1
|
Westh P, Kari J, Badino S, Sørensen T, Christensen S, Røjel N, Schiano-di-Cola C, Borch K. Are cellulases slow? Kinetic and thermodynamic limitations for enzymatic breakdown of cellulose. BBA ADVANCES 2024; 7:100128. [PMID: 39758504 PMCID: PMC11699605 DOI: 10.1016/j.bbadva.2024.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Cellulases are of paramount interest for upcoming biorefineries that utilize residue from agriculture and forestry to produce sustainable fuels and chemicals. Specifically, cellulases are used for the conversion of recalcitrant plant biomass to fermentable sugars in a so-called saccharification process. The vast literature on enzymatic saccharification frequently refers to low catalytic rates of cellulases as a main bottleneck for industrial implementation, but such statements are rarely supported by kinetic or thermodynamic considerations. In this perspective, we first discuss activation barriers and equilibrium conditions for the hydrolysis of cellulose and how these parameters influence enzymatic turnover. Next, we propose a simple framework for kinetic description of cellulolytic enzyme reactions and show how this can pave the way for comparative biochemical analyses of cellulases acting on their native, insoluble substrate. This latter analysis emphasizes that cellulases are characterized by extraordinarily low off-rate constants, while other kinetic parameters including specificity constants and rate constants for association and bond cleavage are quite like parameters reported for related enzymes acting on soluble substrates.
Collapse
Affiliation(s)
- Peter Westh
- Technical University of Denmark, Dept. of Biotechnology and Bioengineering, DK-2800 Lyngby Denmark
| | - Jeppe Kari
- Technical University of Denmark, Dept. of Biotechnology and Bioengineering, DK-2800 Lyngby Denmark
| | - Silke Badino
- Technical University of Denmark, Dept. of Biotechnology and Bioengineering, DK-2800 Lyngby Denmark
| | - Trine Sørensen
- Technical University of Denmark, Dept. of Biotechnology and Bioengineering, DK-2800 Lyngby Denmark
| | - Stefan Christensen
- Technical University of Denmark, Dept. of Biotechnology and Bioengineering, DK-2800 Lyngby Denmark
| | - Nanna Røjel
- Technical University of Denmark, Dept. of Biotechnology and Bioengineering, DK-2800 Lyngby Denmark
| | - Corinna Schiano-di-Cola
- Technical University of Denmark, Dept. of Biotechnology and Bioengineering, DK-2800 Lyngby Denmark
| | - Kim Borch
- Novonesis, 2 Biologiens Vej, DK-2800 Lyngby Denmark
| |
Collapse
|
2
|
Babi M, Fatona A, Li X, Cerson C, Jarvis VM, Abitbol T, Moran-Mirabal JM. Efficient Labeling of Nanocellulose for High-Resolution Fluorescence Microscopy Applications. Biomacromolecules 2022; 23:1981-1994. [PMID: 35442640 DOI: 10.1021/acs.biomac.1c01698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The visualization of naturally derived cellulose nanofibrils (CNFs) and nanocrystals (CNCs) within nanocomposite materials is key to the development of packaging materials, tissue culture scaffolds, and emulsifying agents, among many other applications. In this work, we develop a versatile and efficient two-step approach based on triazine and azide-alkyne click-chemistry to fluorescently label nanocelluloses with a variety of commercially available dyes. We show that this method can be used to label bacterial cellulose fibrils, plant-derived CNFs, carboxymethylated CNFs, and CNCs with Cy5 and fluorescein derivatives to high degrees of labeling using minimal amounts of dye while preserving their native morphology and crystalline structure. The ability to tune the labeling density with this method allowed us to prepare optimized samples that were used to visualize nanostructural features of cellulose through super-resolution microscopy. The efficiency, cost-effectiveness, and versatility of this method make it ideal for labeling nanocelluloses and imaging them through advanced microscopy techniques for a broad range of applications.
