1
|
Li J, Bi L, Musolino SF, Wulff JE, Sask KN. Functionalization of Polydimethylsiloxane with Diazirine-Based Linkers for Covalent Protein Immobilization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1-16. [PMID: 38149968 DOI: 10.1021/acsami.3c08013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Biomolecule attachment to solid supports is critical for biomedical devices, such as biosensors and implants. Polydimethylsiloxane (PDMS) is commonly used for these applications due to its advantageous properties. To enhance the biomolecule immobilization on PDMS, a novel technique is demonstrated using newly synthesized diazirine molecules for the surface modification of PDMS. This nondestructive process involves a reaction between diazirine molecules and PDMS through C-H insertion with thermal or ultraviolet activation. The success of the PDMS modification is confirmed by various surface characterization techniques. Bovine serum albumin (BSA) and immunoglobulin G (IgG) are strongly attached to the modified PDMS surfaces, and the amount of protein is quantified using iodine-125 radiolabeling. The results demonstrate that PDMS is rapidly functionalized, and the stability of the immobilized proteins is significantly improved with multiple types of diazirine molecules and activation methods. Confocal microscopy provides three-dimensional images of the distribution of immobilized IgG on the surfaces and the penetration of diazirine-based linkers through the PDMS substrate during the coating process. Overall, this study presents a promising new approach for functionalizing PDMS surfaces to enhance biomolecule immobilization, and its potential applications can extend to multimaterial modifications for various diagnostic and medical applications such as microfluidic devices and immunoassays with relevant bioactive proteins.
Collapse
Affiliation(s)
- Jie Li
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L2, Canada
| | - Liting Bi
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Stefania F Musolino
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Jeremy E Wulff
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Kyla N Sask
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L2, Canada
- Department of Materials Science & Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
2
|
Zhou L, Kato F, Iijima M, Nonaka T, Kuroda S, Ogi H. Mass-Fabrication Scheme of Highly Sensitive Wireless Electrodeless MEMS QCM Biosensor with Antennas on Inner Walls of Microchannel. Anal Chem 2023; 95:5507-5513. [PMID: 36961992 DOI: 10.1021/acs.analchem.3c00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Quartz-crystal-microbalance (QCM) biosensor is a typical label-free biosensor, and its sensitivity can be greatly improved by removing electrodes and wires that would be otherwise attached to the surfaces of the quartz resonator. The wireless-electrodeless QCM biosensor was then developed using a microelectro-mechanical systems (MEMS) process, although challenges remain in the sensitivity, the coupling efficiency, and the miniaturization (or mass production). In this study, we establish a MEMS process to obtain a large number of identical ultrasensitive and highly efficient sensor chips with dimensions of 6 mm square. The fundamental shear resonance frequency of the thinned AT-cut quartz resonator packaged in the microchannel exceeds 160 MHz, which is excited by antennas deposited on inner walls of the microchannel, significantly improving the electro-mechanical coupling efficiency in the wireless operation. The high sensitivity of the developed MEMS QCM biosensors is confirmed by the immunoglobulin G (IgG) detection using protein A and ZZ-tag displaying a bionanocapsule (ZZ-BNC), where we find that the ZZ-BNC can provide more effective binding sites and higher affinity to the target molecules, indicating a further enhancement in the sensitivity of the MEMS QCM biosensor. We then perform the label-free C-reactive protein (CRP) detection using the ZZ-BNC-functionalized MEMS QCM biosensor, which achieves a detection limit of 1 ng mL-1 or less even with direct detection.
Collapse
Affiliation(s)
- Lianjie Zhou
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Fumihito Kato
- Department of Mechanical Engineering, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-machi, Minamisaitama, Saitama 345-8501, Japan
| | - Masumi Iijima
- Department of Nutritional Science and Food Safety, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tomoyuki Nonaka
- Samco Inc., Waraya-cho 36, Takeda, Fushimi-ku, Kyoto 612-8443, Japan
| | - Shun'ichi Kuroda
- SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Hobæk TC, Pranov HJ, Larsen NB. Immobilization of Active Antibodies at Polymer Melt Surfaces during Injection Molding. Polymers (Basel) 2022; 14:polym14204426. [PMID: 36298004 PMCID: PMC9606872 DOI: 10.3390/polym14204426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
We demonstrate the transfer and immobilization of active antibodies from a low surface- energy mold surface to thermoplastic replica surfaces using injection molding, and we investigate the process at molecular scale. The transfer process is highly efficient, as verified by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) of the mold and replica surfaces. AFM analysis reveals partial nanometer-scale embedding of the protein into the polymer matrix as a possible mechanism of permanent immobilization. Replicas with rabbit anti-mouse IgG immobilized as capture antibody at the hot polymer melt surface during injection molding show similar affinity for their antigen (mouse IgG) in sandwich enzyme-linked immunosorbent assay (ELISA) as capture antibodies deposited by passive adsorption onto a bare thermoplastic replica. The transferred antibodies retain their functionality after incubation in serum-containing cell medium for >1 week. A mold coating time of 10 min prior to injection molding is sufficient for producing highly sensitive ELISA assays, thus enabling the short processing cycle times required for mass production of single-use biodevices relying on active immobilized antibodies.
