1
|
王 子, 许 少, 余 一, 陆 俊, 张 学. [Mass transfer of bilirubin and bovine serum albumin in hollow fiber membrane module of artificial liver]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:742-750. [PMID: 39218600 PMCID: PMC11366472 DOI: 10.7507/1001-5515.202311011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 07/14/2024] [Indexed: 09/04/2024]
Abstract
Understanding the mass transfer behaviors in hollow fiber membrane module of artificial liver is important for improving toxin removal efficiency. A three-dimensional numerical model was established to study the mass transfer of small molecule bilirubin and macromolecule bovine serum albumin (BSA) in the hollow fiber membrane module. Effects of tube-side flow rate, shell-side flow rate, and hollow fiber length on the mass transfer of bilirubin and BSA were discussed. The simulation results showed that the clearance of bilirubin was significantly affected by both convective and diffusive solute transport, while the clearance of macromolecule BSA was dominated by convective solute transport. The clearance rates of bilirubin and BSA increasd with the increase of tube-side flow rate and hollow fiber length. With the increase of shell-side flow rate, the clearance rate of bilirubin first rose rapidly, then slowly rose to an asymptotic value, while the clearance rate of BSA gradually decreased. The results can provide help for designing structures of hollow fiber membrane module and operation parameters of clinical treatment.
Collapse
Affiliation(s)
- 子恒 王
- 浙大宁波理工学院 机电与能源工程学院(浙江宁波 315100)School of Mechatronics and Energy Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China
- 浙江理工大学 机械工程学院(杭州 310018)School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - 少锋 许
- 浙大宁波理工学院 机电与能源工程学院(浙江宁波 315100)School of Mechatronics and Energy Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China
| | - 一帆 余
- 浙大宁波理工学院 机电与能源工程学院(浙江宁波 315100)School of Mechatronics and Energy Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China
| | - 俊杰 陆
- 浙大宁波理工学院 机电与能源工程学院(浙江宁波 315100)School of Mechatronics and Energy Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China
| | - 学昌 张
- 浙大宁波理工学院 机电与能源工程学院(浙江宁波 315100)School of Mechatronics and Energy Engineering, NingboTech University, Ningbo, Zhejiang 315100, P. R. China
| |
Collapse
|
2
|
Preclinical Experience of the Mayo Spheroid Reservoir Bioartificial Liver (SRBAL) in Management of Acute Liver Failure. LIVERS 2022. [DOI: 10.3390/livers2040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Spheroid Reservoir Bioartificial Liver (SRBAL) is an innovative treatment option for acute liver failure (ALF). This extracorporeal support device, which provides detoxification and other liver functions using high-density culture of porcine hepatocyte spheroids, has been reported in three randomized large animal studies. A meta-analysis of these three preclinical studies was performed to establish efficacy of SRBAL treatment in terms of survival benefit and neuroprotective effect. The studies included two hepatotoxic drug models of ALF (D-galactosamine, α-amanitin/lipopolysaccharide) or a liver resection model (85% hepatectomy) in pigs or monkeys. The SRBAL treatment was started in three different settings starting at 12 h, 24 h or 48 h after induction of ALF; comparisons were made with two similar control groups in each model. SRBAL therapy was associated with significant survival and neuroprotective benefits in all three animal models of ALF. The benefits of therapy were dose dependent with the most effective configuration of SRBAL being continuous treatment of 24 h duration and dose of 200 g of porcine hepatic spheroids. Future clinical testing of SRBAL in patients with ALF appears warranted.
