1
|
Heisser RH, Bawa M, Shah J, Bu A, Raman R. Soft Biological Actuators for Meter-Scale Homeostatic Biohybrid Robots. Chem Rev 2025; 125:3976-4007. [PMID: 40138615 DOI: 10.1021/acs.chemrev.4c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Skeletal muscle's elegant protein-based architecture powers motion throughout the animal kingdom, with its constituent actomyosin complexes driving intra- and extra-cellular motion. Classical motors and recently developed soft actuators cannot match the packing density and contractility of individual muscle fibers that scale to power the motion of ants and elephants alike. Accordingly, the interdisciplinary fields of robotics and tissue engineering have combined efforts to build living muscle actuators that can power a new class of robots to be more energy-efficient, dexterous, and safe than existing motor-powered and hydraulic paradigms. Doing so ethically and at scale─creating meter-scale tissue constructs from sustainable muscle progenitor cell lines─has inspired innovations in biomaterials and tissue culture methodology. We weave discussions of muscle cell biology, materials chemistry, tissue engineering, and biohybrid design to review the state of the art in soft actuator biofabrication. Looking forward, we outline a vision for meter-scale biohybrid robotic systems and tie discussions of recent progress to long-term research goals.
Collapse
Affiliation(s)
- Ronald H Heisser
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Maheera Bawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Jessica Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, Massachusetts 02142, United States of America
| | - Angel Bu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
2
|
Wu Z, Chen N, Takao D. The role of primary cilia in myoblast proliferation and cell cycle regulation during myogenesis. Cell Struct Funct 2025; 50:53-63. [PMID: 39805615 DOI: 10.1247/csf.24067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The process of mammalian myogenesis is fundamental to understanding muscle development and holds broad relevance across multiple fields, from developmental biology to regenerative medicine. This review highlights two key aspects: myoblast proliferation and the role of cilia in this process. Myoblasts, as muscle precursor cells, must undergo tightly regulated cycles of proliferation and differentiation to ensure proper muscle growth and function. Recent research has uncovered an essential role for primary cilia, hair-like sensory organelles on the cell surface, in modulating signaling pathways crucial to myogenesis. Cilium-mediated signaling appears to regulate various stages of myogenesis, including the control of myoblast differentiation. Furthermore, primary cilia undergo multiple cycles of formation and disassembly during myogenesis, presumably enabling detailed, context-dependent regulation of their functions. In particular, the regulation of myoblast proliferation through cell cycle control by primary cilia is an important topic that requires further investigation. By examining the interactions between primary cilia and myoblasts, this review aims to provide new insights into the molecular and cellular mechanisms driving muscle development, with potential applications for understanding muscle-related diseases and advancing therapeutic strategies. Additionally, advancements in imaging and image analysis technologies have become indispensable for studying these processes at the cellular level. This review also addresses these technological advancements and current challenges.Key words: myogenesis, myoblast, proliferation, cilia, imaging.
Collapse
Affiliation(s)
- Zhichao Wu
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University
| | - Nuo Chen
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University
| | - Daisuke Takao
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University
- Hubei Hongshan Labolatory
| |
Collapse
|
3
|
Redden JT, Kothe S, Cohen DJ, Schwartz Z, McClure MJ. Trophic Factors in Muscle-Nerve Cross-Talk Signaling Augment Muscle Fiber and Motor Endplate Development. J Cell Physiol 2025; 240:e70013. [PMID: 39987522 DOI: 10.1002/jcp.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/20/2024] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
Synaptogenesis requires complex coordination between the terminating motor neuron and the developing myofiber endplate. Cross-talk research has focused on in vivo models or singular treatments with known signaling molecules identified from these animal studies. However, in vivo models are inefficient at measuring dynamic signaling changes due to assay resolution and cost. Further, despite advances in culture methods relying on microfluidic platforms, much remains unknown about the dynamic cross-talk between these two key cell types. As such, there is an unmet investigation into simple and reproducible coculture studies. In this study, we characterize both myoblast (C2C12) and motor neuron (NSC-34) changes that occur in either a conditioned media model, a transwell coculture, and a 2D migration coculture. We successfully demonstrate repeatable changes in synaptogenesis with ~38% increase in Chrng protein levels (p < 0.05) in each model, increased myotube alignment in cocultured myoblasts measured with FFT analysis, and show motor neurons are preferentially chemo-attracted to myotubes without the use of neurite-path constraining microfluidics. Lastly, we identified a potential new signaling protein responsible for motor endplate development, apolipoprotein E (ApoE). This coculture approach reveals changes to myotube myogenesis and synaptogenesis providing a consistent platform for cross-talk and pathway analysis for future studies.
Collapse
Affiliation(s)
- James T Redden
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sophie Kothe
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - David J Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Michael J McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Orthopedic Surgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
4
|
Xue T, Zheng H, Zhao Y, Zhao Z, Wang J, Zhang Y, Li Y, Wang S, Liu Y, Xue C, Guo H. A spontaneously immortalized muscle stem cell line (EfMS) from brown-marbled grouper for cell-cultured fish meat production. Commun Biol 2024; 7:1697. [PMID: 39719457 DOI: 10.1038/s42003-024-07400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Lacking of suitable fish muscle stem cell line has greatly hindered the fabrication of cell-cultured fish meat. Here, we established and characterized a spontaneously immortalized marine fish muscle stem cell line (EfMS) from brown-marbled grouper (Epinephelus fuscoguttatus), which could actively proliferate with good genetic stability and well maintain the stemness of myogenesis potential for over 50 passages. Taurine was found to be able to serve as a substitute of fish muscle extract in maintaining stemness. The EfMS cells could be efficiently induced to myogenic differentiation or adipogenic trans-differentiation in both 2D and 3D culture systems. Using edible 3D microcarriers, we produced 0.65 g fat-free and 1.47 g fat-containing cell-cultured fish meat in 8 days. The scaffold-free cell-cultured fish meat exhibited a much higher content of flavory amino acids than natural fish. Together, EfMS cell line can serve as an ideal seed cell line for the production of cell-cultured fish meat.
Collapse
Affiliation(s)
- Ting Xue
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Hongwei Zheng
- College of Food Science & Engineering, Ocean University of China, Qingdao, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, China
| | - Yaqi Zhao
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhenxin Zhao
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jinwu Wang
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yue Zhang
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yaru Li
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Song Wang
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yongliang Liu
- College of Food Science & Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science & Engineering, Ocean University of China, Qingdao, China.
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, China.
| | - Huarong Guo
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
| |
Collapse
|
5
|
Iram S, Akash A, Kathera CS, Park KW, Cho YS, Kim J. Serum markers for beef meat quality: Potential media supplement for cell-cultured meat production. Curr Res Food Sci 2024; 10:100943. [PMID: 39760013 PMCID: PMC11696856 DOI: 10.1016/j.crfs.2024.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025] Open
Abstract
As the global population continues to grow and food demands increase, the food industry faces mounting pressure to develop innovative solutions. Cell-cultured meat involves cultivating cells from live animals through self-renewal methods or scaffolding and presents a promising alternative to traditional meat production by generating nutritionally rich biomass. However, significant research is still needed to overcome challenges such as developing serum-free media, identifying suitable additives to support cell growth, and ensuring the quality of cell-cultured meat closely resembles that of traditional meat. Meat quality, which is influenced by various sensorial factors (color, texture, and taste), tenderness, and nutritional values, is determined by the level of intramuscular fat deposition, which significantly influences both meat yield and quality. This paper offers a concise overview of serum markers used to assess beef quality and yield and potential additives currently used in culture media for cell-cultured meat production. We also proposed the potential of using serum markers as additives in the culture media to enhance production of cell-cultured meat. Overall, this review highlights the significance of cell-cultured meat production as a viable solution to address the challenges posed by increasing food demands.
