Torrejón a Ajalvir, Km 4, 28850, Torrejón de Ardoz, Spain
| | - José Berenguer
- Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Aurelio Hidalgo
- Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Nicolás Cabrera 1, 28049, Madrid, Spain.
- Instituto de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain.
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
7
|
Bourgery C, Mendoza DJ, Garnier G, Mouterde LMM, Allais F. Immobilization of Adenosine Derivatives onto Cellulose Nanocrystals via Click Chemistry for Biocatalysis Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11315-11323. [PMID: 38394235 DOI: 10.1021/acsami.3c19025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Adenosine triphosphate (ATP) is a central molecule of organisms and is involved in many biological processes. It is also widely used in biocatalytic processes, especially as a substrate and precursor of many cofactors─such as nicotinamide adenine dinucleotide phosphate (NADP(H)), coenzyme A (CoA), and S-adenosylmethionine (SAM). Despite its great scientific interest and pivotal role, its use in industrial processes is impeded by its prohibitory cost. To overcome this limitation, we developed a greener synthesis of adenosine derivatives and efficiently selectively grafted them onto organic nanoparticles. In this study, cellulose nanocrystals were used as a model combined with click chemistry via a copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC). The grafted adenosine triphosphate derivative fully retains its biocatalytic capability, enabling heterobiocatalysis for modern biochemical processes.
Collapse
Affiliation(s)
- Célestin Bourgery
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - David Joram Mendoza
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Gil Garnier
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Louis M M Mouterde
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
8
|
Kerestesy GN, Dods KK, McFeely CAL, Hartman MCT. Continuous Fluorescence Assay for In Vitro Translation Compatible with Noncanonical Amino Acids. ACS Synth Biol 2024; 13:119-128. [PMID: 38194520 PMCID: PMC11165968 DOI: 10.1021/acssynbio.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The tolerance of the translation apparatus toward noncanonical amino acids (ncAAs) has enabled the creation of diverse natural-product-like peptide libraries using mRNA display for use in drug discovery. Typical experiments testing for ribosomal ncAA incorporation involve radioactive end point assays to measure yield alongside mass spectrometry experiments to validate incorporation. These end point assays require significant postexperimental manipulation for analysis and prevent higher throughput analysis and optimization experiments. Continuous assays for in vitro translation involve the synthesis of fluorescent proteins which require the full complement of canonical AAs for function and are therefore of limited utility for testing of ncAAs. Here, we describe a new, continuous fluorescence assay for in vitro translation based on detection of a short peptide tag using an affinity clamp protein, which exhibits changes in its fluorescent properties upon binding. Using this assay in a 384-well format, we were able to validate the incorporation of a variety of ncAAs and also quickly test for the codon reading specificities of a variety of Escherichia coli tRNAs. This assay enables rapid assessment of ncAAs and optimization of translation components and is therefore expected to advance the engineering of the translation apparatus for drug discovery and synthetic biology.
Collapse
Affiliation(s)
- Gianna N Kerestesy
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Kara K Dods
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Clinton A L McFeely
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Matthew C T Hartman
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| |
Collapse
|
9
|
Schloßhauer JL, Dondapati SK, Kubick S, Zemella A. A Cost-Effective Pichia pastoris Cell-Free System Driven by Glycolytic Intermediates Enables the Production of Complex Eukaryotic Proteins. Bioengineering (Basel) 2024; 11:92. [PMID: 38247969 PMCID: PMC10813726 DOI: 10.3390/bioengineering11010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Cell-free systems are particularly attractive for screening applications and the production of difficult-to-express proteins. However, the production of cell lysates is difficult to implement on a larger scale due to large time requirements, cultivation costs, and the supplementation of cell-free reactions with energy regeneration systems. Consequently, the methylotrophic yeast Pichia pastoris, which is widely used in recombinant protein production, was utilized in the present study to realize cell-free synthesis in a cost-effective manner. Sensitive disruption conditions were evaluated, and appropriate signal sequences for translocation into ER vesicles were identified. An alternative energy regeneration system based on fructose-1,6-bisphosphate was developed and a ~2-fold increase in protein production was observed. Using a statistical experiment design, the optimal composition of the cell-free reaction milieu was determined. Moreover, functional ion channels could be produced, and a G-protein-coupled receptor was site-specifically modified using the novel cell-free system. Finally, the established P. pastoris cell-free protein production system can economically produce complex proteins for biotechnological applications in a short time.
Collapse
Affiliation(s)
- Jeffrey L. Schloßhauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, 14469 Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
| |
Collapse
|
10
|
Maharjan A, Park JH. Cell-free protein synthesis system: A new frontier for sustainable biotechnology-based products. Biotechnol Appl Biochem 2023; 70:2136-2149. [PMID: 37735977 DOI: 10.1002/bab.2514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Cell-free protein synthesis (CFPS) system is an innovative technology with a wide range of potential applications that could challenge current thinking and provide solutions to environmental and health issues. CFPS system has been demonstrated to be a successful way of producing biomolecules in a variety of applications, including the biomedical industry. Although there are still obstacles to overcome, its ease of use, versatility, and capacity for integration with other technologies open the door for it to continue serving as a vital instrument in synthetic biology research and industry. In this review, we mainly focus on the cell-free based platform for various product productions. Moreover, the challenges in the bio-therapeutic aspect using cell-free systems and their future prospective for the improvement and sustainability of the cell free systems.
Collapse
Affiliation(s)
- Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
11
|
Wang PH, Nishikawa S, McGlynn SE, Fujishima K. One-Pot De Novo Synthesis of [4Fe-4S] Proteins Using a Recombinant SUF System under Aerobic Conditions. ACS Synth Biol 2023; 12:2887-2896. [PMID: 37467114 PMCID: PMC10594875 DOI: 10.1021/acssynbio.3c00155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 07/21/2023]
Abstract
Fe-S clusters are essential cofactors mediating electron transfer in respiratory and metabolic networks. However, obtaining active [4Fe-4S] proteins with heterologous expression is challenging due to (i) the requirements for [4Fe-4S] cluster assembly, (ii) the O2 lability of [4Fe-4S] clusters, and (iii) copurification of undesired proteins (e.g., ferredoxins). Here, we established a facile and efficient protocol to express mature [4Fe-4S] proteins in the PURE system under aerobic conditions. An enzyme aconitase and thermophilic ferredoxin were selected as model [4Fe-4S] proteins for functional verification. We first reconstituted the SUF system in vitro via a stepwise manner using the recombinant SUF subunits (SufABCDSE) individually purified from E. coli. Later, the incorporation of recombinant SUF helper proteins into the PURE system enabled mRNA translation-coupled [4Fe-4S] cluster assembly under the O2-depleted conditions. To overcome the O2 lability of [4Fe-4S] Fe-S clusters, an O2-scavenging enzyme cascade was incorporated, which begins with formate oxidation by formate dehydrogenase for NADH regeneration. Later, NADH is consumed by flavin reductase for FADH2 regeneration. Finally, bifunctional flavin reductase, along with catalase, removes O2 from the reaction while supplying FADH2 to the SufBC2D complex. These amendments enabled a one-pot, two-step synthesis of mature [4Fe-4S] proteins under aerobic conditions, yielding holo-aconitase with a maximum concentration of ∼0.15 mg/mL. This renovated system greatly expands the potential of the PURE system, paving the way for the future reconstruction of redox-active synthetic cells and enhanced cell-free biocatalysis.
