1
|
Kong D, Wang L, Yuan Y, Xia W, Liu Z, Shi M, Wu J. Review of key issues and potential strategies in bio-degradation of polyolefins. BIORESOURCE TECHNOLOGY 2024; 414:131557. [PMID: 39357608 DOI: 10.1016/j.biortech.2024.131557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Polyolefins are the most widely used plastic product and a major contributor to white pollution. Currently, studies on polyolefin degradation systems are mainly focused on microorganisms and some redox enzymes, and there is a serious black-box phenomenon. The use of polyolefin-degrading enzymes is limited because of the small number of enzymes; in addition, the catalytic efficiency of these enzymes is poor and their catalytic mechanism is unclear, which leads to the incomplete degradation of polyolefins to produce microplastics. In this review, three questions are addressed: the generation and degradation of action targets that promote the degradation of polyolefins, the different modes by which enzymes bind substrates and their application scenarios, and possible multienzyme systems in a unified system. This review will be valuable for mining or modifying polyolefin degradation enzymes and constructing polyolefins degradation systems and may provide novel ideas and opportunities for polyolefin degradation.
Collapse
Affiliation(s)
- Demin Kong
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yuan Yuan
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhanzhi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Meng Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
2
|
Zhao LX, Zou SP, Shen Q, Xue YP, Zheng YG. Enhancing the expression of the unspecific peroxygenase in Komagataella phaffii through a combination strategy. Appl Microbiol Biotechnol 2024; 108:320. [PMID: 38709366 DOI: 10.1007/s00253-024-13166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The unspecific peroxygenase (UPO) from Cyclocybe aegerita (AaeUPO) can selectively oxidize C-H bonds using hydrogen peroxide as an oxygen donor without cofactors, which has drawn significant industrial attention. Many studies have made efforts to enhance the overall activity of AaeUPO expressed in Komagataella phaffii by employing strategies such as enzyme-directed evolution, utilizing appropriate promoters, and screening secretion peptides. Building upon these previous studies, the objective of this study was to further enhance the expression of a mutant of AaeUPO with improved activity (PaDa-I) by increasing the gene copy number, co-expressing chaperones, and optimizing culture conditions. Our results demonstrated that a strain carrying approximately three copies of expression cassettes and co-expressing the protein disulfide isomerase showed an approximately 10.7-fold increase in volumetric enzyme activity, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. After optimizing the culture conditions, the volumetric enzyme activity of this strain further increased by approximately 48.7%, reaching 117.3 U/mL. Additionally, the purified catalytic domain of PaDa-I displayed regioselective hydroxylation of R-2-phenoxypropionic acid. The results of this study may facilitate the industrial application of UPOs. KEY POINTS: • The secretion of the catalytic domain of PaDa-I can be significantly enhanced through increasing gene copy numbers and co-expressing of protein disulfide isomerase. • After optimizing the culture conditions, the volumetric enzyme activity can reach 117.3 U/mL, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. • The R-2-phenoxypropionic acid can undergo the specific hydroxylation reaction catalyzed by catalytic domain of PaDa-I, resulting in the formation of R-2-(4-hydroxyphenoxy)propionic acid.
Collapse
Affiliation(s)
- Li-Xiang Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shu-Ping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
3
|
Agosto-Maldonado A, Guo J, Niu W. Engineering carboxylic acid reductases and unspecific peroxygenases for flavor and fragrance biosynthesis. J Biotechnol 2024; 385:1-12. [PMID: 38428504 PMCID: PMC11062483 DOI: 10.1016/j.jbiotec.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Emerging consumer demand for safer, more sustainable flavors and fragrances has created new challenges for the industry. Enzymatic syntheses represent a promising green production route, but the broad application requires engineering advancements for expanded diversity, improved selectivity, and enhanced stability to be cost-competitive with current methods. This review discusses recent advances and future outlooks for enzyme engineering in this field. We focus on carboxylic acid reductases (CARs) and unspecific peroxygenases (UPOs) that enable selective productions of complex flavor and fragrance molecules. Both enzyme types consist of natural variants with attractive characteristics for biocatalytic applications. Applying protein engineering methods, including rational design and directed evolution in concert with computational modeling, present excellent examples for property improvements to unleash the full potential of enzymes in the biosynthesis of value-added chemicals.
Collapse
Affiliation(s)
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.
| |
Collapse
|
4
|
Fu X, Lin K, Zhang X, Guo Z, Kang L, Li A. Identification, heterologous expression and characterization of a new unspecific peroxygenase from Marasmius fiardii PR-910. BIORESOUR BIOPROCESS 2024; 11:33. [PMID: 38647936 PMCID: PMC10992195 DOI: 10.1186/s40643-024-00751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Unspecific peroxygenases (UPOs) are glycosylated enzymes that provide an efficient method for oxyfunctionalizing a variety of substrates using only hydrogen peroxide (H2O2) as the oxygen donor. However, their poor heterologous expression has hindered their practical application. Here, a novel UPO from Marasmius fiardii PR910 (MfiUPO) was identified and heterologously expressed in Pichia pastoris. By employing a two-copy expression cassette, the protein titer reached 1.18 g L-1 in a 5 L bioreactor, marking the highest record. The glycoprotein rMfiUPO exhibited a smeared band in the 40 to 55 kDa range and demonstrated hydroxylation, epoxidation and alcohol oxidation. Moreover, the peroxidative activity was enhanced by 150% after exposure to 50% (v/v) acetone for 40 h. A semi-preparative production of 4-OH-β-ionone on a 100 mL scale resulted in a 54.2% isolated yield with 95% purity. With its high expression level, rMfiUPO is a promising candidate as an excellent parental template for enhancing desirable traits such as increased stability and selectivity through directed evolution, thereby meeting the necessary criteria for practical application.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China
| | - Kexin Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China
| | - Xiaodong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China
| | - Zhiyong Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China
| | - Lixin Kang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China.
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
5
|
Schmitz F, Röder A, Hoffrogge M, Urlacher VB, Koschorreck K. Agar plate-based activity assay for easy and fast screening of recombinant Pichia pastoris expressing unspecific peroxygenases. Biotechnol J 2024; 19:e2300421. [PMID: 38044796 DOI: 10.1002/biot.202300421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
Unspecific peroxygenases (UPOs) are promising biocatalysts that catalyze oxyfunctionalization reactions without the need for costly cofactors. Pichia pastoris (reclassified as Komagataella phaffii) is considered an attractive host for heterologous expression of UPOs. However, integration of UPO-expression cassettes into the genome via a single cross-over yields recombinant Pichia transformants with different UPO gene copy numbers resulting in different expression levels. Selection of the most productive Pichia transformants by a commonly used screening in liquid medium in 96-well plates is laborious and lasts up to 5 days. In this work, we developed a simple two-step agar plate-based assay to screen P. pastoris transformants for UPO activity with less effort, within shorter time, and without automated screening devices. After cell growth and protein expression on agar plates supplemented with methanol and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), an additional top agar layer supplemented with ABTS and peroxide is added. UPO activity is visualized within 15 min by formation of green zones around UPO-secreting P. pastoris transformants. The assay was validated with two UPOs, AbrUPO from Aspergillus brasiliensis and evolved PaDa-I from Agrocybe aegerita. The assay results were confirmed in a quantitative 96-deep well plate screening in liquid medium.