Collapse
Affiliation(s)
- Thor Christian Hobæk
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
| | | | - Niels B. Larsen
- Department of Health Technology, DTU Health Tech, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kongens Lyngby, Denmark
- Correspondence:
| |
Collapse
|
4
|
Samani SS, Khojastehnezhad A, Ramezani M, Alibolandi M, Yazdi FT, Mortazavi SA, Khoshbin Z, Abnous K, Taghdisi SM. Ultrasensitive detection of micrococcal nuclease activity and Staphylococcus aureus contamination using optical biosensor technology-A review. Talanta 2021; 226:122168. [DOI: 10.1016/j.talanta.2021.122168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023]
|
5
|
Abstract
Lab-on-a-Disc (LoaD) biosensors are increasingly a promising solution for many biosensing applications. In the search for a perfect match between point-of-care (PoC) microfluidic devices and biosensors, the LoaD platform has the potential to be reliable, sensitive, low-cost, and easy-to-use. The present global pandemic draws attention to the importance of rapid sample-to-answer PoC devices for minimising manual intervention and sample manipulation, thus increasing the safety of the health professional while minimising the chances of sample contamination. A biosensor is defined by its ability to measure an analyte by converting a biological binding event to tangible analytical data. With evolving manufacturing processes for both LoaDs and biosensors, it is becoming more feasible to embed biosensors within the platform and/or to pair the microfluidic cartridges with low-cost detection systems. This review considers the basics of the centrifugal microfluidics and describes recent developments in common biosensing methods and novel technologies for fluidic control and automation. Finally, an overview of current devices on the market is provided. This review will guide scientists who want to initiate research in LoaD PoC devices as well as providing valuable reference material to researchers active in the field.
Collapse
|
6
|
Antmen E, Demirci U, Hasirci V. Amplification of nuclear deformation of breast cancer cells by seeding on micropatterned surfaces to better distinguish their malignancies. Colloids Surf B Biointerfaces 2019; 183:110402. [DOI: 10.1016/j.colsurfb.2019.110402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
|
7
|
Brittain WJ, Brandsetter T, Prucker O, Rühe J. The Surface Science of Microarray Generation-A Critical Inventory. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39397-39409. [PMID: 31322854 DOI: 10.1021/acsami.9b06838] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microarrays are powerful tools in biomedical research and have become indispensable for high-throughput multiplex analysis, especially for DNA and protein analysis. The basis for all microarray processing and fabrication is surface modification of a chip substrate and many different strategies to couple probe molecules to such substrates have been developed. We present here a critical assessment of typical biochip generation processes from a surface science point of view. While great progress has been made from a molecular biology point of view on the development of qualitative assays and impressive results have been obtained on the detection of rather low concentrations of DNA or proteins, quantitative chip-based assays are still comparably rare. We argue that lack of stable and reliable deposition chemistries has led in many cases to suboptimal quantitative reproducibility, impeded further progress in microarray development and prevented a more significant penetration of microarray technology into the diagnostic market. We suggest that surface-attached hydrogel networks might be a promising strategy to achieve highly sensitive and quantitatively reproducible microarrays.
Collapse
Affiliation(s)
- William J Brittain
- Department of Chemistry & Biochemistry , Texas State University , 601 University Drive , San Marcos , Texas 78666 , United States
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| | - Thomas Brandsetter
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| | - Oswald Prucker
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| |
Collapse
|
8
|
Development of a portable and disposable NS1 based electrochemical immunosensor for early diagnosis of dengue virus. Anal Chim Acta 2018; 1026:1-7. [PMID: 29852984 DOI: 10.1016/j.aca.2018.04.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/13/2023]
Abstract
The present study represents fabrication of nonstructural antibody (NS1) based immunosensor coupled with bovine serum albumin (BSA) modified screen printed carbon electrodes (SPCE) as transducing substrate for the early diagnosis of dengue virus. The anti-NS1 monoclonal antibody was immobilized on electro grafted BSA surface of working electrode. The electrons transfer resistance before and after NS1 attachment was monitored as a function of its concentration to perform the qualitative and quantitative analysis. The as prepared impedimetric immunosensor successfully detected the dengue virus protein with enhanced limit of detection (0.3 ng/mL) and linear range (1-200 ng/mL). The selectivity of the designed device was further elaborated with several interfering analytes and was finally demonstrated with human serum samples. The extravagant selectivity, sensitivity and easier fabrication protocol corroborate the potential applications of such immunosensor for practical diagnosis of dengue virus.