Collapse
Affiliation(s)
- Po-Hsiang Wang
- Department
of Chemical Engineering and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
- Graduate
Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Shota Nishikawa
- Earth-Life
Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- School
of Life Science and Technology, Tokyo Institute
of Technology, Tokyo 152-8550, Japan
| | - Shawn Erin McGlynn
- Earth-Life
Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Blue
Marble Space Institute of Science, Seattle, Washington 98154, United States
| | - Kosuke Fujishima
- Earth-Life
Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Graduate
School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
12
|
Borhani SG, Levine MZ, Krumpe LH, Wilson J, Henrich CJ, O'Keefe BR, Lo DC, Sittampalam GS, Godfrey AG, Lunsford RD, Mangalampalli V, Tao D, LeClair CA, Thole AP, Frey D, Swartz J, Rao G. An approach to rapid distributed manufacturing of broad spectrum anti-viral griffithsin using cell-free systems to mitigate pandemics. N Biotechnol 2023; 76:13-22. [PMID: 37054948 PMCID: PMC10330340 DOI: 10.1016/j.nbt.2023.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
This study describes the cell-free biomanufacturing of a broad-spectrum antiviral protein, griffithsin (GRFT) such that it can be produced in microgram quantities with consistent purity and potency in less than 24 h. We demonstrate GRFT production using two independent cell-free systems, one plant and one microbial. Griffithsin purity and quality were verified using standard regulatory metrics. Efficacy was demonstrated in vitro against SARS-CoV-2 and HIV-1 and was nearly identical to that of GRFT expressed in vivo. The proposed production process is efficient and can be readily scaled up and deployed wherever a viral pathogen might emerge. The current emergence of viral variants of SARS-CoV-2 has resulted in frequent updating of existing vaccines and loss of efficacy for front-line monoclonal antibody therapies. Proteins such as GRFT with its efficacious and broad virus neutralizing capability provide a compelling pandemic mitigation strategy to promptly suppress viral emergence at the source of an outbreak.
Collapse
Affiliation(s)
- Shayan G Borhani
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Max Z Levine
- Department of Chemical Engineering and Department of Bioengineering, Stanford University, Stanford, CA 94305-5025, USA
| | - Lauren H Krumpe
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer Wilson
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Curtis J Henrich
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA; Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD 21702, USA
| | - Donald C Lo
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - G Sitta Sittampalam
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Alexander G Godfrey
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - R Dwayne Lunsford
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Venkata Mangalampalli
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Aaron P Thole
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Douglas Frey
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - James Swartz
- Department of Chemical Engineering and Department of Bioengineering, Stanford University, Stanford, CA 94305-5025, USA
| | - Govind Rao
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
13
|
Van Raad D, Otting G, Huber T. Cell-free synthesis of proteins with selectively 13C-labelled methyl groups from inexpensive precursors. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:187-197. [PMID: 37904855 PMCID: PMC10583297 DOI: 10.5194/mr-4-187-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 11/01/2023]
Abstract
The novel eCell system maintains the activity of the entire repertoire of metabolic Escherichia coli enzymes in cell-free protein synthesis. We show that this can be harnessed to produce proteins with selectively 13 C-labelled amino acids from inexpensive 13 C-labelled precursors. The system is demonstrated with selective 13 C labelling of methyl groups in the proteins ubiquitin and peptidyl-prolyl cis-trans isomerase B. Starting from 3-13 C-pyruvate, 13 C-HSQC cross-peaks are obtained devoid of one-bond 13 C-13 C scalar couplings. Starting from 2-13 C-methyl-acetolactate, single methyl groups of valine and leucine are labelled. Labelling efficiencies are 70 % or higher, and the method allows us to produce perdeuterated proteins with protonated methyl groups in a residue-selective manner. The system uses the isotope-labelled precursors sparingly and is readily scalable.
Collapse
Affiliation(s)
- Damian Van Raad
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein
Science, Research School of Chemistry, Australian National University,
Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
14
|
Manzer ZA, Selivanovitch E, Ostwalt AR, Daniel S. Membrane protein synthesis: no cells required. Trends Biochem Sci 2023; 48:642-654. [PMID: 37087310 DOI: 10.1016/j.tibs.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
Despite advances in membrane protein (MP) structural biology and a growing interest in their applications, these proteins remain challenging to study. Progress has been hindered by the complex nature of MPs and innovative methods will be required to circumvent technical hurdles. Cell-free protein synthesis (CFPS) is a burgeoning technique for synthesizing MPs directly into a membrane environment using reconstituted components of the cellular transcription and translation machinery in vitro. We provide an overview of CFPS and how this technique can be applied to the synthesis and study of MPs. We highlight numerous strategies including synthesis methods and folding environments, each with advantages and limitations, to provide a survey of how CFPS techniques can advance the study of MPs.
Collapse
Affiliation(s)
- Zachary A Manzer
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ekaterina Selivanovitch
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Alexis R Ostwalt
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Susan Daniel
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
Wagner L, Jules M, Borkowski O. What remains from living cells in bacterial lysate-based cell-free systems. Comput Struct Biotechnol J 2023; 21:3173-3182. [PMID: 37333859 PMCID: PMC10275740 DOI: 10.1016/j.csbj.2023.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Because they mimic cells while offering an accessible and controllable environment, lysate-based cell-free systems (CFS) have emerged as valuable biotechnology tools for synthetic biology. Historically used to uncover fundamental mechanisms of life, CFS are nowadays used for a multitude of purposes, including protein production and prototyping of synthetic circuits. Despite the conservation of fundamental functions in CFS like transcription and translation, RNAs and certain membrane-embedded or membrane-bound proteins of the host cell are lost when preparing the lysate. As a result, CFS largely lack some essential properties of living cells, such as the ability to adapt to changing conditions, to maintain homeostasis and spatial organization. Regardless of the application, shedding light on the black-box of the bacterial lysate is necessary to fully exploit the potential of CFS. Most measurements of the activity of synthetic circuits in CFS and in vivo show significant correlations because these only require processes that are preserved in CFS, like transcription and translation. However, prototyping circuits of higher complexity that require functions that are lost in CFS (cell adaptation, homeostasis, spatial organization) will not show such a good correlation with in vivo conditions. Both for prototyping circuits of higher complexity and for building artificial cells, the cell-free community has developed devices to reconstruct cellular functions. This mini-review compares bacterial CFS to living cells, focusing on functional and cellular process differences and the latest developments in restoring lost functions through complementation of the lysate or device engineering.
Collapse
|
16
|
Dinglasan JLN, Sword TT, Barker JW, Doktycz MJ, Bailey CB. Investigating and Optimizing the Lysate-Based Expression of Nonribosomal Peptide Synthetases Using a Reporter System. ACS Synth Biol 2023; 12:1447-1460. [PMID: 37039644 PMCID: PMC11236431 DOI: 10.1021/acssynbio.2c00658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Lysate-based cell-free expression (CFE) systems are accessible platforms for expressing proteins that are difficult to synthesize in vivo, such as nonribosomal peptide synthetases (NRPSs). NRPSs are large (>100 kDa), modular enzyme complexes that synthesize bioactive peptide natural products. This synthetic process is analogous to transcription/translation (TX/TL) in lysates, resulting in potential resource competition between NRPS expression and NRPS activity in cell-free environments. Moreover, CFE conditions depend on the size and structure of the protein. Here, a reporter system for rapidly investigating and optimizing reaction environments for NRPS CFE is described. This strategy is demonstrated in E. coli lysate reactions using blue pigment synthetase A (BpsA), a model NRPS, carrying a C-terminal tetracysteine (TC) tag which forms a fluorescent complex with the biarsenical dye, FlAsH. A colorimetric assay was adapted for lysate reactions to detect the blue pigment product, indigoidine, of cell-free expressed BpsA-TC, confirming that the tagged enzyme is catalytically active. An optimized protocol for end point TC/FlAsH complex measurements in reactions enables quick comparisons of full-length BpsA-TC expressed under different reaction conditions, defining unique requirements for NRPS expression that are related to the protein's catalytic activity and size. Importantly, these protein-dependent CFE conditions enable higher indigoidine titer and improve the expression of other monomodular NRPSs. Notably, these conditions differ from those used for the expression of superfolder GFP (sfGFP), a common reporter for optimizing lysate-based CFE systems, indicating the necessity for tailored reporters to optimize expression for specific enzyme classes. The reporter system is anticipated to advance lysate-based CFE systems for complex enzyme synthesis, enabling natural product discovery.