Collapse
Affiliation(s)
- Fabian Schmitz
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Annika Röder
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Maike Hoffrogge
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| | - Katja Koschorreck
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
| |
Collapse
|
6
|
Gomez de Santos P, González-Benjumea A, Fernandez-Garcia A, Aranda C, Wu Y, But A, Molina-Espeja P, Maté DM, Gonzalez-Perez D, Zhang W, Kiebist J, Scheibner K, Hofrichter M, Świderek K, Moliner V, Sanz-Aparicio J, Hollmann F, Gutiérrez A, Alcalde M. Engineering a Highly Regioselective Fungal Peroxygenase for the Synthesis of Hydroxy Fatty Acids. Angew Chem Int Ed Engl 2023; 62:e202217372. [PMID: 36583658 DOI: 10.1002/anie.202217372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
The hydroxylation of fatty acids is an appealing reaction in synthetic chemistry, although the lack of selective catalysts hampers its industrial implementation. In this study, we have engineered a highly regioselective fungal peroxygenase for the ω-1 hydroxylation of fatty acids with quenched stepwise over-oxidation. One single mutation near the Phe catalytic tripod narrowed the heme cavity, promoting a dramatic shift toward subterminal hydroxylation with a drop in the over-oxidation activity. While crystallographic soaking experiments and molecular dynamic simulations shed light on this unique oxidation pattern, the selective biocatalyst was produced by Pichia pastoris at 0.4 g L-1 in a fed-batch bioreactor and used in the preparative synthesis of 1.4 g of (ω-1)-hydroxytetradecanoic acid with 95 % regioselectivity and 83 % ee for the S enantiomer.
Collapse
Affiliation(s)
| | - Alejandro González-Benjumea
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, 41012, Seville, Spain
| | - Angela Fernandez-Garcia
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Carmen Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, 41012, Seville, Spain
| | - Yinqi Wu
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg St, 9, 2629 HZ, Delft, The Netherlands
| | - Andrada But
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg St, 9, 2629 HZ, Delft, The Netherlands
| | - Patricia Molina-Espeja
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, 28049, Madrid, Spain
| | - Diana M Maté
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, 28049, Madrid, Spain
| | - David Gonzalez-Perez
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, 28049, Madrid, Spain
| | - Wuyuan Zhang
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg St, 9, 2629 HZ, Delft, The Netherlands
| | - Jan Kiebist
- Institute of Biotechnology Institution, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany
| | - Katrin Scheibner
- Institute of Biotechnology Institution, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany
| | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763, Zittau, Germany
| | - Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castellon, Spain
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castellon, Spain
| | - Julia Sanz-Aparicio
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, C/Serrano 119, 28006, Madrid, Spain
| | - Frank Hollmann
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg St, 9, 2629 HZ, Delft, The Netherlands
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, 41012, Seville, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, 28049, Madrid, Spain
| |
Collapse
|
7
|
Discovery and Heterologous Expression of Unspecific Peroxygenases. Catalysts 2023. [DOI: 10.3390/catal13010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Since 2004, unspecific peroxygenases, in short UPOs (EC. 1.11.2.1), have been explored. UPOs are closing a gap between P450 monooxygenases and chloroperoxidases. These enzymes are highly active biocatalysts for the selective oxyfunctionalisation of C–H, C=C and C-C bonds. UPOs are secreted fungal proteins and Komagataella phaffii (Pichia pastoris) is an ideal host for high throughput screening approaches and UPO production. Heterologous overexpression of 26 new UPOs by K. phaffii was performed in deep well plate cultivation and shake flask cultivation up to 50 mL volume. Enzymes were screened using colorimetric assays with 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (DMP), naphthalene and 5-nitro-1,3-benzodioxole (NBD) as reporter substrates. The PaDa-I (AaeUPO mutant) and HspUPO were used as benchmarks to find interesting new enzymes with complementary activity profiles as well as good producing strains. Herein we show that six UPOs from Psathyrella aberdarensis, Coprinopsis marcescibilis, Aspergillus novoparasiticus, Dendrothele bispora and Aspergillus brasiliensis are particularly active.
Collapse
|
8
|
Robinson WXQ, Mielke T, Melling B, Cuetos A, Parkin A, Unsworth WP, Cartwright J, Grogan G. Comparing the Catalytic and Structural Characteristics of a 'Short' Unspecific Peroxygenase (UPO) Expressed in Pichia pastoris and Escherichia coli. Chembiochem 2023; 24:e202200558. [PMID: 36374006 PMCID: PMC10098773 DOI: 10.1002/cbic.202200558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Unspecific peroxygenases (UPOs) have emerged as valuable tools for the oxygenation of non-activated carbon atoms, as they exhibit high turnovers, good stability and depend only on hydrogen peroxide as the external oxidant for activity. However, the isolation of UPOs from their natural fungal sources remains a barrier to wider application. We have cloned the gene encoding an 'artificial' peroxygenase (artUPO), close in sequence to the 'short' UPO from Marasmius rotula (MroUPO), and expressed it in both the yeast Pichia pastoris and E. coli to compare the catalytic and structural characteristics of the enzymes produced in each system. Catalytic efficiency for the UPO substrate 5-nitro-1,3-benzodioxole (NBD) was largely the same for both enzymes, and the structures also revealed few differences apart from the expected glycosylation of the yeast enzyme. However, the glycosylated enzyme displayed greater stability, as determined by nano differential scanning fluorimetry (nano-DSF) measurements. Interestingly, while artUPO hydroxylated ethylbenzene derivatives to give the (R)-alcohols, also given by a variant of the 'long' UPO from Agrocybe aegerita (AaeUPO), it gave the opposite (S)-series of sulfoxide products from a range of sulfide substrates, broadening the scope for application of the enzymes. The structures of artUPO reveal substantial differences to that of AaeUPO, and provide a platform for investigating the distinctive activity of this and related'short' UPOs.
Collapse
Affiliation(s)
- Wendy X. Q. Robinson
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Tamara Mielke
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Benjamin Melling
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Anibal Cuetos
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Alison Parkin
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - William P. Unsworth
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | | | - Gideon Grogan
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
9
|
Walter RM, Zemella A, Schramm M, Kiebist J, Kubick S. Vesicle-based cell-free synthesis of short and long unspecific peroxygenases. Front Bioeng Biotechnol 2022; 10:964396. [PMID: 36394036 PMCID: PMC9663805 DOI: 10.3389/fbioe.2022.964396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Unspecific peroxygenases (UPOs, EC 1.11.2.1) are fungal enzymes that catalyze the oxyfunctionalization of non-activated hydrocarbons, making them valuable biocatalysts. Despite the increasing interest in UPOs that has led to the identification of thousands of putative UPO genes, only a few of these have been successfully expressed and characterized. There is currently no universal expression system in place to explore their full potential. Cell-free protein synthesis has proven to be a sophisticated technique for the synthesis of difficult-to-express proteins. In this work, we aimed to establish an insect-based cell-free protein synthesis (CFPS) platform to produce UPOs. CFPS relies on translationally active cell lysates rather than living cells. The system parameters can thus be directly manipulated without having to account for cell viability, thereby making it highly adaptable. The insect-based lysate contains translocationally active, ER-derived vesicles, called microsomes. These microsomes have been shown to allow efficient translocation of proteins into their lumen, promoting post-translational modifications such as disulfide bridge formation and N-glycosylations. In this study the ability of a redox optimized, vesicle-based, eukaryotic CFPS system to synthesize functional UPOs was explored. The influence of different reaction parameters as well as the influence of translocation on enzyme activity was evaluated for a short UPO from Marasmius rotula and a long UPO from Agrocybe aegerita. The capability of the CFPS system described here was demonstrated by the successful synthesis of a novel UPO from Podospora anserina, thus qualifying CFPS as a promising tool for the identification and evaluation of novel UPOs and variants thereof.