Collapse
Affiliation(s)
- Mouhanad Babi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Ayodele Fatona
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Xiang Li
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Christine Cerson
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Victoria M Jarvis
- McMaster Analytical X-ray Diffraction Facility, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Tiffany Abitbol
- RISE Research Institutes of Sweden, Stockholm 114 28, Sweden
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Centre for Advanced Light Microscopy, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
3
|
Rohrbach JC, Luterbacher JS. Investigating the effects of substrate morphology and experimental conditions on the enzymatic hydrolysis of lignocellulosic biomass through modeling. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:103. [PMID: 33902675 PMCID: PMC8073973 DOI: 10.1186/s13068-021-01920-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Understanding how the digestibility of lignocellulosic biomass is affected by its morphology is essential to design efficient processes for biomass deconstruction. In this study, we used a model based on a set of partial differential equations describing the evolution of the substrate morphology to investigate the interplay between experimental conditions and the physical characteristics of biomass particles as the reaction proceeds. Our model carefully considers the overall quantity of cellulase present in the hydrolysis mixture and explores its interplay with the available accessible cellulose surface. RESULTS Exploring the effect of various experimental and structural parameters highlighted the significant role of internal mass transfer as the substrate size increases and/or the enzyme loading decreases. In such cases, diffusion of cellulases to the available cellulose surface limits the rate of glucose release. We notably see that increasing biomass loading, while keeping enzyme loading constant should be favored for both small- (R < 300 [Formula: see text]) and middle-ranged (300 < R < 1000 [Formula: see text]) substrates to enhance enzyme diffusion while minimizing the use of enzymes. In such cases, working at enzyme loadings exceeding the full coverage of the cellulose surface (i.e. eI>1) does not bring a significant benefit. For larger particles (R > 1000 [Formula: see text]), increases in biomass loading do not offset the significant internal mass transfer limitations, but high enzyme loadings improve enzyme penetration by maintaining a high concentration gradient within the particle. We also confirm the well-known importance of cellulose accessibility, which increases with pretreatment. CONCLUSIONS Based on the developed model, we are able to propose several design criteria for deconstruction process. Importantly, we highlight the crucial role of adjusting the enzyme and biomass loading to the wood particle size and accessible cellulose surface to maintain a strong concentration gradient, while avoiding unnecessary excess in cellulase loading. Theory-based approaches that explicitly consider the entire lignocellulose particle structure can be used to clearly identify the relative importance of bottlenecks during the biomass deconstruction process, and serve as a framework to build on more detailed cellulase mechanisms.
Collapse
Affiliation(s)
- Jessica C Rohrbach
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
4
|
Fatona A, Osamudiamen A, Moran‐Mirabal J, Brook MA. Rapid, catalyst‐free crosslinking of silicones using triazines. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ayodele Fatona
- Department of Chemistry and Chemical BiologyMcMaster University 1280 Main St. W., Hamilton Ontario L8S 4M1 Canada
| | - Andrew Osamudiamen
- Department of Chemistry and Chemical BiologyMcMaster University 1280 Main St. W., Hamilton Ontario L8S 4M1 Canada
| | - Jose Moran‐Mirabal
- Department of Chemistry and Chemical BiologyMcMaster University 1280 Main St. W., Hamilton Ontario L8S 4M1 Canada
| | - Michael A. Brook
- Department of Chemistry and Chemical BiologyMcMaster University 1280 Main St. W., Hamilton Ontario L8S 4M1 Canada
| |
Collapse
|
5
|
Røjel N, Kari J, Sørensen TH, Badino SF, Morth JP, Schaller K, Cavaleiro AM, Borch K, Westh P. Substrate binding in the processive cellulase Cel7A: Transition state of complexation and roles of conserved tryptophan residues. J Biol Chem 2020; 295:1454-1463. [PMID: 31848226 PMCID: PMC7008363 DOI: 10.1074/jbc.ra119.011420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Indexed: 11/06/2022] Open
Abstract
Cellobiohydrolases effectively degrade cellulose and are of biotechnological interest because they can convert lignocellulosic biomass to fermentable sugars. Here, we implemented a fluorescence-based method for real-time measurements of complexation and decomplexation of the processive cellulase Cel7A and its insoluble substrate, cellulose. The method enabled detailed kinetic and thermodynamic analyses of ligand binding in a heterogeneous system. We studied WT Cel7A and several variants in which one or two of four highly conserved Trp residues in the binding tunnel had been replaced with Ala. WT Cel7A had on/off-rate constants of 1 × 105 m-1 s-1 and 5 × 10-3 s-1, respectively, reflecting the slow dynamics of a solid, polymeric ligand. Especially the off-rate constant was many orders of magnitude lower than typical values for small, soluble ligands. Binding rate and strength both were typically lower for the Trp variants, but effects of the substitutions were moderate and sometimes negligible. Hence, we propose that lowering the activation barrier for complexation is not a major driving force for the high conservation of the Trp residues. Using so-called Φ-factor analysis, we analyzed the kinetic and thermodynamic results for the variants. The results of this analysis suggested a transition state for complexation and decomplexation in which the reducing end of the ligand is close to the tunnel entrance (near Trp-40), whereas the rest of the binding tunnel is empty. We propose that this structure defines the highest free-energy barrier of the overall catalytic cycle and hence governs the turnover rate of this industrially important enzyme.