Collapse
Affiliation(s)
- Jaime Lorenzo N Dinglasan
- Graduate School of Genome Science & Technology, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tien T Sword
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| | - J William Barker
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Constance B Bailey
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
17
|
Yue K, Chen J, Li Y, Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput Struct Biotechnol J 2023; 21:2899-2908. [PMID: 37216017 PMCID: PMC10196276 DOI: 10.1016/j.csbj.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid development of synthetic biology has enabled the production of compounds with revolutionary improvements in biotechnology. DNA manipulation tools have expedited the engineering of cellular systems for this purpose. Nonetheless, the inherent constraints of cellular systems persist, imposing an upper limit on mass and energy conversion efficiencies. Cell-free protein synthesis (CFPS) has demonstrated its potential to overcome these inherent constraints and has been instrumental in the further advancement of synthetic biology. Via the removal of the cell membranes and redundant parts of cells, CFPS has provided flexibility in directly dissecting and manipulating the Central Dogma with rapid feedback. This mini-review summarizes recent achievements of the CFPS technique and its application to a wide range of synthetic biology projects, such as minimal cell assembly, metabolic engineering, and recombinant protein production for therapeutics, as well as biosensor development for in vitro diagnostics. In addition, current challenges and future perspectives in developing a generalized cell-free synthetic biology are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China
| |
Collapse
|
18
|
De Capitani J, Mutschler H. The Long Road to a Synthetic Self-Replicating Central Dogma. Biochemistry 2023; 62:1221-1232. [PMID: 36944355 PMCID: PMC10077596 DOI: 10.1021/acs.biochem.3c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Indexed: 03/23/2023]
Abstract
The construction of a biochemical system capable of self-replication is a key objective in bottom-up synthetic biology. Throughout the past two decades, a rapid progression in the design of in vitro cell-free systems has provided valuable insight into the requirements for the development of a minimal system capable of self-replication. The main limitations of current systems can be attributed to their macromolecular composition and how the individual macromolecules use the small molecules necessary to drive RNA and protein synthesis. In this Perspective, we discuss the recent steps that have been taken to generate a minimal cell-free system capable of regenerating its own macromolecular components and maintaining the homeostatic balance between macromolecular biogenesis and consumption of primary building blocks. By following the flow of biological information through the central dogma, we compare the current versions of these systems to date and propose potential alterations aimed at designing a model system for self-replicative synthetic cells.
Collapse
Affiliation(s)
- Jacopo De Capitani
- Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
19
|
Vilkhovoy M, Dammalapati S, Vadhin S, Adhikari A, Varner JD. Integrated Constraint-Based Modeling of E. coli Cell-Free Protein Synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528035. [PMID: 36798424 PMCID: PMC9934623 DOI: 10.1101/2023.02.10.528035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cell-free protein expression has become a widely used research tool in systems and synthetic biology and a promising technology for protein biomanufacturing. Cell-free protein synthesis relies on in-vitro transcription and translation processes to produce a protein of interest. However, transcription and translation depend upon the operation of complex metabolic pathways for precursor and energy regeneration. Toward understanding the role of metabolism in a cell-free system, we developed a dynamic constraint-based simulation of protein production in the myTXTL E. coli cell-free system with and without electron transport chain inhibitors. Time-resolved absolute metabolite measurements for â"³ = 63 metabolites, along with absolute concentration measurements of the mRNA and protein abundance and measurements of enzyme activity, were integrated with kinetic and enzyme abundance information to simulate the time evolution of metabolic flux and protein production with and without inhibitors. The metabolic flux distribution estimated by the model, along with the experimental metabolite and enzyme activity data, suggested that the myTXTL cell-free system has an active central carbon metabolism with glutamate powering the TCA cycle. Further, the electron transport chain inhibitor studies suggested the presence of oxidative phosphorylation activity in the myTXTL cell-free system; the oxidative phosphorylation inhibitors provided biochemical evidence that myTXTL relied, at least partially, on oxidative phosphorylation to generate the energy required to sustain transcription and translation for a 16-hour batch reaction.
Collapse
|
20
|
Kim KJ, Lee SJ, Kim DM. The Use of Cell-free Protein Synthesis to Push the Boundaries of Synthetic Biology. BIOTECHNOL BIOPROC E 2023; 28:1-7. [PMID: 36687336 PMCID: PMC9840425 DOI: 10.1007/s12257-022-0279-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 01/15/2023]
Abstract
Cell-free protein synthesis is emerging as a powerful tool to accelerate the progress of synthetic biology. Notably, cell-free systems that harness extracted synthetic machinery of cells can address many of the issues associated with the complexity and variability of living systems. In particular, cell-free systems can be programmed with various configurations of genetic information, providing great flexibility and accessibility to the field of synthetic biology. Empowered by recent progress, cell-free systems are now evolving into artificial biological systems that can be tailored for various applications, including on-demand biomanufacturing, diagnostics, and new materials design. Here, we review the key developments related to cell-free protein synthesis systems, and discuss the future directions of these promising technologies.
Collapse
Affiliation(s)
- Kyu Jae Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134 Korea
| | - So-Jeong Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134 Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134 Korea
| |
Collapse
|
21
|
Qin Y, Li Q, Fan L, Ning X, Wei X, You C. Biomanufacturing by In Vitro Biotransformation (ivBT) Using Purified Cascade Multi-enzymes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:1-27. [PMID: 37455283 DOI: 10.1007/10_2023_231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In vitro biotransformation (ivBT) refers to the use of an artificial biological reaction system that employs purified enzymes for the one-pot conversion of low-cost materials into biocommodities such as ethanol, organic acids, and amino acids. Unshackled from cell growth and metabolism, ivBT exhibits distinct advantages compared with metabolic engineering, including but not limited to high engineering flexibility, ease of operation, fast reaction rate, high product yields, and good scalability. These characteristics position ivBT as a promising next-generation biomanufacturing platform. Nevertheless, challenges persist in the enhancement of bulk enzyme preparation methods, the acquisition of enzymes with superior catalytic properties, and the development of sophisticated approaches for pathway design and system optimization. In alignment with the workflow of ivBT development, this chapter presents a systematic introduction to pathway design, enzyme mining and engineering, system construction, and system optimization. The chapter also proffers perspectives on ivBT development.
Collapse
Affiliation(s)
- Yanmei Qin
- University of Chinese Academy of Sciences, Beijing, China
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qiangzi Li
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lin Fan
- University of Chinese Academy of Sciences, Beijing, China
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences Sino-Danish College, Beijing, China
| | - Xiao Ning
- University of Chinese Academy of Sciences, Beijing, China
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xinlei Wei
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| | - Chun You
- In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
22
|
Yue K, Li Y, Cao M, Shen L, Gu J, Kai L. Bottom-Up Synthetic Biology Using Cell-Free Protein Synthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:1-20. [PMID: 37526707 DOI: 10.1007/10_2023_232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Technical advances in biotechnology have greatly accelerated the development of bottom-up synthetic biology. Unlike top-down approaches, bottom-up synthetic biology focuses on the construction of a minimal cell from scratch and the application of these principles to solve challenges. Cell-free protein synthesis (CFPS) systems provide minimal machinery for transcription and translation, from either a fractionated cell lysate or individual purified protein elements, thus speeding up the development of synthetic cell projects. In this review, we trace the history of the cell-free technique back to the first in vitro fermentation experiment using yeast cell lysate. Furthermore, we summarized progresses of individual cell mimicry modules, such as compartmentalization, gene expression regulation, energy regeneration and metabolism, growth and division, communication, and motility. Finally, current challenges and future perspectives on the field are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mengjiao Cao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lulu Shen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jingsheng Gu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
23
|
Suryatin Alim G, Suzuki T, Honda K. Cell-Free Production and Regeneration of Cofactors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:29-49. [PMID: 37306696 DOI: 10.1007/10_2023_222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cofactors, such as adenosine triphosphate, nicotinamide adenine dinucleotide, and coenzyme A, are involved in nearly 50% of enzymatic reactions and widely used in biocatalytic production of useful chemicals. Although commercial production of cofactors has been mostly dependent on extraction from microbial cells, this approach has a theoretical limitation to achieve a high-titer, high-yield production of cofactors owing to the tight regulation of cofactor biosynthesis in living cells. Besides the cofactor production, their regeneration is also a key challenge to enable continuous use of costly cofactors and improve the feasibility of enzymatic chemical manufacturing. Construction and implementation of enzyme cascades for cofactor biosynthesis and regeneration in a cell-free environment can be a promising approach to these challenges. In this chapter, we present the available tools for cell-free cofactor production and regeneration, the pros and cons, and how they can contribute to promote the industrial application of enzymes.