Collapse
|
9
|
Advantages, Disadvantages and Modifications of Conventional ELISA. SPRINGERBRIEFS IN APPLIED SCIENCES AND TECHNOLOGY 2018. [DOI: 10.1007/978-981-10-6766-2_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Polyethylene imine/graphene oxide layer-by-layer surface functionalization for significantly improved limit of detection and binding kinetics of immunoassays on acrylate surfaces. Colloids Surf B Biointerfaces 2017; 158:167-174. [PMID: 28689099 DOI: 10.1016/j.colsurfb.2017.06.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/07/2017] [Accepted: 06/25/2017] [Indexed: 11/21/2022]
Abstract
Antibody immobilization on polymeric substrates is a key manufacturing step for microfluidic devices that implement sample-to-answer automation of immunoassays. In this work, a simple and versatile method to bio-functionalize poly(methylmethacrylate) (PMMA), a common material of such "Lab-on-a-Chip" systems, is proposed; using the Layer-by-Layer (LbL) technique, we assemble nanostructured thin films of poly(ethylene imine) (PEI) and graphene oxide (GO). The wettability of PMMA surfaces was significantly augmented by the surface treatment with (PEI/GO)5 film, with an 81% reduction of the contact angle, while the surface roughness increased by 600%, thus clearly enhancing wettability and antibody binding capacity. When applied to enzyme-linked immunosorbent assays (ELISAs), the limit of detection of PMMA surface was notably improved from 340pgmL-1 on commercial grade polystyrene (PS) and 230pgmL-1 on plain PMMA surfaces to 130pgmL-1 on (PEI/GO)5 treated PMMA. Furthermore, the accelerated antibody adsorption kinetics on the LbL films of GO allowed to substantially shorten incubation times, e.g. for anti-rat IgG adsorption from 2h down to 15min on conventional and treated surfaces, respectively.
Collapse
|
11
|
Kolesnikova TA, Kiragosyan G, Le THN, Springer S, Winterhalter M. Protein A Functionalized Polyelectrolyte Microcapsules as a Universal Platform for Enhanced Targeting of Cell Surface Receptors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11506-11517. [PMID: 28290659 DOI: 10.1021/acsami.7b01313] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Targeted delivery systems recognizing specific receptors are a key element in personalized medicine. Such systems allow the delivery of therapeutics to desired sites of the body, increasing their local concentration and thus reducing the side effects. In this study, we fabricate chemically cross-linked (PAH/PAA)2 microcapsules coated with specific cell-targeting antibodies in random (via direct covalent coupling to the surface) or optimized (via supporting layer of protein A) orientation. We use these antibody-functionalized capsules to target major histocompatibility complex (MHC) class I receptors in living cells and quantify the efficiency of targeting by flow cytometry. We show for the first time the selective binding of polyelectrolyte microcapsules to MHC class I receptors, and confirm that targeting is allotype-specific. Remarkably, protein A assisted immobilization of antibodies enhances targeting efficiency by 40-50% over capsules with randomly attached antibodies. Moreover, biofunctionalized capsules reveal low levels of cytotoxicity and nonspecific binding, excluding the need of additional modification with poly(ethylene glycol). Thus, protein A coated (PAH/PAA)2 microcapsules represent a unique example of universal targeting tools providing high potential for selective binding to a broad range of cell surface receptors.
Collapse
Affiliation(s)
| | - Gayane Kiragosyan
- Jacobs University Bremen gGmbH , Campus Ring 1, 28759 Bremen, Germany
| | - Trang H N Le
- Jacobs University Bremen gGmbH , Campus Ring 1, 28759 Bremen, Germany
| | | | | |
Collapse
|
12
|
Virgen-Ortíz JJ, dos Santos JCS, Berenguer-Murcia Á, Barbosa O, Rodrigues RC, Fernandez-Lafuente R. Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. J Mater Chem B 2017; 5:7461-7490. [DOI: 10.1039/c7tb01639e] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the possible roles of polyethylenimine (PEI) in the design of improved immobilized biocatalysts from diverse perspectives.