Collapse
Affiliation(s)
- Nanna Røjel
- Institut for Naturvidenskab og Miljo, Roskilde University, DK-4000 Roskilde, Denmark
| | - Jeppe Kari
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | - Silke F Badino
- Institut for Naturvidenskab og Miljo, Roskilde University, DK-4000 Roskilde, Denmark
| | - J Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kay Schaller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | - Kim Borch
- Novozymes A/S, DK-2800 Kgs. Lyngby Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Donaldson L, Vaidya A. Visualising recalcitrance by colocalisation of cellulase, lignin and cellulose in pretreated pine biomass using fluorescence microscopy. Sci Rep 2017; 7:44386. [PMID: 28281670 PMCID: PMC5345003 DOI: 10.1038/srep44386] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/07/2017] [Indexed: 11/08/2022] Open
Abstract
Mapping the location of bound cellulase enzymes provides information on the micro-scale distribution of amenable and recalcitrant sites in pretreated woody biomass for biofuel applications. The interaction of a fluorescently labelled cellulase enzyme cocktail with steam-exploded pine (SEW) was quantified using confocal microscopy. The spatial distribution of Dylight labelled cellulase was quantified relative to lignin (autofluorescence) and cellulose (Congo red staining) by measuring their colocalisation using Pearson correlations. Correlations were greater in cellulose-rich secondary cell walls compared to lignin-rich middle lamella but with significant variations among individual biomass particles. The distribution of cellulose in the pretreated biomass accounted for 30% of the variation in the distribution of enzyme after correcting for the correlation between lignin and cellulose. For the first time, colocalisation analysis was able to quantify the spatial distribution of amenable and recalcitrant sites in relation to the histochemistry of cellulose and lignin. This study will contribute to understanding the role of pretreatment in enzymatic hydrolysis of recalcitrant softwood biomass.
Collapse
Affiliation(s)
- Lloyd Donaldson
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3010, New Zealand
| | - Alankar Vaidya
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3010, New Zealand
| |
Collapse
|
7
|
Ganner T, Roŝker S, Eibinger M, Kraxner J, Sattelkow J, Rattenberger J, Fitzek H, Chernev B, Grogger W, Nidetzky B, Plank H. Tunable Semicrystalline Thin Film Cellulose Substrate for High-Resolution, In-Situ AFM Characterization of Enzymatic Cellulose Degradation. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27900-27909. [PMID: 26618709 DOI: 10.1021/acsami.5b09948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the field of enzymatic cellulose degradation, fundamental interactions between different enzymes and polymorphic cellulose materials are of essential importance but still not understood in full detail. One technology with the potential of direct visualization of such bioprocesses is atomic force microscopy (AFM) due to its capability of real-time in situ investigations with spatial resolutions down to the molecular scale. To exploit the full capabilities of this technology and unravel fundamental enzyme-cellulose bioprocesses, appropriate cellulose substrates are decisive. In this study, we introduce a semicrystalline-thin-film-cellulose (SCFTC) substrate which fulfills the strong demands on such ideal cellulose substrates by means of (1) tunable polymorphism via variable contents of homogeneously sized cellulose nanocrystals embedded in an amorphous cellulose matrix; (2) nanoflat surface topology for high-resolution and high-speed AFM; and (3) fast, simple, and reproducible fabrication. The study starts with a detailed description of SCTFC preparation protocols including an in-depth material characterization. In the second part, we demonstrate the suitability of SCTFC substrates for enzymatic degradation studies by combined, individual, and sequential exposure to TrCel6A/TrCel7A cellulases (Trichoderma reesei) to visualize synergistic effects down to the nanoscale.
Collapse
Affiliation(s)
- Thomas Ganner
- Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology , Steyrergasse 17, A-8010 Graz, Austria
| | - Stephanie Roŝker
- Graz Centre for Electron Microscopy , Steyrergasse 17, A-8010 Graz, Austria
| | - Manuel Eibinger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology , Petersgasse 12, A-8010 Graz, Austria
| | - Johanna Kraxner
- Graz Centre for Electron Microscopy , Steyrergasse 17, A-8010 Graz, Austria
| | - Jürgen Sattelkow
- Graz Centre for Electron Microscopy , Steyrergasse 17, A-8010 Graz, Austria
| | | | - Harald Fitzek
- Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology , Steyrergasse 17, A-8010 Graz, Austria
| | - Boril Chernev
- Graz Centre for Electron Microscopy , Steyrergasse 17, A-8010 Graz, Austria
| | - Werner Grogger
- Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology , Steyrergasse 17, A-8010 Graz, Austria
- Graz Centre for Electron Microscopy , Steyrergasse 17, A-8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology , Petersgasse 12, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology , Petersgasse 14, A-8010 Graz, Austria
| | - Harald Plank
- Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology , Steyrergasse 17, A-8010 Graz, Austria
- Graz Centre for Electron Microscopy , Steyrergasse 17, A-8010 Graz, Austria
| |
Collapse
|
8
|
Hidayat BJ, Weisskopf C, Felby C, Johansen KS, Thygesen LG. The binding of cellulase variants to dislocations: a semi-quantitative analysis based on CLSM (confocal laser scanning microscopy) images. AMB Express 2015; 5:76. [PMID: 26626331 PMCID: PMC4666858 DOI: 10.1186/s13568-015-0165-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/21/2015] [Indexed: 11/23/2022] Open
Abstract
Binding of enzymes to the substrate is the first step in enzymatic hydrolysis of lignocellulose, a key process within biorefining. During this process elongated plant cells such as fibers and tracheids have been found to break into segments at irregular cell wall regions known as dislocations or slip planes. Here we study whether cellulases bind to dislocations to a higher extent than to the surrounding cell wall. The binding of fluorescently labelled cellobiohydrolases and endoglucanases to filter paper fibers was investigated using confocal laser scanning microscopy and a ratiometric method was developed to assess and quantify the abundance of the binding of cellulases to dislocations as compared to the surrounding cell wall. Only Humicola insolens EGV was found to have stronger binding preference to dislocations than to the surrounding cell wall, while no difference in binding affinity was seen for any of the other cellulose variants included in the study (H. insolens EGV variants, Trichoderma reesei CBHI, CBHII and EGII). This result favours the hypothesis that fibers break at dislocations during the initial phase of hydrolysis mostly due to mechanical failure rather than as a result of faster degradation at these locations.