Collapse
Affiliation(s)
- Gladwin Suryatin Alim
- Department of Chemistry, University of Basel, Basel, Switzerland
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Takuma Suzuki
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Osaka, Japan.
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
| |
Collapse
|
24
|
Borhani SG, Levine MZ, Krumpe LH, Wilson J, Henrich CJ, O’Keefe BR, Lo D, Sittampalam GS, Godfrey AG, Lunsford RD, Mangalampalli V, Tao D, LeClair CA, Thole A, Frey D, Swartz J, Rao G. An approach to rapid distributed manufacturing of broad spectrum anti-viral griffithsin using cell-free systems to mitigate pandemics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.19.521044. [PMID: 36597541 PMCID: PMC9810220 DOI: 10.1101/2022.12.19.521044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study describes the cell-free biomanufacturing of a broad-spectrum antiviral protein, griffithsin (GRFT) such that it can be produced with consistent purity and potency in less than 24 hours. We demonstrate GRFT production using two independent cell-free systems, one plant and one microbial. Griffithsin purity and quality were verified using standard regulatory metrics. Efficacy was demonstrated in vitro against SARS-CoV-2 and HIV-1 and was nearly identical to that of GRFT expressed in vivo . The proposed production process is efficient and can be readily scaled up and deployed anywhere in the world where a viral pathogen might emerge. The current emergence of viral variants has resulted in frequent updating of existing vaccines and loss of efficacy for front-line monoclonal antibody therapies. Proteins such as GRFT with its efficacious and broad virus neutralizing capability provide a compelling pandemic mitigation strategy to promptly suppress viral emergence at the source of an outbreak.
Collapse
|
25
|
Multiple Gene Expression in Cell-Free Protein Synthesis Systems for Reconstructing Bacteriophages and Metabolic Pathways. Microorganisms 2022; 10:microorganisms10122477. [PMID: 36557730 PMCID: PMC9786908 DOI: 10.3390/microorganisms10122477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
As a fast and reliable technology with applications in diverse biological studies, cell-free protein synthesis has become popular in recent decades. The cell-free protein synthesis system can be considered a complex chemical reaction system that is also open to exogenous manipulation, including that which could otherwise potentially harm the cell's viability. On the other hand, since the technology depends on the cell lysates by which genetic information is transformed into active proteins, the whole system resembles the cell to some extent. These features make cell-free protein synthesis a valuable addition to synthetic biology technologies, expediting the design-build-test-learn cycle of synthetic biology routines. While the system has traditionally been used to synthesize one protein product from one gene addition, recent studies have employed multiple gene products in order to, for example, develop novel bacteriophages, viral particles, or synthetic metabolisms. Thus, we would like to review recent advancements in applying cell-free protein synthesis technology to synthetic biology, with an emphasis on multiple gene expressions.
Collapse
|
26
|
Krebs SK, Stech M, Jorde F, Rakotoarinoro N, Ramm F, Marinoff S, Bahrke S, Danielczyk A, Wüstenhagen DA, Kubick S. Synthesis of an Anti-CD7 Recombinant Immunotoxin Based on PE24 in CHO and E. coli Cell-Free Systems. Int J Mol Sci 2022; 23:ijms232213697. [PMID: 36430170 PMCID: PMC9697001 DOI: 10.3390/ijms232213697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Recombinant immunotoxins (RITs) are an effective class of agents for targeted therapy in cancer treatment. In this article, we demonstrate the straight-forward production and testing of an anti-CD7 RIT based on PE24 in a prokaryotic and a eukaryotic cell-free system. The prokaryotic cell-free system was derived from Escherichia coli BL21 StarTM (DE3) cells transformed with a plasmid encoding the chaperones groEL/groES. The eukaryotic cell-free system was prepared from Chinese hamster ovary (CHO) cells that leave intact endoplasmic reticulum-derived microsomes in the cell-free reaction mix from which the RIT was extracted. The investigated RIT was built by fusing an anti-CD7 single-chain variable fragment (scFv) with the toxin domain PE24, a shortened variant of Pseudomonas Exotoxin A. The RIT was produced in both cell-free systems and tested for antigen binding against CD7 and cell killing on CD7-positive Jurkat, HSB-2, and ALL-SIL cells. CD7-positive cells were effectively killed by the anti-CD7 scFv-PE24 RIT with an IC50 value of 15 pM to 40 pM for CHO and 42 pM to 156 pM for E. coli cell-free-produced RIT. CD7-negative Raji cells were unaffected by the RIT. Toxin and antibody domain alone did not show cytotoxic effects on either CD7-positive or CD7-negative cells. To our knowledge, this report describes the production of an active RIT in E. coli and CHO cell-free systems for the first time. We provide the proof-of-concept that cell-free protein synthesis allows for on-demand testing of antibody−toxin conjugate activity in a time-efficient workflow without cell lysis or purification required.
Collapse
Affiliation(s)
- Simon K. Krebs
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute for Biotechnology, Technical University of Berlin, Ackerstrasse 76, 13355 Berlin, Germany
| | - Marlitt Stech
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Felix Jorde
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Nathanaël Rakotoarinoro
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | - Franziska Ramm
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Sophie Marinoff
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Sven Bahrke
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Antje Danielczyk
- Glycotope GmbH, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Doreen A. Wüstenhagen
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Am Mühlenberg 13, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
- Correspondence:
| |
Collapse
|
27
|
Cell-Free Escherichia coli Synthesis System Based on Crude Cell Extracts: Acquisition of Crude Extracts and Energy Regeneration. Processes (Basel) 2022. [DOI: 10.3390/pr10061122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cell-free synthetic biology is advancing with unprecedented control and design. The development of cell-free biosynthesis involves both pure enzyme and crude enzyme systems. The relatively cheap crude enzyme system is more suitable for the scientific research needs of ordinary laboratories. The key factor in giving full play to the advantages of the system is to obtain high-quality cell crude extract and its energy regeneration system, but there is no systematic report on the development history of these two aspects. Therefore, in this paper, the development history of the process of obtaining crude extract from cell-free biosynthesis was carried out based on Escherichia coli, which is widely used at present, and the energy regeneration system was briefly introduced. Finally, the challenges of current cell-free synthetic systems are discussed.
Collapse
|
28
|
Gladwin SA, Kenji O, Honda K. One-step preparation of cell-free ATP regeneration module based on non-oxidative glycolysis using thermophilic enzymes. Chembiochem 2022; 23:e202200210. [PMID: 35642750 DOI: 10.1002/cbic.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Indexed: 11/11/2022]
Abstract
Adenosine triphosphate (ATP) is an essential cofactor for energy-dependent enzymatic reactions that occur during in vitro biochemical conversion. Recently, an enzyme cascade based on non-oxidative glycolysis, which uses starch and orthophosphate as energy and phosphate sources, respectively, for the regeneration of ATP from adenosine diphosphate, has been developed (Wei et. al., ChemCatChem 2018 , 10 , 5597-5601). However, the 12 enzymes required for this system hampered its practical usability and further testing potential. Here, we addressed this issue by constructing co-expression vectors for the simultaneous gene expression of the 12 enzymes in a single expression strain. All enzymes were sourced from (hyper)thermophiles, which enabled a one-step purification via a heat-treatment process. We showed that the combination of the two enabled the ATP regeneration system to function in a single recombinant Escherichia coli strain. Additionally, this work provides a strategy to rationally design and control proteins expression levels in the co-expression vectors.
Collapse
Affiliation(s)
| | - Okano Kenji
- Kansai University: Kansai Daigaku, Department of Life Science and Biotechnology, JAPAN
| | - Kohsuke Honda
- Osaka University: Osaka Daigaku, International Center for Biotechnology, 2-1 Yamadaoka, 565-0871, Suita, JAPAN
| |
Collapse
|
29
|
Banks AM, Whitfield CJ, Brown SR, Fulton DA, Goodchild SA, Grant C, Love J, Lendrem DW, Fieldsend JE, Howard TP. Key reaction components affect the kinetics and performance robustness of cell-free protein synthesis reactions. Comput Struct Biotechnol J 2021; 20:218-229. [PMID: 35024094 PMCID: PMC8718664 DOI: 10.1016/j.csbj.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) reactions have grown in popularity with particular interest in applications such as gene construct prototyping, biosensor technologies and the production of proteins with novel chemistry. Work has frequently focussed on optimising CFPS protocols for improving protein yield, reducing cost, or developing streamlined production protocols. Here we describe a statistical Design of Experiments analysis of 20 components of a popular CFPS reaction buffer. We simultaneously identify factors and factor interactions that impact on protein yield, rate of reaction, lag time and reaction longevity. This systematic experimental approach enables the creation of a statistical model capturing multiple behaviours of CFPS reactions in response to components and their interactions. We show that a novel reaction buffer outperforms the reference reaction by 400% and importantly reduces failures in CFPS across batches of cell lysates, strains of E. coli, and in the synthesis of different proteins. Detailed and quantitative understanding of how reaction components affect kinetic responses and robustness is imperative for future deployment of cell-free technologies.