Collapse
|
3
|
Golriz M, Ramouz A, Mehrabi A. Letter to the Editor: Surgical Method for Establishing Posthepatectomy Liver Failure. Hepatology 2021; 73:1621. [PMID: 32740957 DOI: 10.1002/hep.31482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Mohammad Golriz
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ali Ramouz
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Liu W, Zhang M, Xiao Y, Ye Z, Zhou Y, Lang M, Tan WS. Fabrication and in vitro evaluation of a packed-bed bioreactor based on galactosylated poly(ethylene terephthalate) microfibrous scaffolds. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Aldhahrani A. Suadian Acacia Gerrardii: Antidiabetic Effect in Rats Suffering from Diabetic Nephropathy and DNA Fingerprinting Using ISSR. Pak J Biol Sci 2020; 23:1162-1175. [PMID: 32981247 DOI: 10.3923/pjbs.2020.1162.1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE There is a widespread use of medicinal herbs with beneficial uses against different diseased conditions. This study was carried out to identify and study the biological effect of Acacia gerrardii leaf extract on lowering blood sugar in rats suffering from diabetic nephropathy. MATERIALS AND METHODS It studied the effects of leaf extract at concentrations ranging from 100-500 mg kg-1 b.wt. per day for 4 weeks. Serum glucose levels, total lipids profile and kidney functions were estimated. Plasma levels of sodium and potassium as well as total bilirubin levels were assessed and kidneys from different groups were histopathologically examined. RESULTS The results showed that leaves were rich in the major compounds of phenolic acids, including salicylic acid and flavonoids with reduction of total lipids, triglycerides and total cholesterol in diabetic rats with renal failure together with reduction in uric acid, creatinine and urea with reduced vacuolar degeneration of tubules and basement membrane thickening. Additionally, the phylogenetic analysis using ISSR primers detected a genetic divergence among different samples. The results showed that the rich antioxidant content of Acacia gerrardii improved lipid, serum antioxidant and kidney function profiles in diabetic rats. CONCLUSION Acacia gerrardii could be used as a safe source of antioxidants. Moreover, the ISSR assay proved its usefulness in detecting genetic variations among different Acacia gerrardii samples.
Collapse
|
6
|
Shen Y, Wang Y, Shi Y, Tian H, Zhu Q, Ding F. Development of liposome as a novel adsorbent for artificial liver support system in liver failure. J Liposome Res 2019; 30:246-254. [PMID: 31190595 DOI: 10.1080/08982104.2019.1630644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Artificial liver support systems (ALSS), represented by albumin dialysis, are designed to replace the liver detoxification function and to serve as supportive therapy until liver transplantation or liver regeneration. We introduce liposome, which is majorly formed by soybean lecithin as the adsorbent nanomaterial in dialysate for the removal of protein-bound and liver failure-related solutes. The binding rate was detected by ultrafiltration column. In vitro and in vivo dialysis was performed in a recirculation system. Unconjugated bilirubin (52.83-99.87%) and bile salts (50.54-94.75%) were bound by liposomes (5-80 g/L) in a dose-response relationship. The in vitro haemodialysis model showed that the concentration of unconjugated bilirubin (45.64 ± 0.90 μmol/L vs. 54.47 ± 3.48 μmol/L, p < 0.05) and bile salts (153.75 ± 7.72 μmol/L vs. 180.72 ± 7.95 μmol/L, p < 0.05) were significantly decreased in the liposome dialysis group than in the phosphate buffer saline group. The in vivo haemodialysis model showed that 40 g/L liposome-containing dialysate led to a significant higher reduction ratio in total bilirubin (6.56 ± 5.72% vs. -1.86 ± 5.99%, p < 0.05) and more total bile acids (7.63 ± 5.27 μmol vs. 2.13 ± 2.32 μmol, p < 0.05) extracted in the dialysate in comparison with the conventional dialysate. In conclusion, the liposome-added dialysate proved to impose good extraction effects on the unconjugated bilirubin and bile salts. These findings indicate that conventional dialysate supported by this nanomaterial can markedly improve the removal of protein-bound and liver failure-related solutes, thus suggesting a novel and promising liver dialysis system.