Collapse
|
9
|
Pellegrini VOA, Lei N, Kyasaram M, Olsen JP, Badino SF, Windahl MS, Colussi F, Cruys-Bagger N, Borch K, Westh P. Reversibility of substrate adsorption for the cellulases Cel7A, Cel6A, and Cel7B from Hypocrea jecorina. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12602-12609. [PMID: 25322452 DOI: 10.1021/la5024423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Adsorption of cellulases on the cellulose surface is an integral part of the catalytic mechanism, and a detailed description of the adsorption process is therefore required for a fundamental understanding of this industrially important class of enzymes. However, the mode of adsorption has proven intricate, and several key questions remain open. Perhaps most notably it is not clear whether the adsorbed enzyme is in dynamic equilibrium with the free population or irreversibly associated with no or slow dissociation. To address this, we have systematically investigated adsorption reversibility for two cellobiohydrolases (Cel7A and Cel6A) and one endoglucanase (Cel7B) on four types of pure cellulose substrates. Specifically, we monitored dilution-induced release of adsorbed enzyme in samples that had previously been brought to a steady state (constant concentration of free enzyme). In simple dilution experiments (without centrifugation), the results consistently showed full reversibility. In contrast to this, resuspension of enzyme-substrate pellets separated by centrifugation showed extensive irreversibility. We conclude that these enzymes are in a dynamic equilibrium between free and adsorbed states but suggest that changes in the physical properties of cellulose caused by compaction of the pellet hampers subsequent release of adsorbed enzyme. This latter effect may be pertinent to both previous controversies in the literature on adsorption reversibility and the development of enzyme recycling protocols in the biomass industry.
Collapse
Affiliation(s)
- Vanessa O A Pellegrini
- Research Unit for Functional Biomaterials, NSM, Roskilde University , 1 Universitetsvej, Build. 18.1, DK-4000 Roskilde, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Luterbacher JS, Moran-Mirabal JM, Burkholder EW, Walker LP. Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: Filter paper cellulose. Biotechnol Bioeng 2014; 112:21-31. [DOI: 10.1002/bit.25329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/08/2014] [Accepted: 06/30/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jeremy S. Luterbacher
- Department of Chemical and Biomolecular Engineering; Olin Hall; Cornell University; Ithaca New York
| | - Jose M. Moran-Mirabal
- Department of Chemistry and Chemical Biology; Arthur N. Bourns Science Building; McMaster University; Hamilton Ontario, Canada L8S4M1
| | - Eric W. Burkholder
- Department of Chemical and Biomolecular Engineering; Olin Hall; Cornell University; Ithaca New York
| | - Larry P. Walker
- Department of Biological and Environmental Engineering; Riley-Robb Hall; Cornell University; Ithaca New York 14850
| |
Collapse
|
11
|
Donaldson LA, Newman RH, Vaidya A. Nanoscale interactions of polyethylene glycol with thermo-mechanically pre-treatedPinus radiatabiofuel substrate. Biotechnol Bioeng 2013; 111:719-25. [DOI: 10.1002/bit.25138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/10/2013] [Accepted: 10/21/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Lloyd A. Donaldson
- Scion; Te Papa Tipu Innovation Park; 49 Sala Street Rotorua 3046 New Zealand
| | - Roger H. Newman
- Scion; Te Papa Tipu Innovation Park; 49 Sala Street Rotorua 3046 New Zealand
| | - Alankar Vaidya
- Scion; Te Papa Tipu Innovation Park; 49 Sala Street Rotorua 3046 New Zealand
| |
Collapse
|
12
|
Abitbol T, Palermo A, Moran-Mirabal JM, Cranston ED. Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents. Biomacromolecules 2013; 14:3278-84. [PMID: 23952644 DOI: 10.1021/bm400879x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cotton-source cellulose nanocrystals (CNCs) with a range of surface charge densities were fluorescently labeled with 5-(4, 6-dichlorotriazinyl) aminofluorescein (DTAF) in a facile, one-pot reaction under alkaline conditions. Three CNC samples were labeled: (I) anionic CNCs prepared by sulfuric acid hydrolysis with a sulfur content of 0.47 wt %, (II) a partially desulfated, sulfuric acid-hydrolyzed CNC sample, which was less anionic with an intermediate sulfur content of 0.21 wt %, and (III) uncharged CNCs prepared by HCl hydrolysis. The DTAF-labeled CNCs were characterized by dynamic light scattering, atomic force microscopy, fluorescence spectroscopy and microscopy, and polarized light microscopy. Fluorescent CNCs exhibited similar colloidal stability to the starting CNCs, with the exception of the HCl-hydrolyzed sample, which became less agglomerated after the labeling reaction. The degree of labeling depended on the sulfur content of the CNCs, indicating that the presence of sulfate half-ester groups on the CNC surfaces hindered labeling. The labeling reaction produced CNCs that had detectable fluorescence, without compromising the overall surface chemistry or behavior of the materials, an aspect relevant to studies that require a fluorescent cellulose substrate with intact native properties. The DTAF-labeled CNCs were proposed as optical markers for the dispersion quality of CNC-loaded polymer composites. Electrospun polyvinyl alcohol fibers loaded with DTAF-labeled CNCs appeared uniformly fluorescent by fluorescence microscopy, suggesting that the nanoparticles were well dispersed within the polymer matrix.