Collapse
Key Words
- 3-PGA, 3-phosphoglyceric acid
- ATP, adenosine triphosphate
- Automation
- CFE, cell-free extract
- CFPS, cell-free protein synthesis
- CTP, cytidine triphosphate
- Cell-free protein synthesis (CFPS)
- CoA, coenzyme A
- DSD, Definitive Screening Design
- DTT, dithiothreitol
- Design of Experiments (DoE)
- DoE, Design of Experiments
- FEU, fluorescein equivalent units
- G-6-P, glucose-6-phosphate
- GTP, guanosine triphosphate
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- K-glutamate, potassium glutamate
- LB, lysogeny broth
- Mg, magnesium glutamate
- NAD, nicotinamide adenine dinucleotide
- NTP, nucleoside triphosphate
- OFAT, one-factor-at-a-time
- PEG-8000, polyethylene glycol 8000
- PEP, phosphoenolpyruvate
- RFU, relative fluorescence units
- RSM, Response Surface Model
- Robustness
- Statistical engineering
- UTP, uridine triphosphate
- X-gal, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside
- cAMP, cyclic adenosine monophosphate
- eGFP, enhanced green fluorescent protein
- tRNA, transfer ribonucleic acid
Collapse
Affiliation(s)
- Alice M. Banks
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Colette J. Whitfield
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | | | - David A. Fulton
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Sarah A. Goodchild
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | | | - John Love
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Dennis W. Lendrem
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | | | - Thomas P. Howard
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
30
|
Park YJ, Kim DM. Production of Recombinant Horseradish Peroxidase in an Engineered Cell-free Protein Synthesis System. Front Bioeng Biotechnol 2021; 9:778496. [PMID: 34778239 PMCID: PMC8579056 DOI: 10.3389/fbioe.2021.778496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
One of the main advantages of a cell-free synthesis system is that the synthetic machinery of cells can be modularized and re-assembled for desired purposes. In this study, we attempted to combine the translational activity of Escherichia coli extract with a heme synthesis pathway for the functional production of horseradish peroxidase (HRP). We first optimized the reaction conditions and the sequence of template DNA to enhance protein expression and folding. The reaction mixture was then supplemented with 5-aminolevulinic acid synthase to facilitate co-synthesis of the heme prosthetic group from glucose. Combining the different synthetic modules required for protein synthesis and cofactor generation led to successful production of functional HRP in a cell-free synthesis system.
Collapse
Affiliation(s)
- Yu-Jin Park
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
31
|
Miguez AM, Zhang Y, Piorino F, Styczynski MP. Metabolic Dynamics in Escherichia coli-Based Cell-Free Systems. ACS Synth Biol 2021; 10:2252-2265. [PMID: 34478281 PMCID: PMC9807262 DOI: 10.1021/acssynbio.1c00167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The field of metabolic engineering has yielded remarkable accomplishments in using cells to produce valuable molecules, and cell-free expression (CFE) systems have the potential to push the field even further. However, CFE systems still face some outstanding challenges, including endogenous metabolic activity that is poorly understood yet has a significant impact on CFE productivity. Here, we use metabolomics to characterize the temporal metabolic changes in CFE systems and their constituent components, including significant metabolic activity in central carbon and amino acid metabolism. We find that while changing the reaction starting state via lysate preincubation impacts protein production, it has a comparatively small impact on metabolic state. We also demonstrate that changes to lysate preparation have a larger effect on protein yield and temporal metabolic profiles, though general metabolic trends are conserved. Finally, while we improve protein production through targeted supplementation of metabolic enzymes, we show that the endogenous metabolic activity is fairly resilient to these enzymatic perturbations. Overall, this work highlights the robust nature of CFE reaction metabolism as well as the importance of understanding the complex interdependence of metabolites and proteins in CFE systems to guide optimization efforts.
Collapse
|
32
|
Burrington LR, Watts KR, Oza JP. Characterizing and Improving Reaction Times for E. coli-Based Cell-Free Protein Synthesis. ACS Synth Biol 2021; 10:1821-1829. [PMID: 34269580 DOI: 10.1021/acssynbio.1c00195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell-free protein synthesis (CFPS) is a platform biotechnology that has enabled the on-demand synthesis of proteins for a variety of applications. Numerous advances have improved the productivity of the CFPS platform to result in high-yielding reactions; however, many applications remain limited due to long reaction times. To overcome this limitation, we first established the benchmarks reaction times for CFPS across in-house E. coli extracts and commercial kits. We then set out to fine-tune our in-house extract systems to improve reaction times. Through the optimization of reaction composition and titration of low-cost additives, we have identified formulations that reduce reaction times by 30-50% to obtain high protein titers for biomanufacturing applications, and reduce times by more than 50% to reach the sfGFP detection limit for applications in education and diagnostics. Under optimum conditions, we report the visible observation of sfGFP signal in less than 10 min. Altogether, these advances enhance the utility of CFPS as a rapid, user-defined platform.
Collapse
Affiliation(s)
- Logan R. Burrington
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Katharine R. Watts
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Javin P. Oza
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| |
Collapse
|
33
|
Cui C, Kong M, Wang Y, Zhou C, Ming H. Characterization of polyphosphate kinases for the synthesis of GSH with ATP regeneration from AMP. Enzyme Microb Technol 2021; 149:109853. [PMID: 34311890 DOI: 10.1016/j.enzmictec.2021.109853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Polyphosphate kinase (PPK) is important for industrial processes involving ATP regeneration. While a variety of methods have been reported for regenerating ATP from ADP, few have explored enzyme catalyzed ATP regeneration from cheaper and stable AMP. In this work, PPKs from different sources were expressed and their catalytic activity were tested at different reaction temperatures, reaction pH and with different polyphosphate (polyPn) types. The ATP regeneration system for glutathione (GSH) synthesis was established using a single PPK capable of phosphorylating AMP to synthesize ATP from AMP and short chain polyPn. GSH yield was obtained using adenosine mono-, di- and triphosphates, which confirmed the flexibility of our constructed ATP regeneration system coupled with GSH synthesis via bifunctional GSH synthase. Finally, optimization of the GSH synthesis yielded conversion value above 80 %. Overall, these results illustrate that PPK is suitable for a broader range of substrates than previously expected, and has great untapped potential for applications involving ATP regeneration.
Collapse
Affiliation(s)
- Caixia Cui
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| | - Mengyuan Kong
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yihan Wang
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Chenyan Zhou
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Hong Ming
- Department of Biopharmaceutical Sciences, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| |
Collapse
|
34
|
A Relationship between NTP and Cell Extract Concentration for Cell-Free Protein Expression. Life (Basel) 2021; 11:life11030237. [PMID: 33805612 PMCID: PMC7999496 DOI: 10.3390/life11030237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/29/2023] Open
Abstract
The cell-free protein synthesis (CFPS) that synthesizes mRNA and protein from a template DNA has been featured as an important tool to emulate living systems in vitro. However, an obstacle to emulate living cells by CFPS is the loss of activity in the case of usage of high concentration cell extracts. In this study, we found that a high concentration of NTP which inhibits in the case of lower concentration cell extract restored the loss of CFPS activity using high concentration cell extracts. The NTP restoration was independent of the energy regeneration system used, and NTP derivatives also restored the levels of CFPS using a high concentration cell extract. Experiments using dialysis mode of CFPS showed that continuous exchange of small molecule reduced levels of NTP requirement and improved reaction speed of CFPS using the high concentration of cell extract. These findings contribute to the development of a method to understand the condition of living cells by in vitro emulation, and are expected to lead to the achievement of the reconstitution of living cells from biomolecule mixtures.