Collapse
Affiliation(s)
- Jose J. Virgen-Ortíz
- CONACYT-Centro de Investigación en Alimentación y Desarrollo
- A.C. (CIAD)-Consorcio CIDAM
- 58341 Morelia
- Mexico
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Acarape
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Campus de San Vicente del Raspeig
- Ap. 99-03080 Alicante
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Av. Bento Gonçalves
- Porto Alegre
| | | |
Collapse
|
13
|
Fc-specific biotinylation of antibody using an engineered photoactivatable Z–Biotin and its biosensing application. Anal Chim Acta 2017; 949:76-82. [DOI: 10.1016/j.aca.2016.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/19/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023]
|
14
|
Grimaldi IA, Testa G, Persichetti G, Loffredo F, Villani F, Bernini R. Plasma functionalization procedure for antibody immobilization for SU-8 based sensor. Biosens Bioelectron 2016; 86:827-833. [PMID: 27486063 DOI: 10.1016/j.bios.2016.07.090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 11/25/2022]
Abstract
In this paper, we report the study on a new protocol for the immobilization process of antigen/antibody assay on SU-8 layers by oxygen plasma treatment. Plasma treatments, at different plasma powers and for different duration times, are performed and their effects on immobilization efficiency are studied. The chemical properties and the surface morphology of SU-8 before and after the functionalization and immobilization of (IgG) are then verified by Raman spectroscopy and atomic force microscopy (AFM). An increase of the surface roughness of SU-8 layers is observed after the oxygen plasma treatment and an intensity variation of functional groups is also evidenced. To demonstrate the validity of the process the distribution of IgG immobilized on SU-8 surfaces is detected by fluorescence microscopy measurement after incubation with fluorescein isothiocyanate (FITC)-tagged anti-human IgG. An increase of the amount of the adsorbed protein of about 20% and a good repeatability on antigen/antibody distribution on the surface are detected for IgG on plasma treated substrates. Finally, label free measurements are performed by SU-8 optical ring resonators reaching detection limits of 0.86ngcm(-2). The proposed approach offers a smart protocol for IgG immobilization on SU-8 substrate that can be easily extended to different antigen/antibody assay and polymeric materials for the realization of high performance immunosensors.
Collapse
Affiliation(s)
- Immacolata Angelica Grimaldi
- Institute for Electromagnetic Monitoring of the Environment (IREA), National Research Council (CNR), Naples, Italy.
| | - Genni Testa
- Institute for Electromagnetic Monitoring of the Environment (IREA), National Research Council (CNR), Naples, Italy
| | - Gianluca Persichetti
- Institute for Electromagnetic Monitoring of the Environment (IREA), National Research Council (CNR), Naples, Italy
| | - Fausta Loffredo
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Center, P.le Enrico Fermi 1, Portici, Naples, 80055 Italy
| | - Fulvia Villani
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Center, P.le Enrico Fermi 1, Portici, Naples, 80055 Italy
| | - Romeo Bernini
- Institute for Electromagnetic Monitoring of the Environment (IREA), National Research Council (CNR), Naples, Italy
| |
Collapse
|
15
|
Ikonomova SP, He Z, Karlsson AJ. A simple and robust approach to immobilization of antibody fragments. J Immunol Methods 2016; 435:7-16. [PMID: 27142477 DOI: 10.1016/j.jim.2016.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 04/06/2016] [Accepted: 04/29/2016] [Indexed: 11/18/2022]
Abstract
Antibody fragments, such as the single-chain variable fragment (scFv), have much potential in research and diagnostics because of their antigen-binding ability similar to a full-sized antibody and their ease of production in microorganisms. Some applications of antibody fragments require immobilization on a surface, and we have established a simple immobilization method that is based on the biotin-streptavidin interaction and does not require a separate purification step. We genetically fused two biotinylation tags-the biotin carboxyl carrier protein (BCCP) or the AviTag minimal sequence-to six different scFvs (scFv13R4, scFvD10, scFv26-10, scFv3, scFv5, and scFv12) for site-specific biotinylation in vivo by endogenous biotin ligases produced by Escherichia coli. The biotinylated scFvs were immobilized onto streptavidin-coated plates directly from cell lysates, and immobilization was detected through enzyme-linked immunosorbent assays. All scFvs fusions were successfully immobilized, and scFvs biotinylated via the BCCP tag tended to immobilize better than those biotinylated via the AviTag, even when biotinylation efficiency was improved with the biotin ligase BirA. The ability of immobilized scFvs to bind antigens was confirmed using scFv13R4 and scFvD10 with their respective targets β-galactosidase and bacteriophage lambda head protein D (gpD). The immobilized scFv13R4 bound to β-galactosidase at the same level for both biotinylation tags when the surface was saturated with the scFv, and immobilized scFvs retained their functionality for at least 100days after immobilization. The simplicity and robustness of our method make it a promising approach for future applications that require antibody fragment immobilization.