Collapse
Affiliation(s)
- Ruben Magnus Walter
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Marina Schramm
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jan Kiebist
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry – Biochemistry, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Potsdam, Germany
| |
Collapse
|
10
|
Zhang K, Hu J, Yang S, Xu W, Wang Z, Zhuang P, Grossart HP, Luo Z. Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129406. [PMID: 35753302 DOI: 10.1016/j.jhazmat.2022.129406] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Lack of degradability and the accumulation of polymeric wastes increase the risk for the health of the environment. Recently, recycling of polymeric waste materials becomes increasingly important as raw materials for polymer synthesis are in short supply due to the rise in price and supply chain disruptions. As an important polymer, polyurethane (PU) is widely used in modern life, therefore, PU biodegradation is desirable to avoid its accumulation in the environment. In this study, we isolated a fungal strain Cladosporium halotolerans from the deep sea which can grow in mineral medium with a polyester PU (Impranil DLN) as a sole carbon source. Further, we demonstrate that it can degrade up to 80% of Impranil PU after 3 days of incubation at 28 ℃ by breaking the carbonyl groups (1732 cm-1) and C-N-H bonds (1532 cm-1 and 1247 cm-1) as confirmed by Fourier-transform infrared (FTIR) spectroscopy analysis. Gas chromatography-mass spectrometry (GC-MS) analysis revealed polyols and alkanes as PU degradation intermediates, indicating the hydrolysis of ester and urethane bonds. Esterase and urease activities were detected in 7 days-old cultures with PU as a carbon source. Transcriptome analysis showed a number of extracellular protein genes coding for enzymes such as cutinase, lipase, peroxidase and hydrophobic surface binding proteins A (HsbA) were expressed when cultivated on Impranil PU. The yeast two-hybrid assay revealed that the hydrophobic surface binding protein ChHsbA1 directly interacts with inducible esterases, ChLip1 (lipase) and ChCut1 (cutinase). Further, the KEGG pathway for "fatty acid degradation" was significantly enriched in Impranil PU inducible genes, indicating that the fungus may use the degradation intermediates to generate energy via this pathway. Taken together, our data indicates secretion of both esterase and hydrophobic surface binding proteins by C. halotolerans plays an important role in Impranil PU absorption and subsequent degradation. Our study provides a mechanistic insight into Impranil PU biodegradation by deep sea fungi and provides the basis for future development of biotechnological PU recycling.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Jiege Hu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Shuai Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Zhichao Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Peiwen Zhuang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, PR China; School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, PR China; Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China.
| |
Collapse
|
11
|
Linde D, González-Benjumea A, Aranda C, Carro J, Gutiérrez A, Martínez AT. Engineering Collariella virescens Peroxygenase for Epoxides Production from Vegetable Oil. Antioxidants (Basel) 2022; 11:antiox11050915. [PMID: 35624779 PMCID: PMC9137900 DOI: 10.3390/antiox11050915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Vegetable oils are valuable renewable resources for the production of bio-based chemicals and intermediates, including reactive epoxides of industrial interest. Enzymes are an environmentally friendly alternative to chemical catalysis in oxygenation reactions, epoxidation included, with the added advantage of their potential selectivity. The unspecific peroxygenase of Collariella virescens is only available as a recombinant enzyme (rCviUPO), which is produced in Escherichia coli for protein engineering and analytical-scale optimization of plant lipid oxygenation. Engineering the active site of rCviUPO (by substituting one, two, or up to six residues of its access channel by alanines) improved the epoxidation of individual 18-C unsaturated fatty acids and hydrolyzed sunflower oil. The double mutation at the heme channel (F88A/T158A) enhanced epoxidation of polyunsaturated linoleic and α−linolenic acids, with the desired diepoxides representing > 80% of the products (after 99% substrate conversion). More interestingly, process optimization increased (by 100-fold) the hydrolyzate concentration, with up to 85% epoxidation yield, after 1 h of reaction time with the above double variant. Under these conditions, oleic acid monoepoxide and linoleic acid diepoxide are the main products from the sunflower oil hydrolyzate.
Collapse
Affiliation(s)
- Dolores Linde
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), Consejo Superior de Investigaciones Científicas (CSIC), E-28040 Madrid, Spain; (D.L.); (J.C.)
| | - Alejandro González-Benjumea
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), E-41012 Seville, Spain; (A.G.-B.); (A.G.)
| | - Carmen Aranda
- Johnson Matthey, Cambridge Science Park U260, Cambridge CB4 0FP, UK;
| | - Juan Carro
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), Consejo Superior de Investigaciones Científicas (CSIC), E-28040 Madrid, Spain; (D.L.); (J.C.)
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), E-41012 Seville, Spain; (A.G.-B.); (A.G.)
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), Consejo Superior de Investigaciones Científicas (CSIC), E-28040 Madrid, Spain; (D.L.); (J.C.)
- Correspondence: ; Tel.: +34-918373112
| |
Collapse
|
12
|
Structural Characterization of Two Short Unspecific Peroxygenases: Two Different Dimeric Arrangements. Antioxidants (Basel) 2022; 11:antiox11050891. [PMID: 35624755 PMCID: PMC9137552 DOI: 10.3390/antiox11050891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Unspecific peroxygenases (UPOs) are extracellular fungal enzymes of biotechnological interest as self-sufficient (and more stable) counterparts of cytochrome P450 monooxygenases, the latter being present in most living cells. Expression hosts and structural information are crucial for exploiting UPO diversity (over eight thousand UPO-type genes were identified in sequenced genomes) in target reactions of industrial interest. However, while many thousands of entries in the Protein Data Bank include molecular coordinates of P450 enzymes, only 19 entries correspond to UPO enzymes, and UPO structures from only two species (Agrocybe aegerita and Hypoxylon sp.) have been published to date. In the present study, two UPOs from the basidiomycete Marasmius rotula (rMroUPO) and the ascomycete Collariella virescens (rCviUPO) were crystallized after sequence optimization and Escherichia coli expression as active soluble enzymes. Crystals of rMroUPO and rCviUPO were obtained at sufficiently high resolution (1.45 and 1.95 Å, respectively) and the corresponding structures were solved by molecular replacement. The crystal structures of the two enzymes (and two mutated variants) showed dimeric proteins. Complementary biophysical and molecular biology studies unveiled the diverse structural bases of the dimeric nature of the two enzymes. Intermolecular disulfide bridge and parallel association between two α-helices, among other interactions, were identified at the dimer interfaces. Interestingly, one of the rCviUPO variants incorporated the ability to produce fatty acid diepoxides—reactive compounds with valuable cross-linking capabilities—due to removal of the enzyme C-terminal tail located near the entrance of the heme access channel. In conclusion, different dimeric arrangements could be described in (short) UPO crystal structures.
Collapse
|
13
|
Olmedo A, Ullrich R, Hofrichter M, del Río JC, Martínez ÁT, Gutiérrez A. Novel Fatty Acid Chain-Shortening by Fungal Peroxygenases Yielding 2C-Shorter Dicarboxylic Acids. Antioxidants (Basel) 2022; 11:antiox11040744. [PMID: 35453429 PMCID: PMC9025384 DOI: 10.3390/antiox11040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Unspecific peroxygenases (UPOs), the extracellular enzymes capable of oxygenating a potpourri of aliphatic and aromatic substrates with a peroxide as co-substrate, come out with a new reaction: carbon-chain shortening during the conversion of fatty acids with the well-known UPOs from Coprinopsis cinerea (rCciUPO) and Cyclocybe (Agrocybe) aegerita (AaeUPO). Although a pathway (Cα-oxidation) for shortening the hydrocarbon chain of saturated fatty acids has already been reported for the UPO from Marasmius rotula (MroUPO), it turned out that rCciUPO and AaeUPO shorten the chain length of both saturated and unsaturated fatty acids in a different way. Thus, the reaction sequence does not necessarily start at the Cα-carbon (adjacent to the carboxyl group), as in the case of MroUPO, but proceeds through the subterminal (ω-1 and ω-2) carbons of the chain via several oxygenations. This new type of shortening leads to the formation of a dicarboxylic fatty acid reduced in size by two carbon atoms in the first step, which can subsequently be further shortened, carbon by carbon, by the UPO Cα-oxidation mechanism.
Collapse
Affiliation(s)
- Andrés Olmedo
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Av. Reina Mercedes 10, 41012 Seville, Spain; (A.O.); (J.C.d.R.)
| | - René Ullrich
- Unit of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany; (R.U.); (M.H.)
| | - Martin Hofrichter
- Unit of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany; (R.U.); (M.H.)
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Av. Reina Mercedes 10, 41012 Seville, Spain; (A.O.); (J.C.d.R.)
| | - Ángel T. Martínez
- Centro de Investigaciones Biológicas “Margarita Salas”, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Av. Reina Mercedes 10, 41012 Seville, Spain; (A.O.); (J.C.d.R.)