Collapse
|
35
|
Gaut NJ, Adamala KP. Reconstituting Natural Cell Elements in Synthetic Cells. Adv Biol (Weinh) 2021; 5:e2000188. [DOI: 10.1002/adbi.202000188] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/05/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Nathaniel J. Gaut
- Department of Genetics Cell Biology and Development University of Minnesota 420 Washington Ave SE Minneapolis MN 55455 USA
| | - Katarzyna P. Adamala
- Department of Genetics Cell Biology and Development University of Minnesota 420 Washington Ave SE Minneapolis MN 55455 USA
| |
Collapse
|
36
|
Stark JC, Jaroentomeechai T, Moeller TD, Hershewe JM, Warfel KF, Moricz BS, Martini AM, Dubner RS, Hsu KJ, Stevenson TC, Jones BD, DeLisa MP, Jewett MC. On-demand biomanufacturing of protective conjugate vaccines. SCIENCE ADVANCES 2021; 7:eabe9444. [PMID: 33536221 PMCID: PMC7857678 DOI: 10.1126/sciadv.abe9444] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/18/2020] [Indexed: 05/19/2023]
Abstract
Conjugate vaccines are among the most effective methods for preventing bacterial infections. However, existing manufacturing approaches limit access to conjugate vaccines due to centralized production and cold chain distribution requirements. To address these limitations, we developed a modular technology for in vitro conjugate vaccine expression (iVAX) in portable, freeze-dried lysates from detoxified, nonpathogenic Escherichia coli. Upon rehydration, iVAX reactions synthesize clinically relevant doses of conjugate vaccines against diverse bacterial pathogens in 1 hour. We show that iVAX-synthesized vaccines against Francisella tularensis subsp. tularensis (type A) strain Schu S4 protected mice from lethal intranasal F. tularensis challenge. The iVAX platform promises to accelerate development of new conjugate vaccines with increased access through refrigeration-independent distribution and portable production.
Collapse
Affiliation(s)
- Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA
| | - Tyler D Moeller
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA
| | - Jasmine M Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Bridget S Moricz
- Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd 3-403 Bowen Science Building, Iowa City, IA 52242, USA
| | - Anthony M Martini
- Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd 3-403 Bowen Science Building, Iowa City, IA 52242, USA
| | - Rachel S Dubner
- Department of Biological Sciences, Northwestern University, 2205 Tech Drive Hogan Hall 2144, Evanston, IL 60208-3500, USA
| | - Karen J Hsu
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute B224, Evanston, IL 60208-3120, USA
| | - Taylor C Stevenson
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853, USA
| | - Bradley D Jones
- Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd 3-403 Bowen Science Building, Iowa City, IA 52242, USA
- Graduate Program in Genetics, 431 Newton Rd, University of Iowa, Iowa City, IA 52242, USA
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA.
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA.
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208-3120, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 N. St Clair St, Suite 1200, Chicago, IL 60611-3068, USA
- Simpson-Querrey Institute, Northwestern University, 303 E. Superior St, Suite 11-131 Chicago, IL 60611-2875, USA
| |
Collapse
|
37
|
Baek MS, Lee KH, Byun JY, Shin YB, Kim DM. Aptamer-linked in vitro expression assay for ultrasensitive detection of biomarkers. Anal Chim Acta 2020; 1146:118-123. [PMID: 33461706 DOI: 10.1016/j.aca.2020.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Signal amplification is a key step that determines the sensitivity of molecular assays. Although studies on aptamers have mostly focused on their target-binding ability, taking advantage of the gene-coding function of nucleic acids, we demonstrate here that aptamers can be engineered into diagnostic reagents that can both recognize a target and generate highly amplified detection signals. We developed a strategy that employs a 'readable' aptamer that consists of a single-stranded aptamer and a double-stranded reporter gene. After binding to its target via the aptamer region, the reporter gene of the readable aptamer produces amplified number of signal-generating enzymes through a subsequent in vitro expression reaction. In contrast to conventional enzyme-conjugation methods, this method allows the generation of far more amplified detection signals, thereby markedly increasing the sensitivity of detection enough to analyze a target present in aM concentrations.
Collapse
Affiliation(s)
- Min-Seok Baek
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Ju-Young Byun
- BioNano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Yong-Beom Shin
- BioNano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea; BioNano Health Guard Research Center (H-GUARD), Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
38
|
Mohr B, Giannone RJ, Hettich RL, Doktycz MJ. Targeted Growth Medium Dropouts Promote Aromatic Compound Synthesis in Crude E. coli Cell-Free Systems. ACS Synth Biol 2020; 9:2986-2997. [PMID: 33044063 DOI: 10.1021/acssynbio.9b00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Progress in cell-free protein synthesis (CFPS) has spurred resurgent interest in engineering complex biological metabolism outside of the cell. Unlike purified enzyme systems, crude cell-free systems can be prepared for a fraction of the cost and contain endogenous cellular pathways that can be activated for biosynthesis. Endogenous activity performs essential functions in cell-free systems including substrate biosynthesis and energy regeneration; however, use of crude cell-free systems for bioproduction has been hampered by the under-described complexity of the metabolic networks inherent to a crude lysate. Physical and chemical cultivation parameters influence the endogenous activity of the resulting lysate, but targeted efforts to engineer this activity by manipulation of these nongenetic factors has been limited. Here growth medium composition was manipulated to improve the one-pot in vitro biosynthesis of phenol from glucose via the expression of Pasteurella multocida phenol-tyrosine lyase in crude E. coli lysates. Crude cell lysate metabolic activity was focused toward the limiting precursor tyrosine by targeted growth medium dropouts guided by proteomics. The result is the activation of a 25-step enzymatic reaction cascade involving at least three endogenous E. coli metabolic pathways. Additional modification of this system, through CFPS of feedback intolerant AroG improves yield. This effort demonstrates the ability to activate a long, complex pathway in vitro and provides a framework for harnessing the metabolic potential of diverse organisms for cell-free metabolic engineering. The more than 6-fold increase in phenol yield with limited genetic manipulation demonstrates the benefits of optimizing growth medium for crude cell-free extract production and illustrates the advantages of a systems approach to cell-free metabolic engineering.
Collapse
Affiliation(s)
- Benjamin Mohr
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Richard J. Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Robert L. Hettich
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Mitchel J. Doktycz
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
39
|
Nelson JAD, Barnett RJ, Hunt JP, Foutz I, Welton M, Bundy BC. Hydrofoam and oxygen headspace bioreactors improve cell-free therapeutic protein production yields through enhanced oxygen transport. Biotechnol Prog 2020; 37:e3079. [PMID: 32920987 DOI: 10.1002/btpr.3079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
Abstract
Protein therapeutics are powerful tools in the fight against diabetes, cancers, growth disorders, and many other debilitating diseases. However, availability is limited due to cost and complications of production from living organisms. To make life-saving protein therapeutics more available to the world, the possibility of magistral or point-of-care protein therapeutic production has gained focus. The recent invention and optimization of lyophilized "cell-free" protein synthesis reagents and its demonstrated ability to produce highly active versions of FDA-approved cancer therapeutics have increased its potential for low-cost, single-batch, magistral medicine. Here we present for the first time the concept of increased oxygen mass transfer in small-batch, cell-free protein synthesis (CFPS) reactions through air-water foams. These "hydrofoam" reactions increased CFPS yields by up to 100%. Contrary to traditional protein synthesis using living organisms, where foam bubbles cause cell-lysis and production losses, hydrofoam CFPS reactions are "cell-free" and better tolerate foaming. Simulation and experimental results suggest that oxygen transfer is limiting in even small volume batch CFPS reactors and that the hydrofoam format improved oxygen transfer. This is further supported by CFPS reactions achieving higher yields when oxygen gas replaces air in the headspace of batch reactions. Improving CFPS yields with hydrofoam reduces the overall cost of biotherapeutic production, increasing availability to the developing world. Beyond protein therapeutic production, hydrofoam CFPS could also be used to enhance other CFPS applications including biosensing, biomanufacturing, and biocatalysis.