Collapse
Affiliation(s)
- Svetlana P Ikonomova
- Department of Chemical and Biomolecular Engineering, University of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College Park, MD 20742, USA
| | - Ziming He
- Department of Chemical and Biomolecular Engineering, University of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College Park, MD 20742, USA
| | - Amy J Karlsson
- Department of Chemical and Biomolecular Engineering, University of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College Park, MD 20742, USA.
| |
Collapse
|
16
|
Mahmoudifard M, Soudi S, Soleimani M, Hosseinzadeh S, Esmaeili E, Vossoughi M. Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:586-94. [PMID: 26478348 DOI: 10.1016/j.msec.2015.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/26/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
In this paper we introduce novel strategy for antibody immobilization using high surface area electrospun nanofibrous membrane based on ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling chemistry. To present the high performance of proposed biosensors, anti-staphylococcus enterotoxin B (anti-SEB) was used as a model to demonstrate the utility of our proposed system. Polymer solution of polyethersolfone was used to fabricate fine nanofibrous membrane. Moreover, industrial polyvinylidene fluoride membrane and conventional microtiter plate were also used to compare the efficiency of antibody immobilization. Scanning electron microscopy images were taken to study the morphology of the membranes. The surface activation of nanofibrous membrane was done with the help of O2 plasma. PES nanofibrous membrane with carboxyl functional groups for covalent attachment of antibodies were treated by EDC/NHS coupling agent. The quantity of antibody immobilization was measured by enzyme-linked immuno sorbent assay (ELISA) method. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopy was performed to confirm the covalent immobilization of antibody on membrane. Atomic force microscopy, scanning electron microscopy and invert fluorescence microscopy were used to analyze the antibody distribution pattern on solid surfaces. Results show that oxygen plasma treatment effectively increased the amount of antibody immobilization through EDC/NHS coupling chemistry. It was found that the use of nanofibrous membrane causes the improved detection signal of ELISA based biosensors in comparison to the standard assay carried out in the 96-well microtiter plate. This method has the potential to improve the ELISA-based biosensor and we believe that this technique can be used in various biosensing methods.
Collapse
Affiliation(s)
- Matin Mahmoudifard
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Sara Soudi
- Stem Cell Biology Department, Stem Cell Technology Research Center, Tehran, Iran; Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Simzar Hosseinzadeh
- Nanotechnology and Tissue Engineering Department, Stem Cell Technology Research Center, Tehran, Iran; School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Esmaeili
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran; Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Manouchehr Vossoughi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran; Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
17
|
Sun Y, Du H, Feng C, Lan Y. Oriented immobilization of antibody through carbodiimide reaction and controlling electric field. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2912-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
A highly sensitive SPR biosensor based on a graphene oxide sheet modified with gold bipyramids, and its application to an immunoassay for rabbit IgG. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1497-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Yang HM, Bao RM, Cheng YZ, Tang JB. Site-specific covalent attachment of an engineered Z-domain onto a solid matrix: an efficient platform for 3D IgG immobilization. Anal Chim Acta 2015; 872:1-6. [PMID: 25892064 DOI: 10.1016/j.aca.2015.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 12/15/2022]
Abstract
Immobilized antibodies with oriented and homogeneous patterns are crucial to solid-phase molecular recognition assay. Antibody binding protein-based immobilization can effectively present the desired antibodies. However, steadily installing the stromatoid protein with site-specific attachment manner onto a matrix surface remains to be elucidated. In this study, we present an optimal protocol to tightly attach an immunoglobulin G (IgG)-binding protein (Z-domain) through covalent incorporation of Cys-tag and maleimide group onto polystyrene surface to guarantee site-specific, oriented, and irreversible attachment, resulting in a highly efficient platform for three-dimensional IgG immobilization. The actual IgG-binding characteristic of immobilized Z-Cys was investigated by employing affinity chromatography and size exclusion chromatography. And the efficacy and potential of this platform was demonstrated by applying it to the analysis of interaction between rabbit anti-HRP IgG and its binding partner HRP. The proposed approach may be an attractive strategy to construct high performance antibody arrays and biosensors given that the antibody is compatible with the Z-domain.
Collapse
Affiliation(s)
- Hong-Ming Yang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Ru-Meng Bao
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Yuan-Zheng Cheng
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Jin-Bao Tang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong Province, China.
| |
Collapse
|
20
|
Kim D, Herr AE. Protein immobilization techniques for microfluidic assays. BIOMICROFLUIDICS 2013; 7:41501. [PMID: 24003344 PMCID: PMC3747845 DOI: 10.1063/1.4816934] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
Microfluidic systems have shown unequivocal performance improvements over conventional bench-top assays across a range of performance metrics. For example, specific advances have been made in reagent consumption, throughput, integration of multiple assay steps, assay automation, and multiplexing capability. For heterogeneous systems, controlled immobilization of reactants is essential for reliable, sensitive detection of analytes. In most cases, protein immobilization densities are maximized, while native activity and conformation are maintained. Immobilization methods and chemistries vary significantly depending on immobilization surface, protein properties, and specific assay goals. In this review, we present trade-offs considerations for common immobilization surface materials. We overview immobilization methods and chemistries, and discuss studies exemplar of key approaches-here with a specific emphasis on immunoassays and enzymatic reactors. Recent "smart immobilization" methods including the use of light, electrochemical, thermal, and chemical stimuli to attach and detach proteins on demand with precise spatial control are highlighted. Spatially encoded protein immobilization using DNA hybridization for multiplexed assays and reversible protein immobilization surfaces for repeatable assay are introduced as immobilization methods. We also describe multifunctional surface coatings that can perform tasks that were, until recently, relegated to multiple functional coatings. We consider the microfluidics literature from 1997 to present and close with a perspective on future approaches to protein immobilization.