Collapse
Affiliation(s)
- Yue Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yifeng Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yuanyuan Shi
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Huajun Tian
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Qiuyu Zhu
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Feng Ding
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
7
|
Chen HS, Joo DJ, Shaheen M, Li Y, Wang Y, Yang J, Nicolas CT, Predmore K, Amiot B, Michalak G, Mounajjed T, Fidler J, Kremers WK, Nyberg SL. Randomized Trial of Spheroid Reservoir Bioartificial Liver in Porcine Model of Posthepatectomy Liver Failure. Hepatology 2019; 69:329-342. [PMID: 30022502 PMCID: PMC6527364 DOI: 10.1002/hep.30184] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 07/15/2018] [Indexed: 02/05/2023]
Abstract
Acute liver failure (ALF) is a catastrophic condition that can occur after major liver resection. The aim of this study was to determine the effects of the spheroid reservoir bio-artificial liver (SRBAL) on survival, serum chemistry, and liver regeneration in posthepatectomy ALF pigs. Wild-type large white swine (20 kg-30 kg) underwent intracranial pressure (ICP) probe placement followed by 85% hepatectomy. Computed tomography (CT) volumetrics were performed to measure the extent of resection, and at 48 hours following hepatectomy to assess regeneration of the remnant liver. Animals were randomized into three groups based on treatment delivered 24-48 hours after hepatectomy: Group1-standard medical therapy (SMT, n = 6); Group2-SMT plus bio-artificial liver treatment using no hepatocytes (0 g, n = 6); and Group3-SMT plus SRBAL treatment using 200 g of primary porcine hepatocyte spheroids (200 g, n = 6). The primary endpoint was survival to 90 hours following hepatectomy. Death equivalent was defined as unresponsive grade 4 hepatic encephalopathy or ICP greater than 20 mmHg with clinical evidence of brain herniation. All animals in both (SMT and 0 g) control groups met the death equivalent before 51 hours following hepatectomy. Five of 6 animals in the 200-g group survived to 90 hours (P < 0.01). The mean ammonia, ICP, and international normalized ratio values were significantly lower in the 200-g group. CT volumetrics demonstrated increased volume regeneration at 48 hours following hepatectomy in the 200-g group compared with the SMT (P < 0.01) and 0-g (P < 0.01) groups. Ki-67 staining showed increased positive staining at 48 hours following hepatectomy (P < 0.01). Conclusion: The SRBAL improved survival, reduced ammonia, and accelerated liver regeneration in posthepatectomy ALF. Improved survival was associated with a neuroprotective benefit of SRBAL therapy. These favorable results warrant further clinical testing of the SRBAL.
Collapse
Affiliation(s)
- Harvey S. Chen
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
| | - Dong Jin Joo
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN,Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Mohammed Shaheen
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
| | - Yi Li
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN,West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yujia Wang
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN,West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Jian Yang
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN,West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Clara T. Nicolas
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
| | - Kelly Predmore
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
| | - Bruce Amiot
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
| | | | - Taofic Mounajjed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Jeff Fidler
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - Walter K. Kremers
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN,Department of Biostatistics, Mayo Clinic, Rochester, MN
| | - Scott L. Nyberg
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN
| |
Collapse
|
8
|
Evaluation of the mass transfer rate using computer simulation in a three-dimensional interwoven hollow fiber-type bioartificial liver. Biotechnol Lett 2018; 40:1567-1578. [DOI: 10.1007/s10529-018-2609-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
|
9
|
Glorioso JM, Mao SA, Rodysill B, Mounajjed T, Kremers WK, Elgilani F, Hickey RD, Haugaa H, Rose CF, Amiot B, Nyberg SL. Pivotal preclinical trial of the spheroid reservoir bioartificial liver. J Hepatol 2015; 63:388-98. [PMID: 25817557 PMCID: PMC4508211 DOI: 10.1016/j.jhep.2015.03.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/13/2015] [Accepted: 03/19/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The neuroprotective effect of the spheroid reservoir bioartificial liver (SRBAL) was evaluated in a porcine model of drug-overdose acute liver failure (ALF). METHODS Healthy pigs were randomized into three groups (standard therapy (ST) alone, ST+No-cell device, ST+SRBAL device) before placement of an implantable intracranial pressure (ICP) monitor and a tunneled central venous catheter. One week later, pigs received bolus infusion of the hepatotoxin D-galactosamine and were followed for up to 90h. RESULTS At 48h, all animals had developed encephalopathy and biochemical changes confirming ALF; extracorporeal treatment was initiated and pigs were observed up to 90h after drug infusion. Pigs treated with the SRBAL, loaded with porcine hepatocyte spheroids, had improved survival (83%, n=6) compared to ST alone (0%, n=6, p=0.003) and No-cell device therapy (17%, n=6, p=0.02). Ammonia detoxification, peak levels of serum ammonia and peak ICP, and pig survival were influenced by hepatocyte cell dose, membrane pore size and duration of SRBAL treatment. Hepatocyte spheroids remained highly functional with no decline in mean oxygen consumption from initiation to completion of treatment. CONCLUSIONS The SRBAL improved survival in an allogeneic model of drug-overdose ALF. Survival correlated with ammonia detoxification and ICP lowering indicating that hepatocyte spheroids prevented the cerebral manifestations of ALF (brain swelling, herniation, death). Further investigation of SRBAL therapy in a clinical setting is warranted.