Collapse
Affiliation(s)
- J Andrew D Nelson
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| | - R Jordan Barnett
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| | - J Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| | - Isaac Foutz
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| | - Meagan Welton
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
40
|
Chen H, Zhang YHPJ. Enzymatic regeneration and conservation of ATP: challenges and opportunities. Crit Rev Biotechnol 2020; 41:16-33. [PMID: 33012193 DOI: 10.1080/07388551.2020.1826403] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adenosine triphosphate (ATP), the universal energy currency of life, has a central role in numerous biochemical reactions with potential for the synthesis of numerous high-value products. ATP can be regenerated by three types of mechanisms: substrate level phosphorylation, oxidative phosphorylation, and photophosphorylation. Current ATP regeneration methods are mainly based on substrate level phosphorylation catalyzed by one enzyme, several cascade enzymes, or in vitro synthetic enzymatic pathways. Among them, polyphosphate kinases and acetate kinase, along with their respective phosphate donors, are the most popular approaches for in vitro ATP regeneration. For in vitro artificial pathways, either ATP-free or ATP-balancing strategies can be implemented via smart pathway design by choosing ATP-independent enzymes. Also, we discuss some remaining challenges and suggest perspectives, especially for industrial biomanufacturing. Development of ATP regeneration systems featuring low cost, high volumetric productivity, long lifetime, flexible compatibility, and great robustness could be one of the bottom-up strategies for cascade biocatalysis and in vitro synthetic biology.
Collapse
Affiliation(s)
- Hongge Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, Tianjin, China
| |
Collapse
|
41
|
Lee MS, Raig RM, Gupta MK, Lux MW. Lyophilized Cell-Free Systems Display Tolerance to Organic Solvent Exposure. ACS Synth Biol 2020; 9:1951-1957. [PMID: 32646213 DOI: 10.1021/acssynbio.0c00267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell-free systems offer a powerful way to deliver biochemical activity to the field without cold chain storage. These systems are capable of sensing as well as biosynthesis of useful molecules at the point of need. So far, cell-free protein synthesis (CFPS) reactions have been studied as aqueous solutions in test tubes or absorbed into paper or cloth. Embedding biological functionality into broadly used materials, such as plastic polymers, represents an attractive goal. Unfortunately, this goal has for the most part remained out of reach, presumably due to the fragility of biological systems outside of aqueous environments. Here, we describe a surprising and useful feature of lyophilized cell-free lysate systems: tolerance to a variety of organic solvents. Screens of individual CFPS reagents and different CFPS methods reveal that solvent tolerance varies by CFPS reagent composition. Tolerance to suspension in organic solvents may facilitate the use of polymers to deliver dry cell-free reactions in the form of coatings or fibers, or allow dosing of analytes or substrates dissolved in nonaqueous solvents, among other processing possibilities.
Collapse
Affiliation(s)
- Marilyn S. Lee
- US Army Combat Capabilities Development Command Chemical and Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Rebecca M. Raig
- US Air Force Research Laboratory, 2179 12th Street, B652/R122 Wright-Patterson Air Force Base, Ohio 45433, United States
- UES Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432, United States
| | - Maneesh K. Gupta
- US Air Force Research Laboratory, 2179 12th Street, B652/R122 Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Matthew W. Lux
- US Army Combat Capabilities Development Command Chemical and Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
42
|
Laohakunakorn N. Cell-Free Systems: A Proving Ground for Rational Biodesign. Front Bioeng Biotechnol 2020; 8:788. [PMID: 32793570 PMCID: PMC7393481 DOI: 10.3389/fbioe.2020.00788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 11/13/2022] Open
Abstract
Cell-free gene expression systems present an alternative approach to synthetic biology, where biological gene expression is harnessed inside non-living, in vitro biochemical reactions. Taking advantage of a plethora of recent experimental innovations, they easily overcome certain challenges for computer-aided biological design. For instance, their open nature renders all their components directly accessible, greatly facilitating model construction and validation. At the same time, these systems present their own unique difficulties, such as limited reaction lifetimes and lack of homeostasis. In this Perspective, I propose that cell-free systems are an ideal proving ground to test rational biodesign strategies, as demonstrated by a small but growing number of examples of model-guided, forward engineered cell-free biosystems. It is likely that advances gained from this approach will contribute to our efforts to more reliably and systematically engineer both cell-free as well as living cellular systems for useful applications.
Collapse
Affiliation(s)
- Nadanai Laohakunakorn
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
43
|
Abstract
Cell-free systems are a widely used research tool in systems and synthetic biology and a promising platform for manufacturing of proteins and chemicals. In the past, cell-free biology was primarily used to better understand fundamental biochemical processes. Notably, E. coli cell-free extracts were used in the 1960s to decipher the sequencing of the genetic code. Since then, the transcription and translation capabilities of cell-free systems have been repeatedly optimized to improve energy efficiency and product yield. Today, cell-free systems, in combination with the rise of synthetic biology, have taken on a new role as a promising technology for just-in-time manufacturing of therapeutically important biologics and high-value small molecules. They have also been implemented at an industrial scale for the production of antibodies and cytokines. In this review, we discuss the evolution of cell-free technologies, in particular advancements in extract preparation, cell-free protein synthesis, and cell-free metabolic engineering applications. We then conclude with a discussion of the mathematical modeling of cell-free systems. Mathematical modeling of cell-free processes could be critical to addressing performance bottlenecks and estimating the costs of cell-free manufactured products.
Collapse
|
44
|
Kay JE, Jewett MC. A cell-free system for production of 2,3-butanediol is robust to growth-toxic compounds. Metab Eng Commun 2020; 10:e00114. [PMID: 31934547 PMCID: PMC6951449 DOI: 10.1016/j.mec.2019.e00114] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
The need for sustainable, low-cost production of bioenergy and commodity chemicals is increasing. Unfortunately, the engineering potential of whole-cell catalysts to address this need can be hampered by cellular toxicity. When such bottlenecks limit the commercial feasibility of whole-cell fermentation, cell-free, or in vitro, based approaches may offer an alternative. Here, we assess the impact of three classes of growth toxic compounds on crude extract-based, cell-free chemical conversions. As a model system, we test a metabolic pathway for conversion of glucose to 2,3-butanediol (2,3-BDO) in lysates of Escherichia coli. First, we characterized 2,3-BDO production with different classes of antibiotics and found, as expected, that the system is uninhibited by compounds that prevent cell growth by means of cell wall replication and DNA, RNA, and protein synthesis. Second, we considered the impact of polar solvent addition (e.g., methanol, n-butanol). We observed that volumetric productivities (g/L/h) were slowed with increasing hydrophobicity of added alcohols. Finally, we investigated the effects of using pretreated biomass hydrolysate as a feed stock, observing a 25% reduction in 2,3-BDO production as a result of coumaroyl and feruloyl amides. Overall, we find the cell-free system to be robust to working concentrations of antibiotics and other compounds that are toxic to cell growth, but do not denature or inhibit relevant enzymes.
Collapse
Affiliation(s)
- Jennifer E. Kay
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Robert H. Lurie Comprehensive Cancer Center and Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
45
|
Abstract
![]()
Cell-free bioproduction
systems represent a promising alternative
to classical microbial fermentation processes to synthesize value-added
products from biological feedstocks. An essential step for establishing
cell-free production systems is the identification of suitable metabolic
modules with defined properties. Here we present MEMO, a novel computational
approach to find smallest metabolic modules with specified stoichiometric
and thermodynamic constraints supporting the design of cell-free systems
in various regards. In particular, one key challenge for a sustained
operation of cell-free systems is the regeneration of utilized cofactors
(such as ATP and NAD(P)H). Given a production pathway with certain
cofactor requirements, MEMO can be used to compute smallest regeneration
modules that recover these cofactors with required stoichiometries.
MEMO incorporates the stoichiometric and thermodynamic constraints
in a single mixed-integer linear program, which can then be solved
to find smallest suitable modules from a given reaction database.