- Correspondence: ; Tel.: +34-954624711
| |
Collapse
|
14
|
Enzymatic Epoxidation of Long-Chain Terminal Alkenes by Fungal Peroxygenases. Antioxidants (Basel) 2022; 11:antiox11030522. [PMID: 35326172 PMCID: PMC8944640 DOI: 10.3390/antiox11030522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H2O2 as cosubstrate. Here, we show how several UPOs, such as those from Cyclocybe (Agrocybe) aegerita (AaeUPO), Marasmius rotula (MroUPO), Coprinopsis cinerea (rCciUPO), Humicola insolens (rHinUPO), and Daldinia caldariorum (rDcaUPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C12:1 to C20:1) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with rCciUPO being responsible for the highest substrate turnover and MroUPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies.
Collapse
|
15
|
Zhang H, Kong D, Wang L, Xia W, Yao C, Wu J. Degradation of UV-pretreated polyolefins by latex clearing protein from Streptomyces sp. Strain K30. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150779. [PMID: 34619208 DOI: 10.1016/j.scitotenv.2021.150779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Plastic products made of polyethylene (PE), polypropylene (PP), and polystyrene (PS) are widely used in daily life and industrial production. Polyolefins-which have a very stable structure and do not contain any active molecular groups-are difficult to degrade and pose a serious global environment threat. This study selected latex clearing protein (LcpK30) derived from Streptomyces sp. Strain K30. The natural substrate of the enzyme is rubber (cis-1, 4-polyisoprene), and the site of action is the carbon‑carbon double bond. LcpK30 was incubated with UV-irradiated polyolefin PE, PP and PS (UV-PE, UV-PP, and UV-PS containing carbon‑carbon double bonds) for 5 d at 37 °C. The results showed that UV-PE-LcpK30 was more fragmented than UV-PE-blank; the Fourier transform infrared spectroscopy results showed that UV-PE-LcpK30 and UV-PP-LcpK30 produced new active groups (e.g., -OH and -C=O); however, the effect on UV-PS was not significant. Scanning electron microscopy results showed that the treated group had more obvious roughness, cracks, and pits than the control group. The results of high-temperature gel permeation chromatography showed that the average molecular weight (Mw) of UV-PE-LcpK30 and UV-PP-LcpK30 decreased; the Mw of UV-PE5-LcpK30 was reduced by 42.02%. The results of gas chromatography-mass spectrometry showed the production of ketones. Therefore, the LcpK30 latex clearing protein degrade UV-oxidized polyolefin plastics and has great potential for PE and PP degradation but may not be suitable for PS. Furthermore, other Lcps (such as LcpNRRL, LcpNVL3) can also degrade UV-PE.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Demin Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Congyu Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology, Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
16
|
Broadening the Biocatalytic Toolbox-Screening and Expression of New Unspecific Peroxygenases. Antioxidants (Basel) 2022; 11:antiox11020223. [PMID: 35204106 PMCID: PMC8868357 DOI: 10.3390/antiox11020223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Unspecific peroxygenases (UPOs) catalyze the selective transfer of single oxygen atoms from peroxides to a broad range of substrates such as un-activated hydrocarbons. Since specific oxyfunctionalizations are among the most-desired reactions in synthetic chemistry, UPOs are of high industrial interest. To broaden the number of available enzymes, computational and experimental methods were combined in this study. After a comparative alignment and homology modelling, the enzymes were expressed directly in P. pastoris. Out of ten initially selected sequences, three enzymes (one from Aspergillus niger and two from Candolleomyces aberdarensis) were actively expressed. Cultivation of respective expression clones in a bioreactor led to production titers of up to 300 mg L−1. Enzymes were purified to near homogeneity and characterized regarding their specific activities and pH-optima for typical UPO substrates. This work demonstrated that directed evolution is not necessarily required to produce UPOs in P. pastoris at respective titers. The heterologous producibility of these three UPOs will expand the toolbox of available enzymes and help to advance their synthetic application.
Collapse
|
17
|
Hofrichter M, Kellner H, Herzog R, Karich A, Kiebist J, Scheibner K, Ullrich R. Peroxide-Mediated Oxygenation of Organic Compounds by Fungal Peroxygenases. Antioxidants (Basel) 2022; 11:163. [PMID: 35052667 PMCID: PMC8772875 DOI: 10.3390/antiox11010163] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/03/2022] Open
Abstract
Unspecific peroxygenases (UPOs), whose sequences can be found in the genomes of thousands of filamentous fungi, many yeasts and certain fungus-like protists, are fascinating biocatalysts that transfer peroxide-borne oxygen (from H2O2 or R-OOH) with high efficiency to a wide range of organic substrates, including less or unactivated carbons and heteroatoms. A twice-proline-flanked cysteine (PCP motif) typically ligates the heme that forms the heart of the active site of UPOs and enables various types of relevant oxygenation reactions (hydroxylation, epoxidation, subsequent dealkylations, deacylation, or aromatization) together with less specific one-electron oxidations (e.g., phenoxy radical formation). In consequence, the substrate portfolio of a UPO enzyme always combines prototypical monooxygenase and peroxidase activities. Here, we briefly review nearly 20 years of peroxygenase research, considering basic mechanistic, molecular, phylogenetic, and biotechnological aspects.
Collapse
Affiliation(s)
- Martin Hofrichter
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Robert Herzog
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Alexander Karich
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| | - Jan Kiebist
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany; (J.K.); (K.S.)
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
| | - Katrin Scheibner
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany; (J.K.); (K.S.)
| | - René Ullrich
- Department of Bio- and Environmental Sciences, TU Dresden-International Institute Zittau, Markt 23, 02763 Zittau, Germany; (H.K.); (R.H.); (A.K.); (R.U.)
| |
Collapse
|
18
|
Regioselective and Stereoselective Epoxidation of n-3 and n-6 Fatty Acids by Fungal Peroxygenases. Antioxidants (Basel) 2021; 10:antiox10121888. [PMID: 34942990 PMCID: PMC8698580 DOI: 10.3390/antiox10121888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Epoxide metabolites from n-3 and n-6 polyunsaturated fatty acids arouse interest thanks to their physiological and pharmacological activities. Their chemical synthesis has significant drawbacks, and enzymes emerge as an alternative with potentially higher selectivity and greener nature. Conversion of eleven eicosanoid, docosanoid, and other n-3/n-6 fatty acids into mono-epoxides by fungal unspecific peroxygenases (UPOs) is investigated, with emphasis on the Agrocybe aegerita (AaeUPO) and Collariella virescens (rCviUPO) enzymes. GC-MS revealed the strict regioselectivity of the n-3 and n-6 reactions with AaeUPO and rCviUPO, respectively, yielding 91%-quantitative conversion into mono-epoxides at the last double bond. Then, six of these mono-epoxides were obtained at mg-scale, purified and further structurally characterized by 1H, 13C and HMBC NMR. Moreover, chiral HPLC showed that the n-3 epoxides were also formed (by AaeUPO) with total S/R enantioselectivity (ee > 99%) while the n-6 epoxides (from rCviUPO reactions) were formed in nearly racemic mixtures. The high regio- and enantioselectivity of several of these reactions unveils the synthetic utility of fungal peroxygenases in fatty acid epoxidation.
Collapse
|
19
|
Hobisch M, Holtmann D, Gomez de Santos P, Alcalde M, Hollmann F, Kara S. Recent developments in the use of peroxygenases - Exploring their high potential in selective oxyfunctionalisations. Biotechnol Adv 2021; 51:107615. [PMID: 32827669 PMCID: PMC8444091 DOI: 10.1016/j.biotechadv.2020.107615] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Peroxygenases are an emerging new class of enzymes allowing selective oxyfunctionalisation reactions in a cofactor-independent way different from well-known P450 monooxygenases. Herein, we focused on recent developments from organic synthesis, molecular biotechnology and reaction engineering viewpoints that are devoted to bring these enzymes in industrial applications. This covers natural diversity from different sources, protein engineering strategies for expression, substrate scope, activity and selectivity, stabilisation of enzymes via immobilisation, and the use of peroxygenases in low water media. We believe that peroxygenases have much to offer for selective oxyfunctionalisations and we have much to study to explore the full potential of these versatile biocatalysts in organic synthesis.