Collapse
Affiliation(s)
- Sana Iram
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Amar Akash
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Chandra Sekhar Kathera
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jihoe Kim
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
6
|
Dai W, Chen Y, Xiong W, Li S, Tan WS, Zhou Y. Development of a serum-free medium for myoblasts long-term expansion and 3D culture for cell-based meat. J Food Sci 2024; 89:851-865. [PMID: 38174744 DOI: 10.1111/1750-3841.16884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Cell-based meat technology provides an effective method to meet the demand for meat, while also posing a huge challenge to the expansion of myoblasts. It is difficult to develop serum-free medium suitable for long-term culture and large-scale expansion of myoblasts, which causes limited understanding of myoblasts expansion. Therefore, this study used C2C12 myoblasts as model cells and developed a serum-free medium for large-scale expansion of myoblasts in vitro using the Plackett-Burman design. The serum-free medium can support short-term proliferation and long-term passage of C2C12 myoblasts, while maintaining myogenic differentiation potential well, which is comparable to those of growth medium containing 10% fetal bovine serum. Based on the C2C12 myoblasts microcarriers serum-free culture system established in this study, the actual expansion folds of myoblasts can reach 43.55 folds after 7 days. Moreover, cell-based meat chunks were preliminarily prepared using glutamine transaminase and edible pigments. The research results provide reference for serum-free culture and large-scale expansion of myoblasts in vitro, laying the foundation for cell-based meat production. PRACTICAL APPLICATION: This study developed a serum-free medium suitable for long-term passage of myoblasts and established a microcarrier serum-free culture system for myoblasts, which is expected to solve the problem of serum-free culture and large-scale expansion of myoblasts in cell culture meat production.
Collapse
Affiliation(s)
- Wenjing Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yawen Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Wanli Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Shihao Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
7
|
Recent trends in bioartificial muscle engineering and their applications in cultured meat, biorobotic systems and biohybrid implants. Commun Biol 2022; 5:737. [PMID: 35869250 PMCID: PMC9307618 DOI: 10.1038/s42003-022-03593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRecent advances in tissue engineering and biofabrication technology have yielded a plethora of biological tissues. Among these, engineering of bioartificial muscle stands out for its exceptional versatility and its wide range of applications. From the food industry to the technology sector and medicine, the development of this tissue has the potential to affect many different industries at once. However, to date, the biofabrication of cultured meat, biorobotic systems, and bioartificial muscle implants are still considered in isolation by individual peer groups. To establish common ground and share advances, this review outlines application-specific requirements for muscle tissue generation and provides a comprehensive overview of commonly used biofabrication strategies and current application trends. By solving the individual challenges and merging various expertise, synergetic leaps of innovation that inspire each other can be expected in all three industries in the future.
Collapse
|
8
|
Ye Y, Zhou J, Guan X, Sun X. Commercialization of cultured meat products: Current status, challenges, and strategic prospects. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
9
|
Techniques, challenges and future prospects for cell-based meat. Food Sci Biotechnol 2022; 31:1225-1242. [DOI: 10.1007/s10068-022-01136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/04/2022] Open
|
10
|
Jang M, Scheffold J, Røst LM, Cheon H, Bruheim P. Serum-free cultures of C2C12 cells show different muscle phenotypes which can be estimated by metabolic profiling. Sci Rep 2022; 12:827. [PMID: 35039582 PMCID: PMC8764040 DOI: 10.1038/s41598-022-04804-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
In vitro skeletal muscle cell production is emerging in the field of artificial lab-grown meat as alternative future food. Currently, there is an urgent paradigm shift towards a serum replacement culture system. Surprisingly, little is known about the impact of serum-free culture on skeletal muscle cells to date. Therefore, we performed metabolic profiling of the C2C12 myoblasts and myotubes in serum-free mediums (B27, AIM-V) and compared it with conventional serum supplementation culture. Furthermore, cell morphology, viability, and myogenic differentiation were observed for 7 days of cultivation. Intriguingly, the metabolic difference is more dominant between the cell status than medium effects. In addition, proliferative myoblast showed more distinct metabolic differences than differentiated myotubes in different culture conditions. The intracellular levels of GL3P and UDP-GlcNAc were significantly increased in myotubes versus myoblast. Non-essential amino acids and pyruvate reduction and transamination showed significant differences among serum, B27, and AIM-V cultures. Intracellular metabolite profiles indicated that C2C12 myotubes cultured in serum and B27 had predominant glycolytic and oxidative metabolism, respectively, indicating fast and slow types of muscle confirmed by MHC immunostaining. This work might be helpful to understand the altered metabolism of skeletal muscle cells in serum-free culture and contribute to future artificial meat research work.
Collapse
Affiliation(s)
- Mi Jang
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Hogskoleringen 1, 7491, Trondheim, Norway
| | - Jana Scheffold
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Hogskoleringen 1, 7491, Trondheim, Norway
| | - Lisa Marie Røst
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Hogskoleringen 1, 7491, Trondheim, Norway
| | - Hyejeong Cheon
- PoreLab, Department of Physics, Norwegian University of Science and Technology, Hogskoleringen 1, 7491, Trondheim, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Hogskoleringen 1, 7491, Trondheim, Norway.
| |
Collapse
|
11
|
Munteanu C, Mireşan V, Răducu C, Ihuţ A, Uiuiu P, Pop D, Neacşu A, Cenariu M, Groza I. Can Cultured Meat Be an Alternative to Farm Animal Production for a Sustainable and Healthier Lifestyle? Front Nutr 2021; 8:749298. [PMID: 34671633 PMCID: PMC8522976 DOI: 10.3389/fnut.2021.749298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Producing animal proteins requires large areas of agricultural land and is a major source of greenhouse gases. Cellular agriculture, especially cultured meat, could be a potential alternative for the environment and human health. It enables meat and other agricultural products to be grown from cells in a bioreactor without being taken from farm animals. This paper aims at an interdisciplinary review of literature focusing on potential benefits and risks associated with cultured meat. To achieve this goal, several international databases and governmental projects were thoroughly analyzed using keywords and phrases with specialty terms. This is a growing scientific domain, which has generated a series of debates regarding its potential effects. On the one hand the potential of beneficial effects is the reduction of agricultural land usage, pollution and the improvement of human health. Other authors question if cultured meat could be a sustainable alternative for reducing gas emissions. Interestingly, the energy used for cultured meat could be higher, due to the replacement of some biological functions, by technological processes. For potential effects to turn into results, a realistic understanding of the technology involved and more experimental studies are required.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Vioara Mireşan
- Department of Fundamental Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Camelia Răducu
- Department of Technological Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Andrada Ihuţ
- Department of Technological Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Paul Uiuiu
- Department of Fundamental Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Daria Pop
- Clinic of Obstetrics and Gynecology II "Dominic Stanca, " University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Cluj-Napoca, Romania
| | - Alexandra Neacşu
- Department of Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Animal Reproduction and Reproductive Pathology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioan Groza
- Department of Animal Reproduction and Reproductive Pathology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Kumar P, Sharma N, Sharma S, Mehta N, Verma AK, Chemmalar S, Sazili AQ. In-vitro meat: a promising solution for sustainability of meat sector. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:693-724. [PMID: 34447949 PMCID: PMC8367411 DOI: 10.5187/jast.2021.e85] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022]
Abstract
The in-vitro meat is a novel concept in food biotechnology comprising field of tissue engineering and cellular agriculture. It involves production of edible biomass by in-vitro culture of stem cells harvested from the muscle of live animals by self-organizing or scaffolding methodology. It is considered as efficient, environmental friendly, better ensuring public safety and nutritional security, as well as ethical way of producing meat. Source of stem cells, media ingredients, supply of large size bioreactors, skilled manpower, sanitary requirements, production of products with similar sensory and textural attributes as of conventional meat, consumer acceptance, and proper set up of regulatory framework are challenges faced in commercialization and consumer acceptance of in-vitro meat. To realize any perceivable change in various socio-economic and environmental spheres, the technology should be commercialized and should be cost-effective as conventional meat and widely accepted among consumers. The new challenges of increasing demand of meat with the increasing population could be fulfill by the establishment of in-vitro meat production at large scale and its popularization. The adoption of in-vitro meat production at an industrial scale will lead to self-sufficiency in the developed world.
Collapse
Affiliation(s)
- Pavan Kumar
- Department of Livestock Products
Technology, College of Veterinary Science, Guru Angad Dev Veterinary and
Animal Sciences University, Ludhiana Punjab 141004,
India
- Institute of Tropical Agriculture and Food
Security, Universiti Putra Malaysia, Serdang 43400,
Malaysia
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty
of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University
of Agricultural Sciences & Technology of Jammu, R.S.