Collapse
Affiliation(s)
- Tiffany Abitbol
- Departments of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
13
|
Paës G, Burr S, Saab MB, Molinari M, Aguié-Béghin V, Chabbert B. Modeling Progression of Fluorescent Probes in Bioinspired Lignocellulosic Assemblies. Biomacromolecules 2013; 14:2196-205. [DOI: 10.1021/bm400338b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Gabriel Paës
- INRA, UMR614 Fractionnement des AgroRessources
et Environnement, Reims,
France
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des
AgroRessources et Environnement, Reims, France
| | - Sally Burr
- INRA, UMR614 Fractionnement des AgroRessources
et Environnement, Reims,
France
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des
AgroRessources et Environnement, Reims, France
| | - Marie-Belle Saab
- INRA, UMR614 Fractionnement des AgroRessources
et Environnement, Reims,
France
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des
AgroRessources et Environnement, Reims, France
- Université de Reims Champagne-Ardenne, Laboratoire de Recherche
en Nanosciences LRN EA4682, Reims, France
| | - Michaël Molinari
- Université de Reims Champagne-Ardenne, Laboratoire de Recherche
en Nanosciences LRN EA4682, Reims, France
| | - Véronique Aguié-Béghin
- INRA, UMR614 Fractionnement des AgroRessources
et Environnement, Reims,
France
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des
AgroRessources et Environnement, Reims, France
| | - Brigitte Chabbert
- INRA, UMR614 Fractionnement des AgroRessources
et Environnement, Reims,
France
- Université de Reims Champagne-Ardenne, UMR614 Fractionnement des
AgroRessources et Environnement, Reims, France
| |
Collapse
|
14
|
Bubner P, Plank H, Nidetzky B. Visualizing cellulase activity. Biotechnol Bioeng 2013; 110:1529-49. [DOI: 10.1002/bit.24884] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/08/2013] [Accepted: 02/22/2013] [Indexed: 11/08/2022]
|
15
|
Hoeger IC, Filpponen I, Martin-Sampedro R, Johansson LS, Österberg M, Laine J, Kelley S, Rojas OJ. Bicomponent Lignocellulose Thin Films to Study the Role of Surface Lignin in Cellulolytic Reactions. Biomacromolecules 2012; 13:3228-40. [DOI: 10.1021/bm301001q] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ingrid C. Hoeger
- Department of Forest
Biomaterials, North Carolina State University, Raleigh, North Carolina 27695-8005, United States
| | - Ilari Filpponen
- School of Science and Technology, Department of Forest Products Technology, Aalto University, 00076 Aalto, Finland
| | - Raquel Martin-Sampedro
- School of Science and Technology, Department of Forest Products Technology, Aalto University, 00076 Aalto, Finland
| | - Leena-Sisko Johansson
- School of Science and Technology, Department of Forest Products Technology, Aalto University, 00076 Aalto, Finland
| | - Monika Österberg
- School of Science and Technology, Department of Forest Products Technology, Aalto University, 00076 Aalto, Finland
| | - Janne Laine
- School of Science and Technology, Department of Forest Products Technology, Aalto University, 00076 Aalto, Finland
| | - Stephen Kelley
- Department of Forest
Biomaterials, North Carolina State University, Raleigh, North Carolina 27695-8005, United States
| | - Orlando J. Rojas
- Department of Forest
Biomaterials, North Carolina State University, Raleigh, North Carolina 27695-8005, United States
- School of Science and Technology, Department of Forest Products Technology, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
16
|
Luterbacher JS, Parlange JY, Walker LP. A pore-hindered diffusion and reaction model can help explain the importance of pore size distribution in enzymatic hydrolysis of biomass. Biotechnol Bioeng 2012; 110:127-36. [PMID: 22811319 DOI: 10.1002/bit.24614] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/08/2012] [Accepted: 07/09/2012] [Indexed: 11/06/2022]
Abstract
Until now, most efforts to improve monosaccharide production from biomass through pretreatment and enzymatic hydrolysis have used empirical optimization rather than employing a rational design process guided by a theory-based modeling framework. For such an approach to be successful a modeling framework that captures the key mechanisms governing the relationship between pretreatment and enzymatic hydrolysis must be developed. In this study, we propose a pore-hindered diffusion and kinetic model for enzymatic hydrolysis of biomass. When compared to data available in the literature, this model accurately predicts the well-known dependence of initial cellulose hydrolysis rates on surface area available to a cellulase-size molecule. Modeling results suggest that, for particles smaller than 5 × 10(-3) cm, a key rate-limiting step is the exposure of previously unexposed cellulose occurring after cellulose on the surface has hydrolyzed, rather than binding or diffusion. However, for larger particles, according to the model, diffusion plays a more significant role. Therefore, the proposed model can be used to design experiments that produce results that are either affected or unaffected by diffusion. Finally, by using pore size distribution data to predict the biomass fraction that is accessible to degradation, this model can be used to predict cellulose hydrolysis with time using only pore size distribution and initial composition data.