Collapse
Affiliation(s)
- Dohyun Kim
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do 449-728, South Korea
| | | |
Collapse
|
21
|
Feyssa B, Liedert C, Kivimaki L, Johansson LS, Jantunen H, Hakalahti L. Patterned immobilization of antibodies within roll-to-roll hot embossed polymeric microfluidic channels. PLoS One 2013; 8:e68918. [PMID: 23874811 PMCID: PMC3715544 DOI: 10.1371/journal.pone.0068918] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 06/04/2013] [Indexed: 11/29/2022] Open
Abstract
This paper describes a method for the patterned immobilization of capture antibodies into a microfluidic platform fabricated by roll-to-roll (R2R) hot embossing on poly (methyl methacrylate) (PMMA). Covalent attachment of antibodies was achieved by two sequential inkjet printing steps. First, a polyethyleneimine (PEI) layer was deposited onto oxygen plasma activated PMMA foil and further cross-linked with glutaraldehyde (GA) to provide an amine-reactive aldehyde surface (PEI-GA). This step was followed by a second deposition of antibody by overprinting on the PEI-GA patterned PMMA foil. The PEI polymer ink was first formulated to ensure stable drop formation in inkjet printing and the printed films were characterized using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Anti-CRP antibody was patterned on PMMA foil by the developed method and bonded permanently with R2R hot embossed PMMA microchannels by solvent bonding lamination. The functionality of the immobilized antibody inside the microfluidic channel was evaluated by fluorescence-based sandwich immunoassay for detection of C-reactive protein (CRP). The antibody-antigen assay exhibited a good level of linearity over the range of 10 ng/ml to 500 ng/ml (R(2) = 0.991) with a calculated detection limit of 5.2 ng/ml. The developed patterning method is straightforward, rapid and provides a versatile approach for creating multiple protein patterns in a single microfluidic channel for multiplexed immunoassays.
Collapse
|
22
|
Tang JB, Sun XF, Yang HM, Zhang BG, Li ZJ, Lin ZJ, Gao ZQ. Well-oriented ZZ-PS-tag with high Fc-binding onto polystyrene surface for controlled immobilization of capture antibodies. Anal Chim Acta 2013; 776:74-78. [PMID: 23601284 DOI: 10.1016/j.aca.2013.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/01/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
Abstract
The site specificity and bioactivity retention of antibodies immobilized on a solid substrate are crucial requirements for solid phase immunoassays. A fusion protein between an immunoglobulin G (IgG)-binding protein (ZZ protein) and a polystyrene-binding peptide (PS-tag) was constructed, and then used to develop a simple method for the oriented immobilization of the ZZ protein onto a PS support by the specific attachment of the PS-tag onto a hydrophilic PS. The orientation of intact IgG was achieved via the interaction of the ZZ protein and the constant fragment (Fc), thereby displayed the Fab fragment for binding antigen. The interaction between rabbit IgG anti-horseradish peroxidase (anti-HRP) and its binding partner HRP was analyzed. Results showed that the oriented ZZ-PS-tag yielded an IgG-binding activity that is fivefold higher than that produced by the passive immobilization of the ZZ protein. The advantage of the proposed immunoassay strategy was demonstrated through an enzyme-linked immunosorbent assay, in which monoclonal mouse anti-goat IgG and HRP-conjugated rabbit F(ab')2 anti-goat IgG were used to detect goat IgG. The ZZ-PS-tag presented a tenfold higher sensitivity and a wider linear range than did the passively immobilized ZZ protein. The proposed approach may be an attractive strategy for a broad range of applications involving the oriented immobilization of intact IgGs onto PS supports, in which only one type of phi-PS (ZZ-PS-tag) surface is used.