Pura, UT of Jammu and Kashmir 181102, India
| | - Shubham Sharma
- Department of Livestock Production and
Management, College of Veterinary Sciences & Animal Husbandry, Nanaji
Deshmukh Veterinary Science University, Mhow, Madhya Pradesh
453446, India
| | - Nitin Mehta
- Department of Livestock Products
Technology, College of Veterinary Science, Guru Angad Dev Veterinary and
Animal Sciences University, Ludhiana Punjab 141004,
India
| | - Akhilesh Kumar Verma
- Department of Livestock Products
Technology, College of Veterinary and Animal Science, Sardar Vallabhbhai
Patel University of Agriculture and Technology, Meerut, Uttar
Pradesh 250110, India
| | - S Chemmalar
- Natural Medicines and Product Research
Laboratory, Institute of Bioscience, Universiti Putra
Malaysia, Serdang 43400, Malaysia
| | - Awis Qurni Sazili
- Institute of Tropical Agriculture and Food
Security, Universiti Putra Malaysia, Serdang 43400,
Malaysia
| |
Collapse
|
13
|
Arnold F, Muzzio N, Patnaik SS, Finol EA, Romero G. Pentagalloyl Glucose-Laden Poly(lactide- co-glycolide) Nanoparticles for the Biomechanical Extracellular Matrix Stabilization of an In Vitro Abdominal Aortic Aneurysm Model. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25771-25782. [PMID: 34030437 DOI: 10.1021/acsami.1c05344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The suppression of abdominal aortic aneurysm (AAA) growth by nonsurgical therapy is currently not an option, and AAA is considered an irreversible destructive disease. The formation and development of AAA is associated with the progressive deterioration of the aortic wall. Infiltrated macrophages and resident vascular smooth muscle cells oversecrete matrix metalloproteinases (MMPs), which cause the loss of crucial aortic extracellular matrix (ECM) components, thus weakening the aortic wall. Stabilization of the aortic ECM could enable the development of novel therapeutic options for preventing and reducing AAA progression. In the present work, we studied the biochemical and biomechanical interactions of pentagalloyl glucose (PGG) on mouse C2C12 myoblast cells. PGG is a naturally occurring ECM-stabilizing polyphenolic compound that has been studied in various applications, including vascular health, with promising results. With its known limitations of systemic administration, we also studied the administration of PGG when encapsulated within poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs). Treatment with collagenase and elastase enzymes was used to mimic a pathway of degenerative effects seen in the pathogenesis of human AAA. PGG and PLGA(PGG) NPs were added to enzyme-treated cells in either a suppressive or preventative scenario. Biomolecular interactions were analyzed through cell viability, cell adhesion, reactive oxygen species (ROS) production, and MMP-2 and MMP-9 secretion. Biomechanical properties were studied through atomic force microscopy and quartz crystal microbalance with dissipation. Our results suggest that PGG or PLGA(PGG) NPs caused minor to no cytotoxic effects on the C2C12 cells. Both PGG and PLGA(PGG) NPs showed reduction in ROS and MMP-2 secretion if administered after enzymatic ECM degradation. A quantitative comparison of Young's moduli showed a significant recovery in the elastic properties of the cells treated with PGG or PLGA(PGG) NPs after enzymatic ECM degradation. This work provides preliminary support for the use of a pharmacological therapy for AAA treatment.
Collapse
Affiliation(s)
- Frances Arnold
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Sourav S Patnaik
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ender A Finol
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
14
|
Guan X, Lei Q, Yan Q, Li X, Zhou J, Du G, Chen J. Trends and ideas in technology, regulation and public acceptance of cultured meat. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
15
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
16
|
Phua WWT, Tan WR, Yip YS, Hew ID, Wee JWK, Cheng HS, Leow MKS, Wahli W, Tan NS. PPARβ/δ Agonism Upregulates Forkhead Box A2 to Reduce Inflammation in C2C12 Myoblasts and in Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21051747. [PMID: 32143325 PMCID: PMC7084392 DOI: 10.3390/ijms21051747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/10/2023] Open
Abstract
Daily activities expose muscles to innumerable impacts, causing accumulated tissue damage and inflammation that impairs muscle recovery and function, yet the mechanism modulating the inflammatory response in muscles remains unclear. Our study suggests that Forkhead box A2 (FoxA2), a pioneer transcription factor, has a predominant role in the inflammatory response during skeletal muscle injury. FoxA2 expression in skeletal muscle is upregulated by fatty acids and peroxisome proliferator-activated receptors (PPARs) but is refractory to insulin and glucocorticoids. Using PPARβ/δ agonist GW501516 upregulates FoxA2, which in turn, attenuates the production of proinflammatory cytokines and reduces the infiltration of CD45+ immune cells in two mouse models of muscle inflammation, systemic LPS and intramuscular injection of carrageenan, which mimic localized exercise-induced inflammation. This reduced local inflammatory response limits tissue damage and restores muscle tetanic contraction. In line with these results, a deficiency in either PPARβ/δ or FoxA2 diminishes the action of the PPARβ/δ agonist GW501516 to suppress an aggravated inflammatory response. Our study suggests that FoxA2 in skeletal muscle helps maintain homeostasis, acting as a gatekeeper to maintain key inflammation parameters at the desired level upon injury. Therefore, it is conceivable that certain myositis disorders or other forms of painful musculoskeletal diseases may benefit from approaches that increase FoxA2 activity in skeletal muscle.
Collapse
Affiliation(s)
- Wendy Wen Ting Phua
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
| | - Yun Sheng Yip
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Ivan Dongzheng Hew
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Jonathan Wei Kiat Wee
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Melvin Khee Shing Leow
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
- Department of Endocrinology, Division of Medicine, Endocrine and Diabetes Clinic, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
- INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, 31300 Toulouse, France
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
- Correspondence: ; Tel.: +65-6904-1295; Fax: +65-6339-2889
| |
Collapse
|
17
|
Taye N, Stanley S, Hubmacher D. Stable Knockdown of Genes Encoding Extracellular Matrix Proteins in the C2C12 Myoblast Cell Line Using Small-Hairpin (sh)RNA. J Vis Exp 2020. [PMID: 32116296 DOI: 10.3791/60824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Extracellular matrix (ECM) proteins are crucial for skeletal muscle development and homeostasis. The stable knockdown of genes coding for ECM proteins in C2C12 myoblasts can be applied to study the role of these proteins in skeletal muscle development. Here, we describe a protocol to deplete the ECM protein ADAMTSL2 as an example, using small-hairpin (sh) RNA in C2C12 cells. Following transfection of shRNA plasmids, stable cells were batch-selected using puromycin. We further describe the maintenance of these cell lines and the phenotypic analysis via mRNA expression, protein expression, and C2C12 differentiation. The advantages of the method are the relatively fast generation of stable C2C12 knockdown cells and the reliable differentiation of C2C12 cells into multinucleated myotubes upon depletion of serum in the cell culture medium. Differentiation of C2C12 cells can be monitored by bright field microscopy and by measuring the expression levels of canonical marker genes, such as MyoD, myogenin, or myosin heavy chain (MyHC) indicating the progression of C2C12 myoblast differentiation into myotubes. In contrast to the transient knockdown of genes with small-interfering (si) RNA, genes that are expressed later during C2C12 differentiation or during myotube maturation can be targeted more efficiently by generating C2C12 cells that stably express shRNA. Limitations of the method are a variability in the knockdown efficiencies, depending on the specific shRNA that may be overcome by using gene knockout strategies based on CRISPR/Cas9, as well as potential off-target effects of the shRNA that should be considered.
Collapse
Affiliation(s)
- Nandaraj Taye
- Orthopaedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai
| | - Sarah Stanley
- Orthopaedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai
| | - Dirk Hubmacher
- Orthopaedic Research Laboratories, Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai;
| |
Collapse
|
18
|
Wragg NM, Mosqueira D, Blokpeol-Ferreras L, Capel A, Player DJ, Martin NRW, Liu Y, Lewis MP. Development of a 3D Tissue-Engineered Skeletal Muscle and Bone Co-culture System. Biotechnol J 2019; 15:e1900106. [PMID: 31468704 DOI: 10.1002/biot.201900106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/05/2019] [Indexed: 12/26/2022]
Abstract
In vitro 3D tissue-engineered (TE) structures have been shown to better represent in vivo tissue morphology and biochemical pathways than monolayer culture, and are less ethically questionable than animal models. However, to create systems with even greater relevance, multiple integrated tissue systems should be recreated in vitro. In the present study, the effects and conditions most suitable for the co-culture of TE skeletal muscle and bone are investigated. High-glucose Dulbecco's modified Eagle medium (HG-DMEM) supplemented with 20% fetal bovine serum followed by HG-DMEM with 2% horse serum is found to enable proliferation of both C2C12 muscle precursor cells and TE85 human osteosarcoma cells, fusion of C2C12s into myotubes, as well as an upregulation of RUNX2/CBFa1 in TE85s. Myotube formation is also evident within indirect contact monolayer cultures. Finally, in 3D co-cultures, TE85 collagen/hydroxyapatite constructs have significantly greater expression of RUNX2/CBFa1 and osteocalcin/BGLAP in the presence of collagen-based C2C12 skeletal muscle constructs; however, fusion within these constructs appears reduced. This work demonstrates the first report of the simultaneous co-culture and differentiation of 3D TE skeletal muscle and bone, and represents a significant step toward a full in vitro 3D musculoskeletal junction model.