Collapse
Affiliation(s)
- Markus Hobisch
- Department of Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr. 14, Gießen 35390, Germany
| | | | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, Madrid 28049, Spain; EvoEnzyme S.L, C/ Marie Curie 2, Madrid 28049, Spain
| | - Frank Hollmann
- Department of Biotechnology, Biocatalysis Group, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Selin Kara
- Department of Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark.
| |
Collapse
|
20
|
Biocatalytic Syntheses of Antiplatelet Metabolites of the Thienopyridines Clopidogrel and Prasugrel Using Fungal Peroxygenases. J Fungi (Basel) 2021; 7:jof7090752. [PMID: 34575790 PMCID: PMC8470877 DOI: 10.3390/jof7090752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022] Open
Abstract
Antithrombotic thienopyridines, such as clopidogrel and prasugrel, are prodrugs that undergo a metabolic two-step bioactivation for their pharmacological efficacy. In the first step, a thiolactone is formed, which is then converted by cytochrome P450-dependent oxidation via sulfenic acids to the active thiol metabolites. These metabolites are the active compounds that inhibit the platelet P2Y12 receptor and thereby prevent atherothrombotic events. Thus far, described biocatalytic and chemical synthesis approaches to obtain active thienopyridine metabolites are rather complex and suffer from low yields. In the present study, several unspecific peroxygenases (UPOs, EC 1.11.2.1) known to efficiently mimic P450 reactions in vitro—but requiring only hydroperoxide as oxidant—were tested for biocatalytic one-pot syntheses. In the course of the reaction optimization, various parameters such as pH and reductant, as well as organic solvent and amount were varied. The best results for the conversion of 1 mM thienopyridine were achieved using 2 U mL−1 of a UPO from agaric fungus Marasmius rotula (MroUPO) in a phosphate-buffered system (pH 7) containing 5 mM ascorbate, 2 mM h−1 H2O2 and 20% acetone. The preparation of the active metabolite of clopidogrel was successful via a two-step oxidation with an overall yield of 25%. In the case of prasugrel, a cascade of porcine liver esterase (PLE) and MroUPO was applied, resulting in a yield of 44%. The two metabolites were isolated with high purity, and their structures were confirmed by MS and MS2 spectrometry as well as NMR spectroscopy. The findings broaden the scope of UPO applications again and demonstrate that they can be effectively used for the selective synthesis of metabolites and late-state diversification of organic molecules, circumventing complex multistage chemical syntheses and providing sufficient material for structural elucidation, reference material, or cellular assays.
Collapse
|
21
|
The functional expression in yeast of two unusual acidic peroxygenases from Candolleomyces aberdarensis by adopting evolved secretion mutations. Appl Environ Microbiol 2021; 87:e0087821. [PMID: 34288703 DOI: 10.1128/aem.00878-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungal unspecific peroxygenases (UPOs) are emergent biocatalysts that perform highly selective C-H oxyfunctionalizations of organic compounds, yet their heterologous production at high levels is required for their practical use in synthetic chemistry. Here, we achieved functional expression in yeast of two new unusual acidic peroxygenases from Candolleomyces (Psathyrella) aberdarensis (PabUPO) and their production at large scale in bioreactor. Our strategy was based on adopting secretion mutations from Agrocybe aegerita UPO mutant -PaDa-I variant- designed by directed evolution for functional expression in yeast, which belongs to the same phylogenetic family as PabUPOs -long-type UPOs- and that shares 65% sequence identity. After replacing the native signal peptides by the evolved leader sequence from PaDa-I, we constructed and screened site-directed recombination mutant libraries yielding two recombinant PabUPOs with expression levels of 5.4 and 14.1 mg/L in S. cerevisiae. These variants were subsequently transferred to P. pastoris for overproduction in fed-batch bioreactor, boosting expression levels up to 290 mg/L with the highest volumetric activity achieved to date for a recombinant peroxygenase (60,000 U/L, with veratryl alcohol as substrate). With a broad pH activity profile, ranging from 2.0 to 9.0, these highly secreted, active and stable peroxygenases are promising tools for future engineering endeavors, as well as for their direct application in different industrial and environmental settings. IMPORTANCE In this work, we incorporated several secretion mutations from an evolved fungal peroxygenase to enhance the production of active and stable forms of two unusual acidic peroxygenases. The tandem-yeast expression system based on S. cerevisiae for directed evolution and P. pastoris for overproduction in a ∼300 mg/L scale, is a versatile tool to generate UPO variants. By employing this approach, we foresee that acidic UPO variants will be more readily engineered in the near future and adapted to practical enzyme cascade reactions that can be performed over a broad pH range to oxyfunctionalize a variety of organic compounds.
Collapse
|
22
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|
23
|
Kinner A, Rosenthal K, Lütz S. Identification and Expression of New Unspecific Peroxygenases - Recent Advances, Challenges and Opportunities. Front Bioeng Biotechnol 2021; 9:705630. [PMID: 34307325 PMCID: PMC8293615 DOI: 10.3389/fbioe.2021.705630] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
In 2004, the fungal heme-thiolate enzyme subfamily of unspecific peroxygenases (UPOs) was first described in the basidiomycete Agrocybe aegerita. As UPOs naturally catalyze a broad range of oxidative transformations by using hydrogen peroxide as electron acceptor and thus possess a great application potential, they have been extensively studied in recent years. However, despite their versatility to catalyze challenging selective oxyfunctionalizations, the availability of UPOs for potential biotechnological applications is restricted. Particularly limiting are the identification of novel natural biocatalysts, their production, and the description of their properties. It is hence of great interest to further characterize the enzyme subfamily as well as to identify promising new candidates. Therefore, this review provides an overview of the state of the art in identification, expression, and screening approaches of fungal UPOs, challenges associated with current protein production and screening strategies, as well as potential solutions and opportunities.
Collapse
Affiliation(s)
- Alina Kinner
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Katrin Rosenthal
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
24
|
Knorrscheidt A, Soler J, Hünecke N, Püllmann P, Garcia-Borràs M, Weissenborn MJ. Accessing Chemo- and Regioselective Benzylic and Aromatic Oxidations by Protein Engineering of an Unspecific Peroxygenase. ACS Catal 2021; 11:7327-7338. [PMID: 34631225 PMCID: PMC8496131 DOI: 10.1021/acscatal.1c00847] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/21/2021] [Indexed: 01/12/2023]
Abstract
![]()
Unspecific
peroxygenases (UPOs) enable oxyfunctionalizations of
a broad substrate range with unparalleled activities. Tailoring these
enzymes for chemo- and regioselective transformations represents a
grand challenge due to the difficulties in their heterologous productions.
Herein, we performed protein engineering in Saccharomyces
cerevisiae using the MthUPO from Myceliophthora thermophila. More than 5300 transformants
were screened. This protein engineering led to a significant reshaping
of the active site as elucidated by computational modelling. The reshaping
was responsible for the increased oxyfunctionalization activity, with
improved kcat/Km values of up to 16.5-fold for the model substrate 5-nitro-1,3-benzodioxole.
Moreover, variants were identified with high chemo- and regioselectivities
in the oxyfunctionalization of aromatic and benzylic carbons, respectively.
The benzylic hydroxylation was demonstrated to perform with enantioselectivities
of up to 95% ee. The proposed evolutionary protocol
and rationalization of the enhanced activities and selectivities acquired
by MthUPO variants represent a step forward toward
the use and implementation of UPOs in biocatalytic synthetic pathways
of industrial interest.