Collapse
Affiliation(s)
- Jin-Bao Tang
- School of Pharmacy & Biology, Weifang Medical University, Weifang 261053, PR China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Immobilization of unraveled immunoglobulin G using well-oriented ZZ–His protein on functionalized microtiter plate for sensitive immunoassay. Anal Biochem 2013; 432:134-8. [DOI: 10.1016/j.ab.2012.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/16/2012] [Accepted: 09/20/2012] [Indexed: 01/25/2023]
|
24
|
Darain F, Wahab MA, Tjin SC. Surface Activation of Poly(Methyl methacrylate) by Plasma Treatment: Stable Antibody Immobilization for Microfluidic Enzyme-Linked Immunosorbent Assay. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.698673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
A label-free immunosensor based on recordable compact disk chip for early diagnostic of the dengue virus infection. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Liu Y, Lu Y, Liu Z. Restricted access boronate affinity porous monolith as a protein A mimetic for the specific capture of immunoglobulin G. Chem Sci 2012. [DOI: 10.1039/c2sc20125a] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
27
|
Lin SIE. Parametric analysis of a novel semi-circular microfluidic CD-ELISA valve. J Biol Eng 2011; 5:15. [PMID: 22059903 PMCID: PMC3306004 DOI: 10.1186/1754-1611-5-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/07/2011] [Indexed: 11/27/2022] Open
Abstract
CD-ELISA uses the microfluidic ranking method and centrifugal force to control the testing solution as it flows into the reaction region. The most challenging part of CD-ELISA is controlling the flow process for different biological testing solutions, i.e. the controlling sequence for the microfluidic channel valves. The microfluidic channel valve is therefore the most important fluid channel structure for CD-ELISA. In this study, we propose a valve design suitable for a wide range rotational speeds which can be applied for mass production (molding). Together with supporting experiments, simulation based on two-phase flow theory is used in this study, and the feasibility of this novel valve design is confirmed. Influencing design factors for the microfluidic channel valves in CD-ELISA are investigated, including various shapes of the arc, distance d, radius r, the location of the center of the circle, and the contact angle. From both the experimental results and the simulated results, it is evident that the narrowest channel width and the contact angle are the primary factors influencing valve burst frequency. These can be used as the main controlling factors during the design.
Collapse
Affiliation(s)
- Samuel I En Lin
- Department of Power Mechanical Engineering, National Formosa University, Taiwan.
| |
Collapse
|
28
|
Alhamdani MSS, Hoheisel JD. Antibody Microarrays in Proteome Profiling. MOLECULAR ANALYSIS AND GENOME DISCOVERY 2011:219-243. [DOI: 10.1002/9781119977438.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
Wang F, Gu Z, Cui Z, Liu L. Comparison of covalent immobilization of amylase on polystyrene pellets with pentaethylenehexamine and pentaethylene glycol spacers. BIORESOURCE TECHNOLOGY 2011; 102:9374-9379. [PMID: 21868216 DOI: 10.1016/j.biortech.2011.07.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/25/2011] [Accepted: 07/29/2011] [Indexed: 05/31/2023]
Abstract
α-Amylase from Aspergillus oryzae was covalently immobilized onto polystyrene pellets with pentaethylenehexamine (PS-PEHA-Ald) and pentaethylene glycol (PS-PG-Ald) carrying a terminal aldehyde group. Optimum immobilization occured at pH 8.0 and 25 °C, and at pH 7.0 and 35 °C for PS-PEHA-Ald and PS-PG-Ald, respectively. PS-PEHA-Ald immobilized enzyme retained approximately 75% of the initial activity over 45 days of storage, 70% of the initial activity after nine runs of recycling and displayed the better resistance to detrimental metal ions. PS-PG-Ald immobilized enzyme retained approximately 50% of the initial activity in 8h at 70 °C. The catalytic efficiencies of PS-PEHA-Ald immobilized and PS-PG-Ald immobilized amylase were 1.42 and 1.29 times higher than that of native enzyme. The activation energy of the reaction mediated by the amylase was reduced by 58.1% and 57.3% when PS-PEHA-Ald and PS-PG-Ald used as support respectively.
Collapse
Affiliation(s)
- Feng Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | | | | | | |
Collapse
|
30
|
Development of a high-performance immunolatex based on "soft landing" antibody immobilization mechanism. Colloids Surf B Biointerfaces 2011; 99:45-52. [PMID: 22005261 DOI: 10.1016/j.colsurfb.2011.09.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 11/21/2022]
Abstract
Rabbit anti-human ferritin (anti-hFT) polyclonal immunoglobulin G (IgG) and poly(ethylene glycol) (PEG) were sequentially co-immobilized onto polystyrene submicroparticles (sMPs) to construct sMP/anti-hFT/PEG (SAP) immunolatex. Chemical immobilization of anti-hFT was performed at different pH levels to evaluate variations in antigen recognition. Basic pH disfavored conjugation of anti-hFT to sMPs, but remarkably increased its antigen recognition in comparison to that at neutral pH. We investigated this intriguing phenomenon further by assessing the kinetics of antibody binding, including the time-dependency of immobilization, antigen recognition, and orientation of bound anti-hFT. Therefore, we attributed high antigen recognition to significant electrostatic repulsion between sMPs and anti-hFT at basic pH, which predominately prevented anti-hFT access to sMPs and concurrently promoted anti-hFT orientations suitable for antigen recognition. Subsequent PEG modification maintained such anti-hFT orientation, without which antigen-accessible orientations would have decreased with time. Thus, properly oriented antibody and immediate PEGylation after antibody immobilization contributed to the formation of a high-performance SAP immunolatex.