Collapse
Affiliation(s)
- Nicholas M Wragg
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Diogo Mosqueira
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Lia Blokpeol-Ferreras
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Andrew Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,Institute of Orthopaedics and Musculoskeletal Sciences, RNOH University College London, Stanmore, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Yang Liu
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
19
|
Bansai S, Morikura T, Onoe H, Miyata S. Effect of Cyclic Stretch on Tissue Maturation in Myoblast-Laden Hydrogel Fibers. MICROMACHINES 2019; 10:mi10060399. [PMID: 31208059 PMCID: PMC6630375 DOI: 10.3390/mi10060399] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 11/16/2022]
Abstract
Engineering of the skeletal muscles has attracted attention for the restoration of damaged muscles from myopathy, injury, and extraction of malignant tumors. Reconstructing a three-dimensional muscle using living cells could be a promising approach. However, the regenerated tissue exhibits a weak construction force due to the insufficient tissue maturation. The purpose of this study is to establish the reconstruction system for the skeletal muscle. We used a cell-laden core-shell hydrogel microfiber as a three-dimensional culture to control the cellular orientation. Moreover, to mature the muscle tissue in the microfiber, we also developed a custom-made culture device for imposing cyclic stretch stimulation using a motorized stage and the fiber-grab system. As a result, the directions of the myotubes were oriented and the mature myotubes could be formed by cyclic stretch stimulation.
Collapse
Affiliation(s)
- Shinako Bansai
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.
| | - Takashi Morikura
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.
| | - Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.
| |
Collapse
|
20
|
Bhat ZF, Morton JD, Mason SL, Bekhit AEA, Bhat HF. Technological, Regulatory, and Ethical Aspects ofIn VitroMeat: A Future Slaughter‐Free Harvest. Compr Rev Food Sci Food Saf 2019; 18:1192-1208. [DOI: 10.1111/1541-4337.12473] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Zuhaib F. Bhat
- Faculty of Agriculture and Life Sciences, Dept. of Wine Food and Molecular BiosciencesLincoln Univ. Lincoln 7647 New Zealand
| | - James D. Morton
- Faculty of Agriculture and Life Sciences, Dept. of Wine Food and Molecular BiosciencesLincoln Univ. Lincoln 7647 New Zealand
| | - Susan L. Mason
- Faculty of Agriculture and Life Sciences, Dept. of Wine Food and Molecular BiosciencesLincoln Univ. Lincoln 7647 New Zealand
| | | | - Hina F. Bhat
- Div. of BiotechnologySKUAST of Kashmir Srinagar Jammu and Kashmir India
| |
Collapse
|
21
|
Dye DE, Kinnear BF, Chaturvedi V, Coombe DR. Interaction Between Skeletal Muscle Cells and Extracellular Matrix Proteins Using a Serum Free Culture System. Methods Mol Biol 2019; 1889:185-212. [PMID: 30367415 DOI: 10.1007/978-1-4939-8897-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability to grow C2C12 myoblasts in a completely defined, serum free medium enables researchers to investigate the role of specific factors in myoblast proliferation, migration, fusion, and differentiation without the confounding effects of serum. The use of defined, animal free in vitro culture systems will improve reproducibility between research groups and may also enhance translation of tissue engineering techniques into clinical applications. Here, we describe the use and characterization of a serum free culture system for C2C12 myoblasts using standard tissue culture medium and readily available, defined growth factors and supplements.
Collapse
Affiliation(s)
- Danielle E Dye
- School of Pharmacy and Biomedical Science, Curtin Health Innovation Research Institute, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Beverley F Kinnear
- School of Pharmacy and Biomedical Science, Curtin Health Innovation Research Institute, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Vishal Chaturvedi
- School of Pharmacy and Biomedical Science, Curtin Health Innovation Research Institute, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Deirdre R Coombe
- School of Pharmacy and Biomedical Science, Curtin Health Innovation Research Institute, Faculty of Health Science, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
22
|
Zhang M, Cao TT, Wei ZG, Zhang YQ. Silk Sericin Hydrolysate is a Potential Candidate as a Serum-Substitute in the Culture of Chinese Hamster Ovary and Henrietta Lacks Cells. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5300249. [PMID: 30690536 PMCID: PMC6346402 DOI: 10.1093/jisesa/iey137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 05/05/2023]
Abstract
The silk sericin hydrolysate (SSH) from the waste of silk processing as a substitute of fetal bovine serum (FBS) was used for the culture of Chinese hamster ovary (CHO) cells and Henrietta Lacks (Hela) strain of human cervical cancer cells. The survival ratio of these cells cultured in SSH media were similar to or higher than those in FBS media. Especially after the serum was replaced by low concentration of SSH at 15.0 μg/ml for 5 d, the proliferation of both cells was also similar to or higher than that of FBS group; the percentages of CHO and Hela cells in S-phase were 28.9 and 28.0%, respectively. The former is nearly two times that of FBS group, the latter is also higher than the control group. Reverse transcription-polymerase chain reaction (RT-PCR) revealed that among the differentially expressed genes, the relative expression of CXCL12 gene of CHO cells in SSH group increased, was three times that of serum group, and the relative expression of LCN2 gene of Hela cells increased 2.8 times, indicating that these related genes were activated to promote cell growth and proliferation. These results fully illustrated the hydrolysated sericin has a potential use as serum substitutes in cell culture.
Collapse
Affiliation(s)
- Meng Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Ting-Ting Cao
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Zheng-Guo Wei
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, PR China
- Corresponding author, e-mail: (Y.-Q. Zhang)
| |
Collapse
|
23
|
Cai A, Hardt M, Schneider P, Schmid R, Lange C, Dippold D, Schubert DW, Boos AM, Weigand A, Arkudas A, Horch RE, Beier JP. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds. BMC Biotechnol 2018; 18:75. [PMID: 30477471 PMCID: PMC6260685 DOI: 10.1186/s12896-018-0482-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/28/2018] [Indexed: 02/07/2023] Open
Abstract
Background The creation of functional skeletal muscle via tissue engineering holds great promise without sacrificing healthy donor tissue. Different cell types have been investigated regarding their myogenic differentiation potential under the influence of various media supplemented with growth factors. Yet, most cell cultures include the use of animal sera, which raises safety concerns and might lead to variances in results. Electrospun nanoscaffolds represent suitable matrices for tissue engineering of skeletal muscle, combining both biocompatibility and stability. We therefore aimed to develop a serum-free myogenic differentiation medium for the co-culture of primary myoblasts (Mb) and mesenchymal stromal cells derived from the bone marrow (BMSC) and adipose tissue (ADSC) on electrospun poly-ε-caprolacton (PCL)-collagen I-nanofibers. Results Rat Mb were co-cultured with rat BMSC (BMSC/Mb) or ADSC (ADSC/Mb) two-dimensionally (2D) as monolayers or three-dimensionally (3D) on aligned PCL-collagen I-nanofibers. Differentiation media contained either AIM V, AIM V and Ultroser® G, DMEM/Ham’s F12 and Ultroser® G, or donor horse serum (DHS) as a conventional differentiation medium. In 2D co-culture groups, highest upregulation of myogenic markers could be induced by serum-free medium containing DMEM/Ham’s F12 and Ultroser® G (group 3) after 7 days. Alpha actinin skeletal muscle 2 (ACTN2) was upregulated 3.3-fold for ADSC/Mb and 1.7-fold for BMSC/Mb after myogenic induction by group 3 serum-free medium when compared to stimulation with DHS. Myogenin (MYOG) was upregulated 5.2-fold in ADSC/Mb and 2.1-fold in BMSC/Mb. On PCL-collagen I-nanoscaffolds, ADSC showed a higher cell viability compared to BMSC in co-culture with Mb. Myosin heavy chain 2, ACTN2, and MYOG as late myogenic markers, showed higher gene expression after long term stimulation with DHS compared to serum-free stimulation, especially in BMSC/Mb co-cultures. Immunocytochemical staining with myosin heavy chain verified the presence of a contractile apparatus under both serum free and standard differentiation conditions. Conclusions In this study, we were able to myogenically differentiate mesenchymal stromal cells with myoblasts on PCL-collagen I-nanoscaffolds in a serum-free medium. Our results show that this setting can be used for skeletal muscle tissue engineering, applicable to future clinical applications since no xenogenous substances were used.