Collapse
Affiliation(s)
- Jeremy S Luterbacher
- Department of Chemical and Biomolecular Engineering, Olin Hall, Cornell University, Ithaca, New York 14850, USA
| | | | | |
Collapse
|
17
|
Luterbacher JS, Walker LP, Moran-Mirabal JM. Observing and modeling BMCC degradation by commercial cellulase cocktails with fluorescently labeled Trichoderma reseii Cel7A through confocal microscopy. Biotechnol Bioeng 2012; 110:108-17. [PMID: 22766843 DOI: 10.1002/bit.24597] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/14/2012] [Accepted: 06/20/2012] [Indexed: 11/07/2022]
Abstract
Understanding the depolymerization mechanisms of cellulosic substrates by cellulase cocktails is a critical step towards optimizing the production of monosaccharides from biomass. The Spezyme CP cellulase cocktail combined with the Novo 188 β-glucosidase blend was used to depolymerize bacterial microcrystalline cellulose (BMCC), which was immobilized on a glass surface. The enzyme mixture was supplemented with a small fraction of fluorescently labeled Trichoderma reseii Cel7A, which served as a reporter to track cellulase binding onto the physical structure of the cellulosic substrate. Both micro-scale imaging and bulk experiments were conducted. All reported experiments were conducted at 50 °C, the optimal temperature for maximum hydrolytic activity of the enzyme cocktail. BMCC structure was observed throughout degradation by labeling it with a fluorescent dye. This method allowed us to measure the binding of cellulases in situ and follow the temporal morphological changes of cellulose during its depolymerization by a commercial cellulase mixture. Three kinetic models were developed and fitted to fluorescence intensity data obtained through confocal microscopy: irreversible and reversible binding models, and an instantaneous binding model. The models were successfully used to predict the soluble sugar concentrations that were liberated from BMCC in bulk experiments. Comparing binding and kinetic parameters from models with different assumptions to previously reported constants in the literature led us to conclude that exposing new binding sites is an important rate-limiting step in the hydrolysis of crystalline cellulose.
Collapse
Affiliation(s)
- Jeremy S Luterbacher
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | | | | |
Collapse
|
18
|
Cheng G, Datta S, Liu Z, Wang C, Murton JK, Brown PA, Jablin MS, Dubey M, Majewski J, Halbert CE, Browning JF, Esker AR, Watson BJ, Zhang H, Hutcheson SW, Huber DL, Sale KL, Simmons BA, Kent MS. Interactions of endoglucanases with amorphous cellulose films resolved by neutron reflectometry and quartz crystal microbalance with dissipation monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8348-58. [PMID: 22554348 DOI: 10.1021/la300955q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A study of the interaction of four endoglucanases with amorphous cellulose films by neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) is reported. The endoglucanases include a mesophilic fungal endoglucanase (Cel45A from H. insolens), a processive endoglucanase from a marine bacterium (Cel5H from S. degradans ), and two from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima ). The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. The endoglucanases displayed highly diverse behavior. Cel45A and Cel5H, which possess carbohydrate-binding modules (CBMs), penetrated and digested within the bulk of the films to a far greater extent than Cel9A and Cel5A, which lack CBMs. While both Cel45A and Cel5H were active within the bulk of the films, striking differences were observed. With Cel45A, substantial film expansion and interfacial broadening were observed, whereas for Cel5H the film thickness decreased with little interfacial broadening. These results are consistent with Cel45A digesting within the interior of cellulose chains as a classic endoglucanase, and Cel5H digesting predominantly at chain ends consistent with its designation as a processive endoglucanase.