Collapse
Affiliation(s)
| | - S. A. Mao
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - B. Rodysill
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - T. Mounajjed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - W. K. Kremers
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - F. Elgilani
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - R. D. Hickey
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - H. Haugaa
- Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo
| | - C. F. Rose
- Hepato-Neuro Laboratory, CRCHUM, Universite de Montreal, Quebec, Canada
| | - B. Amiot
- Brami Biomedical, Inc. Minneapolis, MN, USA
| | - S. L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN, USA,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA,Corresponding address: Scott L. Nyberg, MD, PhD, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, 200 First Street, Rochester, MN 55905
| |
Collapse
|
10
|
Iwamuro M, Shiraha H, Nakaji S, Furutani M, Kobayashi N, Takaki A, Yamamoto K. A preliminary study for constructing a bioartificial liver device with induced pluripotent stem cell-derived hepatocytes. Biomed Eng Online 2012; 11:93. [PMID: 23217363 PMCID: PMC3549893 DOI: 10.1186/1475-925x-11-93] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/04/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Bioartificial liver systems, designed to support patients with liver failure, are composed of bioreactors and functional hepatocytes. Immunological rejection of the embedded hepatocytes by the host immune system is a serious concern that crucially degrades the performance of the device. Induced pluripotent stem (iPS) cells are considered a desirable source for bioartificial liver systems, because patient-derived iPS cells are free from immunological rejection. The purpose of this paper was to test the feasibility of a bioartificial liver system with iPS cell-derived hepatocyte-like cells. METHODS Mouse iPS cells were differentiated into hepatocyte-like cells by a multi-step differentiation protocol via embryoid bodies and definitive endoderm. Differentiation of iPS cells was evaluated by morphology, PCR assay, and functional assays. iPS cell-derived hepatocyte-like cells were cultured in a bioreactor module with a pore size of 0.2 μm for 7 days. The amount of albumin secreted into the circulating medium was analyzed by ELISA. Additionally, after a 7-day culture in a bioreactor module, cells were observed by a scanning electron microscope. RESULTS At the final stage of the differentiation program, iPS cells changed their morphology to a polygonal shape with two nucleoli and enriched cytoplasmic granules. Transmission electron microscope analysis revealed their polygonal shape, glycogen deposition in the cytoplasm, microvilli on their surfaces, and a duct-like arrangement. PCR analysis showed increased expression of albumin mRNA over the course of the differentiation program. Albumin and urea production was also observed. iPS-Heps culture in bioreactor modules showed the accumulation of albumin in the medium for up to 7 days. Scanning electron microscopy revealed the attachment of cell clusters to the hollow fibers of the module. These results indicated that iPS cells were differentiated into hepatocyte-like cells after culture for 7 days in a bioreactor module with a pore size of 0.2 μm. CONCLUSION We consider the combination of a bioreactor module with a 0.2-μm pore membrane and embedded hepatocytes differentiated from iPS cells to be a promising option for bioartificial liver systems. This paper provides the basic concept and preliminary data for an iPS cell-oriented bioartificial liver system.PACS code: 87. Biological and medical physics, 87.85.-d Biomedical engineering, 87.85.Lf Tissue engineering, 87.85.Tu Modeling biomedical systems.
Collapse
Affiliation(s)
- Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, Okayama, 700-8558, Japan
| | - Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, Okayama, 700-8558, Japan
| | - Shuhei Nakaji
- Department of Biomedical Engineering, Okayama University of Science, Okayama, 700-0005, Japan
| | - Masumi Furutani
- Central Research Laboratory, Okayama University Medical School, Okayama, Okayama, 700-8558, Japan
| | - Naoya Kobayashi
- Department of Surgery, Okayama Saidaiji Hospital, Okayama, Okayama, 704-8192, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, Okayama, 700-8558, Japan
| | - Kazuhide Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, Okayama, 700-8558, Japan
| |
Collapse
|
11
|