Collapse
Affiliation(s)
- Aijia Cai
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany.
| | - Moritz Hardt
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Paul Schneider
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Rafael Schmid
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Claudia Lange
- Interdisciplinary Clinic for Stem Cell Transplantation, University Cancer Center Hamburg (UCCH), 20246, Hamburg, Germany
| | - Dirk Dippold
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg (FAU), Martensstraße 7, 91058, Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg (FAU), Martensstraße 7, 91058, Erlangen, Germany
| | - Anja M Boos
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Annika Weigand
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Justus P Beier
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany.,Department of Plastic Surgery, Hand Surgery, Burn Center University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
24
|
Stephens N, Di Silvio L, Dunsford I, Ellis M, Glencross A, Sexton A. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci Technol 2018; 78:155-166. [PMID: 30100674 PMCID: PMC6078906 DOI: 10.1016/j.tifs.2018.04.010] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cultured meat forms part of the emerging field of cellular agriculture. Still an early stage field it seeks to deliver products traditionally made through livestock rearing in novel forms that require no, or significantly reduced, animal involvement. Key examples include cultured meat, milk, egg white and leather. Here, we focus upon cultured meat and its technical, socio-political and regulatory challenges and opportunities. SCOPE AND APPROACH The paper reports the thinking of an interdisciplinary team, all of whom have been active in the field for a number of years. It draws heavily upon the published literature, as well as our own professional experience. This includes ongoing laboratory work to produce cultured meat and over seventy interviews with experts in the area conducted in the social science work. KEY FINDINGS AND CONCLUSIONS Cultured meat is a promising, but early stage, technology with key technical challenges including cell source, culture media, mimicking the in-vivo myogenesis environment, animal-derived and synthetic materials, and bioprocessing for commercial-scale production. Analysis of the social context has too readily been reduced to ethics and consumer acceptance, and whilst these are key issues, the importance of the political and institutional forms a cultured meat industry might take must also be recognised, and how ambiguities shape any emergent regulatory system.
Collapse
Affiliation(s)
- Neil Stephens
- Social and Political Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Lucy Di Silvio
- Kings College London, Floor 17, Tower Wing Guy's London, United Kingdom
| | - Illtud Dunsford
- Charcutier Ltd, Felin y Glyn Farm, Pontnewydd, Llanelli, SA15 5TL, United Kingdom
| | - Marianne Ellis
- Dept of Chemical Engineering, Claverton Down, Bath, BA2 7AY, United Kingdom
| | | | - Alexandra Sexton
- Oxford Martin School, University of Oxford, 34 Broad Street, Oxford, OX1 3BD, United Kingdom
| |
Collapse
|
25
|
Khodabukus A, Prabhu N, Wang J, Bursac N. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Adv Healthc Mater 2018; 7:e1701498. [PMID: 29696831 PMCID: PMC6105407 DOI: 10.1002/adhm.201701498] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/18/2018] [Indexed: 12/18/2022]
Abstract
Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Neel Prabhu
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Jason Wang
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| | - Nenad Bursac
- Department of Biomedical Engineering Duke University 101 Science Drive, FCIEMAS 1427, Durham, NC 27708-90281, USA
| |
Collapse
|
26
|
Sung SE, Hwang M, Kim AY, Lee EM, Lee EJ, Hwang SK, Kim SY, Kim HK, Jeong KS. MyoD Overexpressed Equine Adipose-Derived Stem Cells Enhanced Myogenic Differentiation Potential. Cell Transplant 2018; 25:2017-2026. [PMID: 26892394 DOI: 10.3727/096368916x691015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem cells could potentially be used in the clinical treatment of muscle disorders and muscle regeneration. Adipose-derived stem cells (ADSCs) can be easily isolated from adipose tissue, as opposed to stem cells of other tissues. We believe that cell therapy using ADSCs could be applied to muscle disorders in horses and other species. We sought to improve the myogenic differentiation potential of equine ADSCs (eqADSCs) using a MyoD lentiviral vector. MyoD lentiviruses were transduced into eqADSCs and selected using puromycin. Cells were cultured in differentiation media containing 5% horse serum, and after 5 days the MyoD-transduced cells differentiated into myogenic cells (MyoD-eqADSCs). Using green fluorescent protein (GFP), MyoD-eqADSCs were purified and transplanted into the tibialis anterior muscles of mice after they were injured with the myotoxin notexin. The mice were sacrificed to examine any regeneration in the tibialis anterior muscle 4 weeks after the MyoD-eqADSCs were injected. The MyoD-eqADSCs cultured in growth media expressed murine and equine MyoD; however, they did not express late differentiation markers such as myogenin (MYOG). When cells were grown in differentiation media, the expression of MYOG was clearly observed. According to our reverse transcription polymerase chain reaction and immunocytochemistry results, MyoD-eqADSCs expressed terminal myogenic phase genes, such as those encoding dystrophin, myosin heavy chain, and troponin I. The MyoD-eqADSCs fused to each other, and the formation of myotube-like cells from myoblasts in differentiation media occurred between days 5 and 14 postplating. In mice, we observed GFP-positive myofibers, which had differentiated from the injected MyoD-eqADSCs. Our approaches improved the myogenic differentiation of eqADSCs through the forced expression of murine MyoD. Our findings suggest that limitations in the treatment of equine muscle disorders could be overcome using ADSCs.
Collapse
Affiliation(s)
- Soo-Eun Sung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Meeyul Hwang
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ah-Young Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Mi Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Su-Kyeong Hwang
- Department of Pediatrics, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Shin-Yoon Kim
- Skeletal Diseases Genome Research Center, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hong-Kyun Kim
- Department of Ophthalmology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
27
|
Ragab N, Viehweger F, Bauer J, Geyer N, Yang M, Seils A, Belharazem D, Brembeck FH, Schildhaus HU, Marx A, Hahn H, Simon-Keller K. Canonical WNT/β-Catenin Signaling Plays a Subordinate Role in Rhabdomyosarcomas. Front Pediatr 2018; 6:378. [PMID: 30568936 PMCID: PMC6290061 DOI: 10.3389/fped.2018.00378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022] Open
Abstract
The development of skeletal muscle from immature precursors is partially driven by canonical WNT/β-catenin signaling. Rhabdomyosarcomas (RMS) are immature skeletal muscle-like, highly lethal cancers with a variably pronounced blockade of muscle differentiation. To investigate whether canonical β-catenin signaling in RMS is involved in differentiation and aggressiveness of RMS, we analyzed the effects of WNT3A and of a siRNA-mediated or pharmacologically induced β-catenin knock-down on proliferation, apoptosis and differentiation of embryonal and alveolar RMS cell lines. While the canonical WNT pathway was maintained in all cell lines as shown by WNT3A induced AXIN expression, more distal steps including transcriptional activation of its key target genes were consistently impaired. In addition, activation or inhibition of canonical WNT/β-catenin only moderately affected proliferation, apoptosis or myodifferentiation of the RMS tumor cells and a conditional knockout of β-catenin in RMS of Ptch del/+ mice did not alter RMS incidence or multiplicity. Together our data indicates a subordinary role of the canonical WNT/β-catenin signaling for RMS proliferation, apoptosis or differentiation and thus aggressiveness of this malignant childhood tumor.