Collapse
Affiliation(s)
- Anja Knorrscheidt
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Jordi Soler
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Nicole Hünecke
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Pascal Püllmann
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Martin J. Weissenborn
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany
| |
Collapse
|
25
|
Püllmann P, Knorrscheidt A, Münch J, Palme PR, Hoehenwarter W, Marillonnet S, Alcalde M, Westermann B, Weissenborn MJ. A modular two yeast species secretion system for the production and preparative application of unspecific peroxygenases. Commun Biol 2021; 4:562. [PMID: 33980981 PMCID: PMC8115255 DOI: 10.1038/s42003-021-02076-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/31/2021] [Indexed: 01/27/2023] Open
Abstract
Fungal unspecific peroxygenases (UPOs) represent an enzyme class catalysing versatile oxyfunctionalisation reactions on a broad substrate scope. They are occurring as secreted, glycosylated proteins bearing a haem-thiolate active site and rely on hydrogen peroxide as the oxygen source. However, their heterologous production in a fast-growing organism suitable for high throughput screening has only succeeded once-enabled by an intensive directed evolution campaign. We developed and applied a modular Golden Gate-based secretion system, allowing the first production of four active UPOs in yeast, their one-step purification and application in an enantioselective conversion on a preparative scale. The Golden Gate setup was designed to be universally applicable and consists of the three module types: i) signal peptides for secretion, ii) UPO genes, and iii) protein tags for purification and split-GFP detection. The modular episomal system is suitable for use in Saccharomyces cerevisiae and was transferred to episomal and chromosomally integrated expression cassettes in Pichia pastoris. Shake flask productions in Pichia pastoris yielded up to 24 mg/L secreted UPO enzyme, which was employed for the preparative scale conversion of a phenethylamine derivative reaching 98.6 % ee. Our results demonstrate a rapid, modular yeast secretion workflow of UPOs yielding preparative scale enantioselective biotransformations.
Collapse
Affiliation(s)
- Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | | | - Judith Münch
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Paul R Palme
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | | | | | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Madrid, Spain
| | - Bernhard Westermann
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin J Weissenborn
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany.
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
26
|
Advances in enzymatic oxyfunctionalization of aliphatic compounds. Biotechnol Adv 2021; 51:107703. [PMID: 33545329 DOI: 10.1016/j.biotechadv.2021.107703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022]
Abstract
Selective oxyfunctionalizations of aliphatic compounds are difficult chemical reactions, where enzymes can play an important role due to their stereo- and regio-selectivity and operation under mild reaction conditions. P450 monooxygenases are well-known biocatalysts that mediate oxyfunctionalization reactions in different living organisms (from bacteria to humans). Unspecific peroxygenases (UPOs), discovered in fungi, have arisen as "dream biocatalysts" of great biotechnological interest because they catalyze the oxyfunctionalization of aliphatic and aromatic compounds, avoiding the necessity of expensive cofactors and regeneration systems, and only depending on H2O2 for their catalysis. Here, we summarize recent advances in aliphatic oxyfunctionalization reactions by UPOs, as well as the molecular determinants of the enzyme structures responsible for their activities, emphasizing the differences found between well-known P450s and the novel fungal peroxygenases.
Collapse
|
27
|
González-Benjumea A, Marques G, Herold-Majumdar OM, Kiebist J, Scheibner K, Del Río JC, Martínez AT, Gutiérrez A. High Epoxidation Yields of Vegetable Oil Hydrolyzates and Methyl Esters by Selected Fungal Peroxygenases. Front Bioeng Biotechnol 2021; 8:605854. [PMID: 33469532 PMCID: PMC7813931 DOI: 10.3389/fbioe.2020.605854] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Epoxides of vegetable oils and free and methylated fatty acids are of interest for several industrial applications. In the present work, refined rapeseed, sunflower, soybean, and linseed oils, with very different profiles of mono- and poly-unsaturated fatty acids, were saponified and transesterified, and the products treated with wild unspecific peroxygenases (UPOs, EC 1.11.2.1) from the ascomycete Chaetomium globosum (CglUPO) and the basidiomycete Marasmius rotula (MroUPO), as well as with recombinant UPO of the ascomycete Humicola insolens (rHinUPO), as an alternative to chemical epoxidation that is non-selective and requires strongly acidic conditions. The three enzymes were able of converting the free fatty acids and the methyl esters from the oils into epoxide derivatives, although significant differences in the oxygenation selectivities were observed between them. While CglUPO selectively produced "pure" epoxides (monoepoxides and/or diepoxides), MroUPO formed also hydroxylated derivatives of these epoxides, especially in the case of the oil hydrolyzates. Hydroxylated derivatives of non-epoxidized unsaturated fatty acids were practically absent in all cases, due to the preference of the three UPOs selected for this study to form the epoxides. Moreover, rHinUPO, in addition to forming monoepoxides and diepoxides of oleic and linoleic acid (and their methyl esters), respectively, like the other two UPOs, was capable of yielding the triepoxides of α-linolenic acid and its methyl ester. These enzymes appear as promising biocatalysts for the environmentally friendly production of reactive fatty-acid epoxides given their self-sufficient monooxygenase activity with selectivity toward epoxidation, and the ability to epoxidize, not only isolated pure fatty acids, but also complex mixtures from oil hydrolysis or transesterification containing different combinations of unsaturated (and saturated) fatty acids.
Collapse
Affiliation(s)
| | - Gisela Marques
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
| | | | | | | | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
| |
Collapse
|
28
|
Knorrscheidt A, Soler J, Hünecke N, Püllmann P, Garcia-Borràs M, Weissenborn MJ. Simultaneous screening of multiple substrates with an unspecific peroxygenase enabled modified alkane and alkene oxyfunctionalisations. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02457k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein engineering of an unspecific peroxygenase (UPO) was performed with three substrates and six products in parallel by a high throughput GC-MS setup. Modified chemo- and regioselective variants were identified for aliphatic substrates.
Collapse
Affiliation(s)
- Anja Knorrscheidt
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Jordi Soler
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Nicole Hünecke
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Pascal Püllmann
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Martin J. Weissenborn
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany
| |
Collapse
|
29
|
Municoy M, González-Benjumea A, Carro J, Aranda C, Linde D, Renau-Mínguez C, Ullrich R, Hofrichter M, Guallar V, Gutiérrez A, Martínez AT. Fatty-Acid Oxygenation by Fungal Peroxygenases: From Computational Simulations to Preparative Regio- and Stereoselective Epoxidation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martí Municoy
- Barcelona Supercomputing Center, Jordi Girona 29, Barcelona E-08034, Spain
| | | | - Juan Carro
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, Madrid E-28040, Spain
| | - Carmen Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes 10, Seville E-41012, Spain
| | - Dolores Linde
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, Madrid E-28040, Spain
| | - Chantal Renau-Mínguez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, Madrid E-28040, Spain
| | - René Ullrich
- Technische Universität Dresden, International Institute Zittau, Markt 23, Zittau D-02763, Germany
| | - Martin Hofrichter
- Technische Universität Dresden, International Institute Zittau, Markt 23, Zittau D-02763, Germany
| | - Victor Guallar
- Barcelona Supercomputing Center, Jordi Girona 29, Barcelona E-08034, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona E-08010, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes 10, Seville E-41012, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, Madrid E-28040, Spain
| |
Collapse
|
30
|
Knorrscheidt A, Püllmann P, Schell E, Homann D, Freier E, Weissenborn MJ. Identification of Novel Unspecific Peroxygenase Chimeras and Unusual YfeX Axial Heme Ligand by a Versatile High‐Throughput GC‐MS Approach. ChemCatChem 2020. [DOI: 10.1002/cctc.202000618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anja Knorrscheidt
- Bioorganic Chemistry Leibniz Institute of Plant Biochemistry Weinberg 3 06120 Halle (Saale) Germany
| | - Pascal Püllmann
- Bioorganic Chemistry Leibniz Institute of Plant Biochemistry Weinberg 3 06120 Halle (Saale) Germany
| | - Eugen Schell
- Bioorganic Chemistry Leibniz Institute of Plant Biochemistry Weinberg 3 06120 Halle (Saale) Germany
| | - Dominik Homann
- Bioorganic Chemistry Leibniz Institute of Plant Biochemistry Weinberg 3 06120 Halle (Saale) Germany
| | - Erik Freier
- CARS Microscopy Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V. Otto-Hahn-Str. 6b 4227 Dortmund Germany
| | - Martin J. Weissenborn
- Bioorganic Chemistry Leibniz Institute of Plant Biochemistry Weinberg 3 06120 Halle (Saale) Germany
- Institute of Chemisty Martin Luther University Halle-Wittenberg Kurt-Mothes-Str. 2 06120 Halle (Saale) Germany
| |
Collapse
|
31
|
Babot ED, Aranda C, Del Rı O JC, Ullrich R, Kiebist J, Scheibner K, Hofrichter M, Martı Nez AT, Gutiérrez A. Selective Oxygenation of Ionones and Damascones by Fungal Peroxygenases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5375-5383. [PMID: 32292026 DOI: 10.1021/acs.jafc.0c01019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Apocarotenoids are among the most highly valued fragrance constituents, being also appreciated as synthetic building blocks. This work shows the ability of unspecific peroxygenases (UPOs, EC1.11.2.1) from several fungi, some of them being described recently, to catalyze the oxyfunctionalization of α- and β-ionones and α- and β-damascones. Enzymatic reactions yielded oxygenated products such as hydroxy, oxo, carboxy, and epoxy derivatives that are interesting compounds for the flavor and fragrance and pharmaceutical industries. Although variable regioselectivity was observed depending on the substrate and enzyme, oxygenation was preferentially produced at the allylic position in the ring, being especially evident in the reaction with α-ionone, forming 3-hydroxy-α-ionone and/or 3-oxo-α-ionone. Noteworthy were the reactions with damascones, in the course of which some UPOs oxygenated the terminal position of the side chain, forming oxygenated derivatives (i.e., the corresponding alcohol, aldehyde, and carboxylic acid) at C-10, which were predominant in the Agrocybe aegerita UPO reactions, and first reported here.