Zhang Y, Shi XL, Han B, Gu JY, Chu XH, Xiao JQ, Ren HZ, Tan JJ, Ding YT. Immunosafety evaluation of a multilayer flat-plate bioartificial liver. Am J Med Sci 2012; 343:429-434. [PMID: 22008783 DOI: 10.1097/maj.0b013e318232ae0a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION To study and evaluate the immunosafety of our newly developed multilayer flat-plate bioartificial liver (BAL) in treatment of canines with acute liver failure. METHODS Fresh porcine hepatocytes and bone marrow mesenchymal stem cells were cocultured in new BAL. Ten canine models with acute liver failure were set up through D-galactosamine administration; 24 hours after administration, the beagles were randomly allocated to a 6-hour treatment with the BAL. The beagles were divided into 2 groups by treatment times. Group 1 beagles (n = 5) received a single BAL treatment. Group 2 beagles (n = 5) received 3 BAL treatments. The hemodynamic, hematologic response and humoral immune responses to BAL therapy were studied before and after treatments. RESULTS All beagles remained hemodynamically and hematologically stable during BAL treatments. The levels of IgG and IgM were similar before and after treatment after a single treatment. In addition, the level of CH50 in group 1 slightly decreased after the initiation of BAL treatment, and then the level recovered to baseline quickly after treatments. Time-course changes of the levels of antibodies and CH50 after 3 treatments in group 2 were similar to group 1. Only trace levels of IgG were detected in BAL medium after treatments. CONCLUSION The multilayer flat-plate BAL showed a great immunosafety in the treatment of canines with acute liver failure and exhibited a good prospect of its use in clinic.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Hepatobiliary Surgery, the Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang Y, Shi XL, Han B, Gu JY, Chu XH, Xiao JQ, Ren HZ, Tan JJ, Ding YT. The influence of membrane molecular weight cutoff on a novel bioartificial liver. Artif Organs 2012; 36:86-93. [PMID: 21819437 DOI: 10.1111/j.1525-1594.2011.01287.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Given the xenogeneic immune reaction relevant to the molecular weight cutoff of the membrane of a bioartificial liver (BAL) system, we investigated the influence of membrane molecular weight cutoff in our BAL system in this study. Acute liver failure in beagles was induced by d-galactosamine administration. Eight beagles were divided into two groups by the membrane molecular weight cutoff of the plasma component separator. Group 1 beagles were treated with BAL containing 200 kDa retention rating membrane. Group 2 beagles were treated with BAL containing 1200 kDa retention rating membrane. Each group underwent two 6-h BAL treatments that were performed on day 1 and day 21. The hemodynamic and hematologic response, humoral immune responses, and cytotoxic immune response to BAL therapy were studied before and after treatments. All beagles remained hemodynamically and hematologically stable during BAL treatments. BAL treatment was associated with a significant decline in levels of complement; however, a longer time of level maintenance was observed in Group 2. Group 2 beagles experienced a significant increase in levels of IgG and IgM after two BAL treatments. Significant levels of canine proteins were detected in BAL medium from Group 2; only trace levels of canine proteins were detected in BAL medium from Group 1. The posttreatment viability of co-culture cells in Group 2 was lower compared with Group 1, and the viability of co-culture cells after treatments was associated with deposition of canine proteins on the cells. Xenogeneic immune response was influenced by membrane molecular weight cutoff in the BAL.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shi XL, Zhang Y, Han B, Gu JY, Chu XH, Xiao JQ, Ren HZ, Tan JJ, Ding YT. Effects of membrane molecular weight cutoff on performance of a novel bioartificial liver. Artif Organs 2011; 35:E40-E46. [PMID: 21371057 DOI: 10.1111/j.1525-1594.2011.01201.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immunoisolation using semipermeable membranes has been incorporated into bioartificial liver (BAL) devices to separate cellular components of the recipient's immune system from the cells within the BAL device. This study was designed to explore the influence of membrane molecular weight cutoff on performance of the multilayer radial-flow BAL using porcine hepatocytes cocultured with mesenchymal stem cells. In this study, healthy beagles underwent 6-h treatment with a BAL containing membrane with 200 kDa retention rating or 1200 kDa retention rating. Functional markers of BAL performance were monitored before and after treatment, as well as cytotoxic immune response to BAL therapy. The results showed that hepatocyte performance levels such as albumin secretion, urea synthesis, and viability were all significantly higher in 200 kDa retention rating group compared with the 1200 kDa retention rating group after treatment (P < 0.05). Significant levels of canine proteins were detected in BAL medium from the 1200 kDa retention rating group. Fluorescence microscopy further verified that heavy deposition of canine IgG, IgM, and complement (C3) on coculture cells was obtained after BAL treatment in the 1200 kDa retention rating group. However, only trace deposits of canine immunoproteins were observed on coculture cells obtained from BAL in the 200 kDa retention rating group. Small membrane molecular weight cutoff of the BAL could reduce the transfer of xenoreactive antibodies into the BAL medium and improve the performance of the BAL.
Collapse
Affiliation(s)
- Xiao-lei Shi
- Department of Hepatobiliary Surgery, The Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|