Collapse
Affiliation(s)
- Nada Ragab
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany.,Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Bauer
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Natalie Geyer
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Mingya Yang
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anna Seils
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Djeda Belharazem
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Felix H Brembeck
- Tumor Biology and Signal Transduction, Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Alexander Marx
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Heidi Hahn
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
28
|
Chaturvedi V, Naskar D, Kinnear BF, Grenik E, Dye DE, Grounds MD, Kundu SC, Coombe DR. Silk fibroin scaffolds with muscle-like elasticity support in vitro differentiation of human skeletal muscle cells. J Tissue Eng Regen Med 2017; 11:3178-3192. [PMID: 27878977 PMCID: PMC5724504 DOI: 10.1002/term.2227] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/23/2016] [Accepted: 04/21/2016] [Indexed: 12/27/2022]
Abstract
Human adult skeletal muscle has a limited ability to regenerate after injury and therapeutic options for volumetric muscle loss are few. Technologies to enhance regeneration of tissues generally rely upon bioscaffolds to mimic aspects of the tissue extracellular matrix (ECM). In the present study, silk fibroins from four Lepidoptera (silkworm) species engineered into three-dimensional scaffolds were examined for their ability to support the differentiation of primary human skeletal muscle myoblasts. Human skeletal muscle myoblasts (HSMMs) adhered, spread and deposited extensive ECM on all the scaffolds, but immunofluorescence and quantitative polymerase chain reaction analysis of gene expression revealed that myotube formation occurred differently on the various scaffolds. Bombyx mori fibroin scaffolds supported formation of long, well-aligned myotubes, whereas on Antheraea mylitta fibroin scaffolds the myotubes were thicker and shorter. Myotubes were oriented in two perpendicular layers on Antheraea assamensis scaffolds, and scaffolds of Philosamia/Samia ricini (S. ricini) fibroin poorly supported myotube formation. These differences were not caused by fibroin composition per se, as HSMMs adhered to, proliferated on and formed striated myotubes on all four fibroins presented as two-dimensional fibroin films. The Young's modulus of A. mylitta and B. mori scaffolds mimicked that of normal skeletal muscle, but A. assamensis and S. ricini scaffolds were more flexible. The present study demonstrates that although myoblasts deposit matrix onto fibroin scaffolds and create a permissive environment for cell proliferation, a scaffold elasticity resembling that of normal muscle is required for optimal myotube length, alignment, and maturation. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. StartCopTextStartCopText© 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Vishal Chaturvedi
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health SciencesCurtin UniversityPerthWestern Australia
| | - Deboki Naskar
- Department of BiotechnologyIndian Institute of TechnologyKharagpurWest BengalIndia
| | - Beverley F. Kinnear
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health SciencesCurtin UniversityPerthWestern Australia
| | - Elizabeth Grenik
- Nanochemistry Research Institute, Faculty of Science, Engineering and ComputingCurtin UniversityPerthWestern Australia
| | - Danielle E. Dye
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health SciencesCurtin UniversityPerthWestern Australia
| | - Miranda D. Grounds
- School of Anatomy, Physiology and Human BiologyUniversity of Western AustraliaPerthWestern Australia
| | - Subhas C. Kundu
- Department of BiotechnologyIndian Institute of TechnologyKharagpurWest BengalIndia
- Present address:
3Bs Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoAvePark ‐ 4805‐017 BarcoGuimaraesPortugal
| | - Deirdre R. Coombe
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health SciencesCurtin UniversityPerthWestern Australia
| |
Collapse
|
29
|
Nieuwoudt S, Mulya A, Fealy CE, Martelli E, Dasarathy S, Naga Prasad SV, Kirwan JP. In vitro contraction protects against palmitate-induced insulin resistance in C2C12 myotubes. Am J Physiol Cell Physiol 2017; 313:C575-C583. [PMID: 28835436 DOI: 10.1152/ajpcell.00123.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
Abstract
We are interested in understanding mechanisms that govern the protective role of exercise against lipid-induced insulin resistance, a key driver of type 2 diabetes. In this context, cell culture models provide a level of abstraction that aid in our understanding of cellular physiology. Here we describe the development of an in vitro myotube contraction system that provides this protective effect, and which we have harnessed to investigate lipid-induced insulin resistance. C2C12 myocytes were differentiated into contractile myotubes. A custom manufactured platinum electrode system and pulse stimulator, with polarity switching, provided an electrical pulse stimulus (EPS) (1 Hz, 6-ms pulse width, 1.5 V/mm, 16 h). Contractility was assessed by optical flow flied spot noise mapping and inhibited by application of ammonium acetate. Following EPS, myotubes were challenged with 0.5 mM palmitate for 4 h. Cells were then treated with or without insulin for glucose uptake (30 min), secondary insulin signaling activation (10 min), and phosphoinositide 3-kinase-α (PI3Kα) activity (5 min). Prolonged EPS increased non-insulin-stimulated glucose uptake (83%, P = 0.002), Akt (Thr308) phosphorylation (P = 0.005), and insulin receptor substrate-1 (IRS-1)-associated PI3Kα activity (P = 0.048). Palmitate reduced insulin-specific action on glucose uptake (-49%, P < 0.001) and inhibited insulin-stimulated Akt phosphorylation (P = 0.049) and whole cell PI3Kα activity (P = 0.009). The inhibitory effects of palmitate were completely absent with EPS pretreatment at the levels of glucose uptake, insulin responsiveness, Akt phosphorylation, and whole cell PI3Kα activity. This model suggests that muscle contraction alone is a sufficient stimulus to protect against lipid-induced insulin resistance as evidenced by changes in the proximal canonical insulin-signaling pathway.
Collapse
Affiliation(s)
- Stephan Nieuwoudt
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio.,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Ciarán E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Elizabeth Martelli
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Srinivasan Dasarathy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | | | - John P Kirwan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; .,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| |
Collapse
|
30
|
Jiwlawat S, Lynch E, Glaser J, Smit-Oistad I, Jeffrey J, Van Dyke JM, Suzuki M. Differentiation and sarcomere formation in skeletal myocytes directly prepared from human induced pluripotent stem cells using a sphere-based culture. Differentiation 2017; 96:70-81. [PMID: 28915407 DOI: 10.1016/j.diff.2017.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/01/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Human induced-pluripotent stem cells (iPSCs) are a promising resource for propagation of myogenic progenitors. Our group recently reported a unique protocol for the derivation of myogenic progenitors directly (without genetic modification) from human pluripotent cells using free-floating spherical culture. Here we expand our previous efforts and attempt to determine how differentiation duration, culture surface coatings, and nutrient supplements in the medium influence progenitor differentiation and formation of skeletal myotubes containing sarcomeric structures. A long differentiation period (over 6 weeks) promoted the differentiation of iPSC-derived myogenic progenitors and subsequent myotube formation. These iPSC-derived myotubes contained representative sarcomeric structures, consisting of organized myosin and actin filaments, and could spontaneously contract. We also found that a bioengineering approach using three-dimensional (3D) artificial muscle constructs could facilitate the formation of elongated myotubes. Lastly, we determined how culture surface coating matrices and different supplements would influence terminal differentiation. While both Matrigel and laminin coatings showed comparable effects on muscle differentiation, B27 serum-free supplement in the differentiation medium significantly enhanced myogenesis compared to horse serum. Our findings support the possibility to create an in vitro model of contractile sarcomeric myofibrils for disease modeling and drug screening to study neuromuscular diseases.
Collapse
Affiliation(s)
- Saowanee Jiwlawat
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Eileen Lynch
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Jennifer Glaser
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Ivy Smit-Oistad
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Jeremy Jeffrey
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Jonathan M Van Dyke
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA; The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
31
|
Khodabukus A, Baar K. Factors That Affect Tissue-Engineered Skeletal Muscle Function and Physiology. Cells Tissues Organs 2016; 202:159-168. [DOI: 10.1159/000446067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
Tissue-engineered skeletal muscle has the promise to be a tool for studying physiology, screening muscle-active drugs, and clinical replacement of damaged muscle. To maximize the potential benefits of engineered muscle, it is important to understand the factors required for tissue formation and how these affect muscle function. In this review, we evaluate how biomaterials, cell source, media components, and bioreactor interventions impact muscle function and phenotype.
Collapse
|
32
|
Liu L, Wang J, Duan S, Chen L, Xiang H, Dong Y, Wang W. Systematic evaluation of sericin protein as a substitute for fetal bovine serum in cell culture. Sci Rep 2016; 6:31516. [PMID: 27531556 PMCID: PMC4987615 DOI: 10.1038/srep31516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/21/2016] [Indexed: 12/22/2022] Open
Abstract
Fetal bovine serum (FBS) shows obvious deficiencies in cell culture, such as low batch to batch consistency, adventitious biological contaminant risk, and high cost, which severely limit the development of the cell culture industry. Sericin protein derived from the silkworm cocoon has become increasingly popular due to its diverse and beneficial cell culture characteristics. However, systematic evaluation of sericin as a substitute for FBS in cell culture medium remains limited. In this study, we conducted cellular morphological, physiological, and transcriptomic evaluation on three widely used mammalian cells. Compared with cells cultured in the control, those cultured in sericin-substitute medium showed similar cellular morphology, similar or higher cellular overall survival, lower population doubling time (PDT), and a higher percentage of S-phase with similar G2/G1 ratio, indicating comparable or better cell growth and proliferation. At the transcriptomic level, differentially expressed genes between cells in the two media were mainly enriched in function and biological processes related to cell growth and proliferation, reflecting that genes were activated to facilitate cell growth and proliferation. The results of this study suggest that cells cultured in sericin-substituted medium perform as well as, or even better than, those cultured in FBS-containing medium.