Collapse
Affiliation(s)
- Esteban D Babot
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla, CSIC, Av. Reina Mercedes 10, E-41012 Seville, Spain
| | - Carmen Aranda
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla, CSIC, Av. Reina Mercedes 10, E-41012 Seville, Spain
| | - José C Del Rı O
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla, CSIC, Av. Reina Mercedes 10, E-41012 Seville, Spain
| | - René Ullrich
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Jan Kiebist
- JenaBios GmbH, Löbstedter Str. 80, 07749 Jena, Germany
| | | | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - Angel T Martı Nez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiologı́a de Sevilla, CSIC, Av. Reina Mercedes 10, E-41012 Seville, Spain
| |
Collapse
|
32
|
Two New Unspecific Peroxygenases from Heterologous Expression of Fungal Genes in Escherichia coli. Appl Environ Microbiol 2020; 86:AEM.02899-19. [PMID: 31980430 PMCID: PMC7082571 DOI: 10.1128/aem.02899-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022] Open
Abstract
UPOs catalyze regio- and stereoselective oxygenations of both aromatic and aliphatic compounds. Similar reactions were previously described for cytochrome P450 monooxygenases, but UPOs have the noteworthy biotechnological advantage of being stable enzymes requiring only H2O2 to be activated. Both characteristics are related to the extracellular nature of UPOs as secreted proteins. In the present study, the limited repertoire of UPO enzymes available for organic synthesis and other applications is expanded with the description of two new ascomycete UPOs obtained by Escherichia coli expression of the corresponding genes as soluble and active enzymes. Moreover, directed mutagenesis in E. coli, together with enzyme molecular modeling, provided relevant structure-function information on aromatic substrate oxidation by these two new biocatalysts. Unspecific peroxygenases (UPOs) constitute a new family of fungal heme-thiolate enzymes in which there is high biotechnological interest. Although several thousand genes encoding hypothetical UPO-type proteins have been identified in sequenced fungal genomes and other databases, only a few UPO enzymes have been experimentally characterized to date. Therefore, gene screening and heterologous expression from genetic databases are a priority in the search for ad hoc UPOs for oxyfunctionalization reactions of interest. Very recently, Escherichia coli production of a previously described basidiomycete UPO (as a soluble and active enzyme) has been reported. Here, we explored this convenient heterologous expression system to obtain the protein products from available putative UPO genes. In this way, two UPOs from the ascomycetes Collariella virescens (syn., Chaetomium virescens) and Daldinia caldariorum were successfully obtained, purified, and characterized. Comparison of their kinetic constants for oxidation of model substrates revealed 10- to 20-fold-higher catalytic efficiency of the latter enzyme in oxidizing simple aromatic compounds (such as veratryl alcohol, naphthalene, and benzyl alcohol). Homology molecular models of these enzymes showed three conserved and two differing residues in the distal side of the heme (the latter representing two different positions of a phenylalanine residue). Interestingly, replacement of the C. virescens UPO Phe88 by the homologous residue in the D. caldariorum UPO resulted in an F88L variant with 5- to 21-fold-higher efficiency in oxidizing these aromatic compounds. IMPORTANCE UPOs catalyze regio- and stereoselective oxygenations of both aromatic and aliphatic compounds. Similar reactions were previously described for cytochrome P450 monooxygenases, but UPOs have the noteworthy biotechnological advantage of being stable enzymes requiring only H2O2 to be activated. Both characteristics are related to the extracellular nature of UPOs as secreted proteins. In the present study, the limited repertoire of UPO enzymes available for organic synthesis and other applications is expanded with the description of two new ascomycete UPOs obtained by Escherichia coli expression of the corresponding genes as soluble and active enzymes. Moreover, directed mutagenesis in E. coli, together with enzyme molecular modeling, provided relevant structure-function information on aromatic substrate oxidation by these two new biocatalysts.
Collapse
|
33
|
Fungal Peroxygenases: A Phylogenetically Old Superfamily of Heme Enzymes with Promiscuity for Oxygen Transfer Reactions. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-29541-7_14] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
González-Benjumea A, Carro J, Renau-Mínguez C, Linde D, Fernández-Fueyo E, Gutiérrez A, Martínez AT. Fatty acid epoxidation byCollariella virescensperoxygenase and heme-channel variants. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02332a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new unspecific peroxygenase (UPO) generating a variety of epoxidized derivatives of unsaturated fatty acids has been discovered and engineered by heterologous expression of a putativeupogene.