Collapse
Affiliation(s)
- Gang Cheng
- Joint BioEnergy Institute, Emeryville, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang L, Wang Y, Ragauskas AJ. Determination of cellulase colocalization on cellulose fiber with quantitative FRET measured by acceptor photobleaching and spectrally unmixing fluorescence microscopy. Analyst 2012; 137:1319-24. [PMID: 22311108 DOI: 10.1039/c2an15938d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The determination of cellulase distribution on the surface of cellulose fiber is an important parameter to understand when determining the interaction between cellulase and cellulose and/or the cooperation of different types of cellulases during the enzymatic hydrolysis of cellulose. In this communication, a strategy is presented to quantitatively determine the cellulase colocalization using the fluorescence resonance energy transfer (FRET) methodology, which is based on acceptor photobleaching and spectrally unmixing fluorescence microscopy. FRET monitoring of cellulase colocalization was achieved by labeling cellulases with an appropriate pair of FRET dyes and by adopting an appropriate FRET model. We describe here that the adapted acceptor photobleaching FRET method can be successfully used to quantify cellulase colocalization regarding their binding to a cellulose fiber at a resolution <10 nm. This developed quantitative FRET method is promising for further studying the interactions between cellulase and cellulose and between different types of cellulases.
Collapse
Affiliation(s)
- Liqun Wang
- BioEnergy Science Center, Institute of Paper Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
20
|
Moran-Mirabal JM, Bolewski JC, Walker LP. Reversibility and binding kinetics of Thermobifida fusca cellulases studied through fluorescence recovery after photobleaching microscopy. Biophys Chem 2011; 155:20-8. [PMID: 21396764 DOI: 10.1016/j.bpc.2011.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 11/26/2022]
Abstract
Cellulases are enzymes capable of depolymerizing cellulose. Understanding their interactions with cellulose can improve biomass saccharification and enzyme recycling in biofuel production. This paper presents a study on binding and binding reversibility of Thermobifida fusca cellulases Cel5A, Cel6B, and Cel9A bound onto Bacterial Microcrystalline Cellulose. Cellulase binding was assessed through fluorescence recovery after photobleaching (FRAP) at 23, 34, and 45 °C. It was found that cellulase binding is only partially reversible. For processive cellulases Cel6B and Cel9A, an increase in temperature resulted in a decrease of the fraction of cellulases reversibly bound, while for endocellulase Cel5A this fraction remained constant. Kinetic parameters were obtained by fitting the FRAP curves to a binding-dominated model. The unbinding rate constants obtained for all temperatures were highest for Cel5A and lowest for Cel9A. The results presented demonstrate the usefulness of FRAP to access the fast binding kinetics characteristic of cellulases operating at their optimal temperature.
Collapse
Affiliation(s)
- Jose M Moran-Mirabal
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
21
|
Liu YS, Baker JO, Zeng Y, Himmel ME, Haas T, Ding SY. Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 2011; 286:11195-201. [PMID: 21282110 PMCID: PMC3064174 DOI: 10.1074/jbc.m110.216556] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biodegradation of plant biomass is a slow process in nature, and hydrolysis of cellulose is also widely considered to be a rate-limiting step in the proposed industrial process of converting lignocellulosic materials to biofuels. It is generally known that a team of enzymes including endo- and exocellulases as well as cellobiases are required to act synergistically to hydrolyze cellulose to glucose. The detailed molecular mechanisms of these enzymes have yet to be convincingly elucidated. In this report, atomic force microscopy (AFM) is used to image in real-time the structural changes in Valonia cellulose crystals acted upon by the exocellulase cellobiohydrolase I (CBH I) from Trichoderma reesei. Under AFM, single enzyme molecules could be observed binding only to one face of the cellulose crystal, apparently the hydrophobic face. The surface roughness of cellulose began increasing after adding CBH I, and the overall size of cellulose crystals decreased during an 11-h period. Interestingly, this size reduction apparently occurred only in the width of the crystal, whereas the height remained relatively constant. In addition, the measured cross-section shape of cellulose crystal changed from asymmetric to nearly symmetric. These observed changes brought about by CBH I action may constitute the first direct visualization supporting the idea that the exocellulase selectively hydrolyzes the hydrophobic faces of cellulose. The limited accessibility of the hydrophobic faces in native cellulose may contribute significantly to the rate-limiting slowness of cellulose hydrolysis.