Collapse
Affiliation(s)
- Liyuan Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Jinhuan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shengchang Duan
- Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming 650500, China
| | - Lei Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Hui Xiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- South China Normal University, Guangzhou, 510631, China
| | - Yang Dong
- Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming 650500, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming 650500, China
| |
Collapse
|
33
|
Juhas M, Ye J, Bursac N. Design, evaluation, and application of engineered skeletal muscle. Methods 2016; 99:81-90. [PMID: 26455485 PMCID: PMC4821818 DOI: 10.1016/j.ymeth.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/03/2015] [Accepted: 10/04/2015] [Indexed: 12/17/2022] Open
Abstract
For over two decades, research groups have been developing methods to engineer three-dimensional skeletal muscle tissues. These tissues hold great promise for use in disease modeling and pre-clinical drug development, and have potential to serve as therapeutic grafts for functional muscle repair. Recent advances in the field have resulted in the engineering of regenerative muscle constructs capable of survival, vascularization, and functional maturation in vivo as well as the first-time creation of functional human engineered muscles for screening of therapeutics in vitro. In this review, we will discuss the methodologies that have progressed work in the muscle tissue engineering field to its current state. The emphasis will be placed on the existing procedures to generate myogenic cell sources and form highly functional muscle tissues in vitro, techniques to monitor and evaluate muscle maturation and performance in vitro and in vivo, and surgical strategies to both create diseased environments and ensure implant survival and rapid integration into the host. Finally, we will suggest the most promising methodologies that will enable continued progress in the field.
Collapse
Affiliation(s)
- Mark Juhas
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Jean Ye
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, United States.
| |
Collapse
|
34
|
den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, Oosterveer MH, Jonker JW, Groen AK, Reijngoud DJ, Bakker BM. Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARγ-Dependent Switch From Lipogenesis to Fat Oxidation. Diabetes 2015; 64:2398-408. [PMID: 25695945 DOI: 10.2337/db14-1213] [Citation(s) in RCA: 772] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/09/2015] [Indexed: 12/20/2022]
Abstract
Short-chain fatty acids (SCFAs) are the main products of dietary fiber fermentation and are believed to drive the fiber-related prevention of the metabolic syndrome. Here we show that dietary SCFAs induce a peroxisome proliferator-activated receptor-γ (PPARγ)-dependent switch from lipid synthesis to utilization. Dietary SCFA supplementation prevented and reversed high-fat diet-induced metabolic abnormalities in mice by decreasing PPARγ expression and activity. This increased the expression of mitochondrial uncoupling protein 2 and raised the AMP-to-ATP ratio, thereby stimulating oxidative metabolism in liver and adipose tissue via AMPK. The SCFA-induced reduction in body weight and stimulation of insulin sensitivity were absent in mice with adipose-specific disruption of PPARγ. Similarly, SCFA-induced reduction of hepatic steatosis was absent in mice lacking hepatic PPARγ. These results demonstrate that adipose and hepatic PPARγ are critical mediators of the beneficial effects of SCFAs on the metabolic syndrome, with clearly distinct and complementary roles. Our findings indicate that SCFAs may be used therapeutically as cheap and selective PPARγ modulators.
Collapse
Affiliation(s)
- Gijs den Besten
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands Netherlands Consortium for Systems Biology, Amsterdam, the Netherlands
| | - Aycha Bleeker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands Top Institute Food and Nutrition, Wageningen, the Netherlands
| | - Albert Gerding
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Karen van Eunen
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands Netherlands Consortium for Systems Biology, Amsterdam, the Netherlands Top Institute Food and Nutrition, Wageningen, the Netherlands
| | - Rick Havinga
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maaike H Oosterveer
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Johan W Jonker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Albert K Groen
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands Netherlands Consortium for Systems Biology, Amsterdam, the Netherlands Top Institute Food and Nutrition, Wageningen, the Netherlands Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dirk-Jan Reijngoud
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands Netherlands Consortium for Systems Biology, Amsterdam, the Netherlands Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Barbara M Bakker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics and Systems Biology, Center for Energy Metabolism and Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands Netherlands Consortium for Systems Biology, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Khodabukus A, Baar K. The effect of serum origin on tissue engineered skeletal muscle function. J Cell Biochem 2015; 115:2198-207. [PMID: 25146978 DOI: 10.1002/jcb.24938] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/15/2014] [Indexed: 02/02/2023]
Abstract
Skeletal muscle phenotype is regulated by a complex interaction between genetic, hormonal, and electrical inputs. However, because of the interrelatedness of these factors in vivo it is difficult to determine the importance of one over the other. Over the last 5 years, we have engineered skeletal muscles in the European Union (EU) and the United States (US) using the same clone of C2C12 cells. Strikingly, the dynamics of contraction of the muscles was dramatically different. Therefore, in this study we sought to determine whether the hormonal milieu (source of fetal bovine serum (FBS)) could alter engineered muscle phenotype. In muscles engineered in serum of US origin time-to-peak tension (2.2-fold), half relaxation (2.6-fold), and fatigue resistance (improved 25%) all showed indications of a shift towards a slower phenotype. Even though there was a dramatic shift in the rate of contraction, myosin heavy chain expression was the same. The contraction speed was instead related to a shift in calcium release/sensitivity proteins (DHPR = 3.1-fold lower, slow CSQ = 3.4-fold higher, and slow TnT = 2.4-fold higher) and calcium uptake proteins (slow SERCA = 1.7-fold higher and parvalbumin = 41-fold lower). These shifts in calcium dynamics were accompanied by a partial shift in metabolic enzymes, but could not be explained by purported regulators of muscle phenotype. These data suggest that hormonal differences in serum of USDA and EU origin cause a shift in calcium handling resulting in a dramatic change in engineered muscle function.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | | |
Collapse
|
36
|
Shimizu K, Araki H, Sakata K, Tonomura W, Hashida M, Konishi S. Microfluidic devices for construction of contractile skeletal muscle microtissues. J Biosci Bioeng 2015; 119:212-6. [DOI: 10.1016/j.jbiosc.2014.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/26/2014] [Accepted: 07/07/2014] [Indexed: 01/03/2023]
|
37
|
Girgis CM, Mokbel N, Cha KM, Houweling PJ, Abboud M, Fraser DR, Mason RS, Clifton-Bligh RJ, Gunton JE. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology 2014; 155:3227-37. [PMID: 24949660 PMCID: PMC4207908 DOI: 10.1210/en.2014-1016] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/13/2014] [Indexed: 12/03/2022]
Abstract
Vitamin D deficiency is associated with a range of muscle disorders, including myalgia, muscle weakness, and falls. In humans, polymorphisms of the vitamin D receptor (VDR) gene are associated with variations in muscle strength, and in mice, genetic ablation of VDR results in muscle fiber atrophy and motor deficits. However, mechanisms by which VDR regulates muscle function and morphology remain unclear. A crucial question is whether VDR is expressed in skeletal muscle and directly alters muscle physiology. Using PCR, Western blotting, and immunohistochemistry (VDR-D6 antibody), we detected VDR in murine quadriceps muscle. Detection by Western blotting was dependent on the use of hyperosmolar lysis buffer. Levels of VDR in muscle were low compared with duodenum and dropped progressively with age. Two in vitro models, C2C12 and primary myotubes, displayed dose- and time-dependent increases in expression of both VDR and its target gene CYP24A1 after 1,25(OH)2D (1,25 dihydroxyvitamin D) treatment. Primary myotubes also expressed functional CYP27B1 as demonstrated by luciferase reporter studies, supporting an autoregulatory vitamin D-endocrine system in muscle. Myofibers isolated from mice retained tritiated 25-hydroxyvitamin D3, and this increased after 3 hours of pretreatment with 1,25(OH)2D (0.1 nM). No such response was seen in myofibers from VDR knockout mice. In summary, VDR is expressed in skeletal muscle, and vitamin D regulates gene expression and modulates ligand-dependent uptake of 25-hydroxyvitamin D3 in primary myofibers.