We illustrate the applicability of MEMO by calculating regeneration
modules for the recently published synthetic CETCH cycle for in vitro
carbon dioxide fixation. We demonstrate that MEMO is very flexible
in taking into account the diverse constraints of the CETCH cycle
(e.g., regeneration of 1 ATP, 4 NADPH and of 1 acetyl-group
without net production of CO2 and with permitted side production
of malate) and is able to determine multiple solutions in reasonable
time in two large reaction databases (MetaCyc and BiGG). The most
promising regeneration modules found utilize glycerol as substrate
and require only 8 enzymatic steps. It is also shown that some of
these modules are robust against spontaneous loss of cofactors (e.g., oxidation of NAD(P)H or hydrolysis of ATP). Furthermore,
we demonstrate that MEMO can also find cell-free production systems
with integrated product synthesis and cofactor regeneration. Overall,
MEMO provides a powerful method for finding metabolic modules and
for designing cell-free production systems as one particular application.
Collapse
Affiliation(s)
- Axel von Kamp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| |
Collapse
|
46
|
Kojima R, Uchiya K, Manshio H, Masuda K. Cell-free synthesis of functionally active HSPB5. Cell Stress Chaperones 2020; 25:287-301. [PMID: 31960264 PMCID: PMC7058722 DOI: 10.1007/s12192-020-01073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 10/25/2022] Open
Abstract
Human αB-crystallin (HSPB5) is frequently modified post-translationally by UV radiation, oxidation, and age-associated processes, which complicates functional analyses of the protein using natural sources. Thus, determining the biological function of HSPB5 at the molecular structure level requires unmodified protein. Here, we employed an Escherichia coli cell-free protein synthesis system to prepare unmodified, functionally active human HSPB5. An S30 extract prepared from E. coli strain BL21 (DE3) was used for HSPB5 synthesis. The efficacy of protein synthesis was assessed by monitoring influencing factors, such as the concentrations of Mg2+ and other reaction mixture constituents, and by evaluating batch and/or dialysis synthesis systems. Chaperone-like activity of synthesized HSPB5 was assayed using alcohol dehydrogenase (ADH) under thermal stress. The amount of HSPB5 synthesized using the cell-free system depended significantly on the concentration of Mg2+ in the reaction mixture. Use of condensed S30 extract and increased levels of amino acids promoted HSPB5 production. Compared with the batch system, HSPB5 synthesis was markedly increased using the dialysis system. The construction vector played a critical role in regulating the efficacy of protein synthesis. HSPB5 synthesized using the cell-free system had a native molecular mass, as determined by mass spectrometry analysis. The co-presence of synthesized HSPB5 suppressed heat-associated denaturation of ADH. Human HSPB5 synthesized using the cell-free system thus retains functional activity as a molecular chaperone.
Collapse
Affiliation(s)
- Ryoji Kojima
- Laboratory of Analytical Pharmacology, Meijo University, Nagoya, 468-8503, Japan.
| | - Keiichi Uchiya
- Laboratory of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Hiroyuki Manshio
- Laboratory of Analytical Pharmacology, Meijo University, Nagoya, 468-8503, Japan
| | - Kastuyoshi Masuda
- Suntory Institute for Bioorganic Research, 1-1 Wakayamadai, Shimamoto, Osaka, 618-8503, Japan
| |
Collapse
|
47
|
Alissandratos A. In vitro multi-enzymatic cascades using recombinant lysates of E. coli: an emerging biocatalysis platform. Biophys Rev 2020; 12:175-182. [PMID: 31960346 PMCID: PMC7040066 DOI: 10.1007/s12551-020-00618-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 11/26/2022] Open
Abstract
In recent years, cell-free extracts (or lysates) have (re-)emerged as a third route to the traditional options of isolated or whole-cell biocatalysts. Advances in molecular biology and genetic engineering enable facile production of recombinant cell-free extracts, where endogenous enzymes are enriched with heterologous activities. These inexpensive preparations may be used to catalyse multistep enzymatic reactions without the constraints of cell toxicity and the cell membrane or the cost and complexity associated with production of isolated biocatalysts. Herein, we present an overview of the key advancements in cell-free synthetic biology that have led to the emergence of cell-free extracts as a promising biocatalysis platform.
Collapse
Affiliation(s)
- Apostolos Alissandratos
- Research School of Chemistry, The Australian National University, ACT, Canberra, 2601, Australia.
- CSIRO Synthetic Biology Future Science Platform, The Australian National University, ACT, Canberra, 2601, Australia.
| |
Collapse
|
48
|
Horvath N, Vilkhovoy M, Wayman JA, Calhoun K, Swartz J, Varner JD. Toward a genome scale sequence specific dynamic model of cell-free protein synthesis in Escherichia coli. Metab Eng Commun 2019; 10:e00113. [PMID: 32280586 PMCID: PMC7136494 DOI: 10.1016/j.mec.2019.e00113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 10/15/2019] [Accepted: 11/19/2019] [Indexed: 11/09/2022] Open
Abstract
In this study, we developed a dynamic mathematical model of E. coli cell-free protein synthesis (CFPS). Model parameters were estimated from a dataset consisting of glucose, organic acids, energy species, amino acids, and protein product, chloramphenicol acetyltransferase (CAT) measurements. The model was successfully trained to simulate these measurements, especially those of the central carbon metabolism. We then used the trained model to evaluate the performance, e.g., the yield and rates of protein production. CAT was produced with an energy efficiency of 12%, suggesting that the process could be further optimized. Reaction group knockouts showed that protein productivity was most sensitive to the oxidative phosphorylation and glycolysis/gluconeogenesis pathways. Amino acid biosynthesis was also important for productivity, while overflow metabolism and TCA cycle affected the overall system state. In addition, translation was more important to productivity than transcription. Finally, CAT production was robust to allosteric control, as were most of the predicted metabolite concentrations; the exceptions to this were the concentrations of succinate and malate, and to a lesser extent pyruvate and acetate, which varied from the measured values when allosteric control was removed. This study is the first to use kinetic modeling to predict dynamic protein production in a cell-free E. coli system, and could provide a foundation for genome scale, dynamic modeling of cell-free E. coli protein synthesis. Protein production is biphasic, powered initially by glucose and later by pyruvate. Protein is produced with an energy efficiency of only 12%. Protein productivity is most sensitive to oxidative phosphorylation and glycolysis. Protein production is robust to allosteric control.
Collapse
Affiliation(s)
- Nicholas Horvath
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Michael Vilkhovoy
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Joseph A Wayman
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Kara Calhoun
- School of Chemical Engineering, Stanford University, Stanford, CA, 94395, USA
| | - James Swartz
- School of Chemical Engineering, Stanford University, Stanford, CA, 94395, USA
| | - Jeffrey D Varner
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
49
|
Silverman AD, Karim AS, Jewett MC. Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet 2019; 21:151-170. [DOI: 10.1038/s41576-019-0186-3] [Citation(s) in RCA: 362] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/24/2022]
|
50
|
Khambhati K, Bhattacharjee G, Gohil N, Braddick D, Kulkarni V, Singh V. Exploring the Potential of Cell-Free Protein Synthesis for Extending the Abilities of Biological Systems. Front Bioeng Biotechnol 2019; 7:248. [PMID: 31681738 PMCID: PMC6797904 DOI: 10.3389/fbioe.2019.00248] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
Cell-free protein synthesis (CFPS) system is a simple, rapid, and sensitive tool that is devoid of membrane-bound barriers, yet contains all the mandatory substrates, biomolecules, and machineries required for the synthesis of the desired proteins. It has the potential to overcome loopholes in the current in vivo production systems and is a promising tool in both basic and applied scientific research. It facilitates a simplified organization of desired experiments with a variety of reaction conditions, making CFPS a powerful tool in biological research. It has been used for the expansion of genetic code, assembly of viruses, and in metabolic engineering for production of toxic and complex proteins. Subsequently, CFPS systems have emerged as potent technology for high-throughput production of membrane proteins, enzymes, and therapeutics. The present review highlights the recent advances and uses of CFPS systems in biomedical, therapeutic, and biotechnological applications. Additionally, we highlight possible solutions to the potential biosafety issues that may be encountered while using CFPS technology.
Collapse
Affiliation(s)
- Khushal Khambhati
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, India
| | - Gargi Bhattacharjee
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, India
| | - Nisarg Gohil
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, India
| | | | - Vishwesh Kulkarni
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Vijai Singh
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, India
| |
Collapse
|