Collapse
Affiliation(s)
- Yu-San Liu
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | | | | | | | | | | |
Collapse
|
22
|
Lantz SE, Goedegebuur F, Hommes R, Kaper T, Kelemen BR, Mitchinson C, Wallace L, Ståhlberg J, Larenas EA. Hypocrea jecorina CEL6A protein engineering. BIOTECHNOLOGY FOR BIOFUELS 2010; 3:20. [PMID: 20822549 PMCID: PMC2945327 DOI: 10.1186/1754-6834-3-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 09/08/2010] [Indexed: 05/03/2023]
Abstract
The complex technology of converting lignocellulose to fuels such as ethanol has advanced rapidly over the past few years, and enzymes are a critical component of this technology. The production of effective enzyme systems at cost structures that facilitate commercial processes has been the focus of research for many years. Towards this end, the H. jecorina cellobiohydrolases, CEL7A and CEL6A, have been the subject of protein engineering at Genencor. Our first rounds of cellobiohydrolase engineering were directed towards improving the thermostability of both of these enzymes and produced variants of CEL7A and CEL6A with apparent melting temperatures above 70°C, placing their stability on par with that of H. jecorina CEL5A (EG2) and CEL3A (BGL1). We have now moved towards improving CEL6A- and CEL7A-specific performance in the context of a complete enzyme system under industrially relevant conditions. Achievement of these goals required development of new screening strategies and tools. We discuss these advances along with some results, focusing mainly on engineering of CEL6A.
Collapse
Affiliation(s)
- Suzanne E Lantz
- Genencor Division, Danisco USA Inc., 925 Page Mill Rd. Palo Alto, CA 94304, USA
| | - Frits Goedegebuur
- Genencor, a Danisco Division, Archimedesweg 30, 2333CN, Leiden, The Netherlands
| | - Ronald Hommes
- Genencor, a Danisco Division, Archimedesweg 30, 2333CN, Leiden, The Netherlands
| | - Thijs Kaper
- Genencor Division, Danisco USA Inc., 925 Page Mill Rd. Palo Alto, CA 94304, USA
| | - Bradley R Kelemen
- Genencor Division, Danisco USA Inc., 925 Page Mill Rd. Palo Alto, CA 94304, USA
| | - Colin Mitchinson
- Genencor Division, Danisco USA Inc., 925 Page Mill Rd. Palo Alto, CA 94304, USA
| | - Louise Wallace
- Genencor Division, Danisco USA Inc., 925 Page Mill Rd. Palo Alto, CA 94304, USA
| | - Jerry Ståhlberg
- Department of Molecular Biology, Swedish University of Agricultural Sciences, POB 590, SE-751 24 Uppsala, Sweden
| | - Edmundo A Larenas
- Genencor Division, Danisco USA Inc., 925 Page Mill Rd. Palo Alto, CA 94304, USA
| |
Collapse
|
23
|
Wang L, Wang Y, Ragauskas AJ. A novel FRET approach for in situ investigation of cellulase–cellulose interaction. Anal Bioanal Chem 2010; 398:1257-62. [DOI: 10.1007/s00216-010-4057-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
|
24
|
Santa-Maria M, Jeoh T. Molecular-Scale Investigations of Cellulose Microstructure during Enzymatic Hydrolysis. Biomacromolecules 2010; 11:2000-7. [DOI: 10.1021/bm100366h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Monica Santa-Maria
- Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, California 95616
| | - Tina Jeoh
- Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, California 95616
| |
Collapse
|
25
|
Abstract
Parylene is a family of chemically vapour deposited polymer with material properties that are attractive for biomedicine and nanobiotechnology. Chemically inert parylene “peel-off” stencils have been demonstrated for micropatterning biomolecular arrays with high uniformity, precise spatial control down to nanoscale resolution. Such micropatterned surfaces are beneficial in engineering biosensors and biological microenvironments. A variety of substituted precursors enables direct coating of functionalised parylenes onto biomedical implants and microfluidics, providing a convenient method for designing biocompatible and bioactive surfaces. This article will review the emerging role and applications of parylene as a biomaterial for surface chemical modification and provide a future outlook.
Collapse
|
26
|
Liu H, Fu S, Zhu J, Li H, Zhan H. Visualization of enzymatic hydrolysis of cellulose using AFM phase imaging. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Moran-Mirabal JM, Corgie SC, Bolewski JC, Smith HM, Cipriany BR, Craighead HG, Walker LP. Labeling and Purification of Cellulose-Binding Proteins for High Resolution Fluorescence Applications. Anal Chem 2009; 81:7981-7. [DOI: 10.1021/ac901183b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jose M. Moran-Mirabal
- Department of Biological and Environmental Engineering and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850
| | - Stephane C. Corgie
- Department of Biological and Environmental Engineering and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850
| | - Jacob C. Bolewski
- Department of Biological and Environmental Engineering and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850
| | - Hanna M. Smith
- Department of Biological and Environmental Engineering and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850
| | - Benjamin R. Cipriany
- Department of Biological and Environmental Engineering and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850
| | - Harold G. Craighead
- Department of Biological and Environmental Engineering and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850
| | - Larry P. Walker
- Department of Biological and Environmental Engineering and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850
| |
Collapse
|