Collapse
Affiliation(s)
- Christian M Girgis
- Garvan Institute of Medical Research (C.M.G., N.M., K.M.C., J.E.G.), Sydney, New South Wales, Australia 2010; Faculties of Medicine (C.M.G., M.A., R.S.M., R.J.C.-B., J.E.G.) and Veterinary Science (D.R.F.) University of Sydney, Sydney, New South Wales, Australia 2145; Bosch Institute (M.A., R.S.M.), University of Sydney, Sydney, New South Wales, Australia 2006; Murdoch Childrens Research Institute (P.J.H.), Melbourne, Victoria, Australia 3000; The Kolling Institute of Medical Research (R.J.C.-B.), Sydney, New South Wales, Australia 2065; Royal North Shore Hospital (R.J.C.-B.), Sydney, New South Wales, Australia 2065; Department of Endocrinology and Diabetes (J.E.G.), Westmead Hospital, Sydney, New South Wales, Australia 2145; and St Vincent's Clinical School (J.E.G.), University of New South Wales, Sydney, New South Wales, Australia 2010
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Madison RD, McGee C, Rawson R, Robinson GA. Extracellular vesicles from a muscle cell line (C2C12) enhance cell survival and neurite outgrowth of a motor neuron cell line (NSC-34). J Extracell Vesicles 2014; 3:22865. [PMID: 24563732 PMCID: PMC3930942 DOI: 10.3402/jev.v3.22865] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 12/26/2022] Open
Abstract
Introduction There is renewed interest in extracellular vesicles over the past decade or 2 after initially being thought of as simple cellular garbage cans to rid cells of unwanted components. Although there has been intense research into the role of extracellular vesicles in the fields of tumour and stem cell biology, the possible role of extracellular vesicles in nerve regeneration is just in its infancy. Background When a peripheral nerve is damaged, the communication between spinal cord motor neurons and their target muscles is disrupted and the result can be the loss of coordinated muscle movement. Despite state-of-the-art surgical procedures only approximately 10% of adults will recover full function after peripheral nerve repair. To improve upon such results will require a better understanding of the basic mechanisms that influence axon outgrowth and the interplay between the parent motor neuron and the distal end organ of muscle. It has previously been shown that extracellular vesicles are immunologically tolerated, display targeting ligands on their surface, and can be delivered in vivo to selected cell populations. All of these characteristics suggest that extracellular vesicles could play a significant role in nerve regeneration. Methods We have carried out studies using 2 very well characterized cell lines, the C2C12 muscle cell line and the motor neuron cell line NSC-34 to ask the question: Do extracellular vesicles from muscle influence cell survival and/or neurite outgrowth of motor neurons? Conclusion Our results show striking effects of extracellular vesicles derived from the muscle cell line on the motor neuron cell line in terms of neurite outgrowth and survival.
Collapse
Affiliation(s)
- Roger D Madison
- Department of Surgery, Duke University Medical Center, Durham, NC, USA ; Research Service of the Veterans Affairs Medical Center, Durham, NC, USA
| | - Christopher McGee
- Research Service of the Veterans Affairs Medical Center, Durham, NC, USA
| | - Renee Rawson
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Grant A Robinson
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
39
|
Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE. Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. Endocrinology 2014; 155:347-57. [PMID: 24280059 DOI: 10.1210/en.2013-1205] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vitamin D deficiency is linked to a range of muscle disorders including myalgia, muscle weakness, and falls. Humans with severe vitamin D deficiency and mice with transgenic vitamin D receptor (VDR) ablation have muscle fiber atrophy. However, molecular mechanisms by which vitamin D influences muscle function and fiber size remain unclear. A central question is whether VDR is expressed in skeletal muscle and is able to regulate transcription at this site. To address this, we examined key molecular and morphologic changes in C2C12 cells treated with 25-hydroxyvitamin D (25OHD) and 1,25-dihydroxyvitamin D (1,25(OH)(2)D). As well as stimulating VDR expression, 25(OH)D and 1,25(OH)(2)D dose-dependently increased expression of the classic vitamin D target cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24A1), demonstrating the presence of an autoregulatory vitamin D-endocrine system in these cells. Luciferase reporter studies demonstrated that cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1) was functional in these cells. Both 25OHD and 1,25(OH)(2)D altered C2C12 proliferation and differentiation. These effects were related to the increased expression of genes involved in G(0)/G(1) arrest (retinoblastoma protein [Rb], 1.3-fold; ATM, 1.5-fold, both P < .05), downregulation of mRNAs involved in G(1)/S transition, including myc and cyclin-D1 (0.7- and 0.8-fold, both P < .05) and reduced phosphorylation of Rb protein (0.3-fold, P < .005). After serum depletion, 1,25(OH)(2)D (100nM) suppressed myotube formation with decreased mRNAs for key myogenic regulatory factors (myogenin, 0.5-fold; myf5, 0.4-fold, P < .005) but led to a 1.8-fold increase in cross-sectional size of individual myotubes associated with markedly decreased myostatin expression (0.2-fold, P < .005). These data show that vitamin D signaling alters gene expression in C2C12 cells, with effects on proliferation, differentiation, and myotube size.
Collapse
Affiliation(s)
- Christian M Girgis
- Garvan Institute of Medical Research (C.M.G., N.M., K.C., J.E.G.), Sydney, New South Wales 2010, Australia; Faculty of Medicine (C.M.G., R.J.C.-B., J.E.G.), University of Sydney, Sydney, New South Wales 2008, Australia; The Kolling Institute of Medical Research (R.J.C.-B.) and Royal North Shore Hospital (R.J.C.-B.), Sydney, New South Wales 2065, Australia; Department of Endocrinology and Diabetes (J.E.G.), Westmead Hospital, Sydney, New South Wales 2145, Australia; and St Vincent's Clinical School (J.E.G.), University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | |
Collapse
|
40
|
Grubišić V, Gottipati MK, Stout RF, Grammer JR, Parpura V. Heterogeneity of myotubes generated by the MyoD and E12 basic helix-loop-helix transcription factors in otherwise non-differentiation growth conditions. Biomaterials 2013; 35:2188-98. [PMID: 24360578 DOI: 10.1016/j.biomaterials.2013.11.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/21/2013] [Indexed: 01/06/2023]
Abstract
We used a synthetic biology approach to produce myotubes from mammalian C2C12 myoblasts in non-differentiation growth conditions using the expression of basic helix-loop-helix transcription factors, MyoD and E12, in various combinations and configurations. Our approach not only recapitulated the basics of muscle development and physiology, as the obtained myotubes showed qualities similar to those seen in striated muscle fibers in vivo, but also allowed for the synthesis of populations of myotubes which assumed distinct morphology, myofibrillar development and Ca(2+) dynamics. This fashioned class of biomaterials is suitable for the building blocks of soft actuators in micro-scale biomimetic robotics. This production line strategy can be embraced in reparative medicine as synthetic human myotubes with predetermined morphological/functional properties could be obtained using this very approach. This methodology can be adopted beyond striated muscle for the engineering of other tissue components/cells whose differentiation is governed by the principles of basic helix-loop-helix transcription factors, as in the case, for example, of neural or immune cell types.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA
| | - Manoj K Gottipati
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA
| | - Randy F Stout
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA; The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - J Robert Grammer
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA; Department of Biotechnology, University or Rijeka, Rijeka 51000, Croatia.
| |
Collapse
|
41
|
Evaluation systems of generated forces of skeletal muscle cell-based bio-actuators. J Biosci Bioeng 2013; 115:115-21. [DOI: 10.1016/j.jbiosc.2012.08.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/20/2012] [Accepted: 08/31/2012] [Indexed: 11/20/2022]
|
42
|
Noh OJ, Park YH, Chung YW, Kim IY. Transcriptional regulation of selenoprotein W by MyoD during early skeletal muscle differentiation. J Biol Chem 2010; 285:40496-507. [PMID: 20956524 DOI: 10.1074/jbc.m110.152934] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selenoprotein W (SelW) is expressed in various tissues, but it is especially high in the skeletal muscle of mammals. Such tissue-specific protein expression implies regulation by a tissue-specific factor. In this study, we investigated SelW expression during myogenic C2C12 cell differentiation using RT-PCR, quantitative PCR, and Western blot analysis. Both the protein and mRNA levels of SelW were increased during C2C12 cell differentiation, particularly during the early stage. Sequence analysis of the SelW promoter revealed four putative E-boxes, E1, E2, E3, and E4, which are known binding sites for MyoD, a myogenic transcriptional factor. Luciferase reporter assay showed that E1 and E4 were crucial for MyoD-dependent promoter activity. Using EMSA analysis, we observed that MyoD bound directly to E1 but not to E4, even though E4 mutation reduced SelW promoter activity in the luciferase reporter assay. Binding of MyoD to E1 was further investigated by ChIP assay. These results suggest that the SelW gene was activated by the binding of MyoD to a specific E-box during early skeletal muscle differentiation.
Collapse
Affiliation(s)
- Ok Jeong Noh
- Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701, Korea
| | | | | | | |
Collapse
|