Collapse
|
31
|
Salim M, McArthur SL, Vaidyanathan S, Wright PC. Towards proteomics-on-chip: The role of the surface. ACTA ACUST UNITED AC 2011; 7:101-15. [DOI: 10.1039/c005236a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Vashist SK, Dixit CK, MacCraith BD, O'Kennedy R. Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay. Analyst 2011; 136:4431-6. [DOI: 10.1039/c1an15325k] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF. Biofabrication to build the biology–device interface. Biofabrication 2010; 2:022002. [DOI: 10.1088/1758-5082/2/2/022002] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Nagarajan S, Li Z, Marchi-Artzner V, Grasset F, Zhang Y. Imaging gap junctions with silica-coated upconversion nanoparticles. Med Biol Eng Comput 2010; 48:1033-41. [DOI: 10.1007/s11517-010-0618-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 04/05/2010] [Indexed: 12/25/2022]
|
35
|
Wen X, He H, Lee LJ. Specific antibody immobilization with biotin-poly(l-lysine)-g-poly(ethylene glycol) and protein A on microfluidic chips. J Immunol Methods 2009; 350:97-105. [DOI: 10.1016/j.jim.2009.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/09/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022]
|
36
|
Yin M, Yuan Y, Liu C, Wang J. Combinatorial coating of adhesive polypeptide and anti-CD34 antibody for improved endothelial cell adhesion and proliferation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1513-1523. [PMID: 19247584 DOI: 10.1007/s10856-009-3715-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 02/09/2009] [Indexed: 05/27/2023]
Abstract
Improved attachment, adhesion and proliferation of the surrounding mature endothelial cells (ECs) and circulating endothelial progenitor cells (EPCs) is of primary importance to realize the in situ rapid re-endothelialization of cardiovascular stents. To achieve this, a combinatorial coating of synthesized mussel adhesive polypeptide mimics as well as anti-CD34 antibody was constructed onto the devices through a novel adsorption method in this study. To immobilize the polypeptide and target antibody effectively, polycaprolactone (PCL) was first spin-coated onto the substrate as intermediate. The immobilization of polypeptide and antibody was confirmed by the changes of water contact angles and the attachment, growth of ECs and EPCs on the substrates, respectively. The results showed that after adhesive polypeptide or/and antibody immobilization, the hydrophilicity of coated PCL substrate (PCLS) was obviously improved. The amount of the immobilized antibody, determined by enzymelinked immunoassay (ELISA) method, was enhanced with the increase of antibody concentrations in the range from 5 to 25 mug/ml. The coatings after BSA blocking prevented the unspecific protein adsorption as monitored by fluorescent microscopy. The results of in vitro cell culture showed that compared with the PCLS, polypeptide/anti-CD34 antibody coating could effectively enhance the attachment, growth and adhesion of ECs and EPCs, in particular EPCs. A platelet adhesion experiment revealed that the blood compatibility of the PCLS after polypeptide/anti-CD34 antibody coating was also obviously improved. The results showed that the surface modification with adhesive polypeptide and anti-CD34 antibody will be a promising coating technique for the surface modification of the intravascular prostheses for rapid re-endothelialization.
Collapse
Affiliation(s)
- Min Yin
- State Key Laboratory of Bioreactor Engineering, and Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
37
|
He H, Yuan Y, Wang W, Chiou NR, Epstein AJ, Lee LJ. Design and testing of a microfluidic biochip for cytokine enzyme-linked immunosorbent assay. BIOMICROFLUIDICS 2009; 3:22401. [PMID: 19693336 PMCID: PMC2717576 DOI: 10.1063/1.3116665] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 03/16/2009] [Indexed: 05/08/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) has been widely used in medical diagnostics, environmental analyses, and biochemical studies. To reduce assay time and lower consumption of reagents in cytokine ELISA analysis, a polymeric microfluidic biochip has been designed and fabricated via several new techniques: Polyaniline-based surface modification for superhydrophobic capillary valving and oxygen plasma-poly(ethyleneimine)-tyrosinase-protein A modification for high sensitivity protein detection. The proper flow sequencing was achieved using the superhydrophobic capillary valves. The burst frequency of each valve was experimentally determined and compared with two capillary force equations and the fluent finite element simulation. This fully automated microfluidic biochip with an analyzer is able to provide high fluorescence signal of ELISA with a wider linear detection range and a much shorter assay time than 96-well microtiter plates. It is applicable to a variety of nonclinic research and clinically relevant disease conditions. The modification technologies in this study can be implemented in other lab-on-a-chip systems, druggene delivery carriers, and other immunoassay biosensor applications.
Collapse
|