Collapse
Affiliation(s)
| | - Juan Carro
- Centro de Investigaciones Biológicas
- CSIC
- E-28040 Madrid
- Spain
| | | | - Dolores Linde
- Centro de Investigaciones Biológicas
- CSIC
- E-28040 Madrid
- Spain
| | | | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla
- CSIC
- E-41012 Sevilla
- Spain
| | | |
Collapse
|
35
|
Directed evolution of carbon–hydrogen bond activating enzymes. Curr Opin Biotechnol 2019; 60:29-38. [DOI: 10.1016/j.copbio.2018.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022]
|
36
|
|
37
|
Burek BO, de Boer SR, Tieves F, Zhang W, van Schie M, Bormann S, Alcalde M, Holtmann D, Hollmann F, Bahnemann DW, Bloh JZ. Photoenzymatic Hydroxylation of Ethylbenzene Catalyzed by Unspecific Peroxygenase: Origin of Enzyme Inactivation and the Impact of Light Intensity and Temperature. ChemCatChem 2019. [DOI: 10.1002/cctc.201900610] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bastien O. Burek
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
- Institut für Technische ChemieLeibniz Universität Hannover Callinstraße 3 30167 Hannover Germany
| | - Sabrina R. de Boer
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Florian Tieves
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft (The Netherlands
| | - Wuyuan Zhang
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft (The Netherlands
| | - Morten van Schie
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft (The Netherlands
| | - Sebastian Bormann
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of Catalysis, CSIC 28049 Madrid Spain
| | - Dirk Holtmann
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technology Van der Maasweg 9 2629HZ Delft (The Netherlands
| | - Detlef W. Bahnemann
- Institut für Technische ChemieLeibniz Universität Hannover Callinstraße 3 30167 Hannover Germany
- Laboratory “Photoactive Nanocomposite Materials”Saint-Petersburg State University Ulyanovskaya str. 1, Peterhof Saint-Petersburg 198504 Russia
| | - Jonathan Z. Bloh
- Chemical Technology Group and Industrial Biotechnology GroupDECHEMA Forschungsinstitut Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| |
Collapse
|
38
|
Li X, Li Y, Zhao X, Zhang X, Zhao Q, Wang X, Li Y. Restructured fungal community diversity and biological interactions promote metolachlor biodegradation in soil microbial fuel cells. CHEMOSPHERE 2019; 221:735-749. [PMID: 30682662 DOI: 10.1016/j.chemosphere.2019.01.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/01/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Soil microbial fuel cells (MFCs) provide an inexhaustible electron acceptor for the removal of metolachlor and in situ biocurrent stimulation for fungal activity was investigated. The metolachlor degradation rates enhanced by 33%-36% upon the introduction of electrodes after 23 d. In closed MFCs, the abundance of Mortierella as the most dominant genus increased to 43%-54% from 17% in the original soil, whereas those of Aphanoascus and Penicillium decreased to 0.24%-0.39% and 0.38-0.72% from 14% to 11%, respectively. Additionally, a 10-fold amplification of unique OTUs was observed, mainly from increase on the electrode surface. The different treatments were clustered, especially samples near the cathode. The linear discriminant analysis showed that Aphanoascus fulvescens acted as a biomarker between the original and treated soils. The co-occurrence networks demonstrated that Mortierella universally competed for growth with coexisting species while Cladosporium exhibited the most affiliations with species from the 36 other genera present. The correlation analysis indicated that the species associated with degradation belonged to Mortierella, Kernia, Chaetomium and Trichosporon, while the species associated with electrogenesis were Debaryomyces hansenii and Mortierella polycephala. Importantly, this study is the first to reveal fungal community structure in soil MFCs with degrading pollutants and producing electricity.
Collapse
Affiliation(s)
- Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Yue Li
- Agro-Environmental Protection Institute, Ministry of Agriculture / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaodong Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaolin Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Qian Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
39
|
Aranda C, Municoy M, Guallar V, Kiebist J, Scheibner K, Ullrich R, del Río JC, Hofrichter M, Martínez AT, Gutiérrez A. Selective synthesis of 4-hydroxyisophorone and 4-ketoisophorone by fungal peroxygenases. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02114g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Some fungal peroxygenases (UPOs) selectively oxidize α-isophorone to 4-hydroxyisophorone (4HIP) and 4-ketoisophorone (4KIP) while others are less selective or unable.
Collapse
Affiliation(s)
- Carmen Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla
- CSIC
- E-41012 Seville
- Spain
| | | | - Víctor Guallar
- Barcelona Supercomputing Center
- Barcelona
- Spain
- ICREA Passeig Lluís Companys 23
- Barcelona
| | | | | | - René Ullrich
- TU Dresden
- Department of Bio- and Environmental Sciences
- 02763 Zittau
- Germany
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla
- CSIC
- E-41012 Seville
- Spain
| | - Martin Hofrichter
- TU Dresden
- Department of Bio- and Environmental Sciences
- 02763 Zittau
- Germany
| | | | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla
- CSIC
- E-41012 Seville
- Spain
| |
Collapse
|
40
|
Ramirez-Escudero M, Molina-Espeja P, Gomez de Santos P, Hofrichter M, Sanz-Aparicio J, Alcalde M. Structural Insights into the Substrate Promiscuity of a Laboratory-Evolved Peroxygenase. ACS Chem Biol 2018; 13:3259-3268. [PMID: 30376293 DOI: 10.1021/acschembio.8b00500] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of their minimal requirements, substrate promiscuity and product selectivity, fungal peroxygenases are now considered to be the jewel in the crown of C-H oxyfunctionalization biocatalysts. In this work, the crystal structure of the first laboratory-evolved peroxygenase expressed by yeast was determined at a resolution of 1.5 Å. Notable differences were detected between the evolved and native peroxygenase from Agrocybe aegerita, including the presence of a full N-terminus and a broader heme access channel due to the mutations that accumulated through directed evolution. Further mutagenesis and soaking experiments with a palette of peroxygenative and peroxidative substrates suggested dynamic trafficking through the heme channel as the main driving force for the exceptional substrate promiscuity of peroxygenase. Accordingly, this study provides the first structural evidence at an atomic level regarding the mode of substrate binding for this versatile biocatalyst, which is discussed within a biological and chemical context.
Collapse
Affiliation(s)
- Mercedes Ramirez-Escudero
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry “Rocasolano”, CSIC, 28006 Madrid, Spain
| | | | | | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Mark 23, 02763 Zittau, Germany
| | - Julia Sanz-Aparicio
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry “Rocasolano”, CSIC, 28006 Madrid, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| |
Collapse
|
41
|
Aranda C, Olmedo A, Kiebist J, Scheibner K, del Río JC, Martínez AT, Gutiérrez A. Selective Epoxidation of Fatty Acids and Fatty Acid Methyl Esters by Fungal Peroxygenases. ChemCatChem 2018. [DOI: 10.1002/cctc.201800849] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carmen Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla CSIC; Reina Mercedes 10 Seville E-41012 Spain
| | - Andrés Olmedo
- Instituto de Recursos Naturales y Agrobiología de Sevilla CSIC; Reina Mercedes 10 Seville E-41012 Spain
| | - Jan Kiebist
- JenaBios GmbH; Orlaweg 2 Jena D-00743 Germany
| | | | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla CSIC; Reina Mercedes 10 Seville E-41012 Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas CSIC; Ramiro de Maeztu 9 Madrid E-28040 Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla CSIC; Reina Mercedes 10 Seville E-41012 Spain
| |
Collapse
|
42
|
Dong J, Fernández‐Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biocatalytic Oxidation Reactions: A Chemist's Perspective. Angew Chem Int Ed Engl 2018; 57:9238-9261. [PMID: 29573076 PMCID: PMC6099261 DOI: 10.1002/anie.201800343] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/25/2023]
Abstract
Oxidation chemistry using enzymes is approaching maturity and practical applicability in organic synthesis. Oxidoreductases (enzymes catalysing redox reactions) enable chemists to perform highly selective and efficient transformations ranging from simple alcohol oxidations to stereoselective halogenations of non-activated C-H bonds. For many of these reactions, no "classical" chemical counterpart is known. Hence oxidoreductases open up shorter synthesis routes based on a more direct access to the target products. The generally very mild reaction conditions may also reduce the environmental impact of biocatalytic reactions compared to classical counterparts. In this Review, we critically summarise the most important recent developments in the field of biocatalytic oxidation chemistry and identify the most pressing bottlenecks as well as promising solutions.
Collapse
Affiliation(s)
- JiaJia Dong
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Elena Fernández‐Fueyo
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Milja Pesic
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Sandy Schmidt
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Yonghua Wang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Sabry Younes
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Wuyuan Zhang
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|
43
|
Dong J, Fernández-Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biokatalytische Oxidationsreaktionen - aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800343] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- JiaJia Dong
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Elena Fernández-Fueyo
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Caroline E. Paul
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Milja Pesic
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Sandy Schmidt
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Yonghua Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 P. R. China
| | - Sabry Younes
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Wuyuan Zhang
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| |
Collapse
|
44
|
Aranda C, Ullrich R, Kiebist J, Scheibner K, del Río JC, Hofrichter M, Martínez AT, Gutiérrez A. Selective synthesis of the resveratrol analogue 4,4′-dihydroxy-trans-stilbene and stilbenoids modification by fungal peroxygenases. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00272j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Different unspecific peroxygenases (UPOs) catalyze the hydroxylation or epoxidation of trans-stilbene and other stilbenoids yielding resveratrol analogs and other compounds.
Collapse
Affiliation(s)
- Carmen Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla
- CSIC
- E-41012 Seville
- Spain
| | - René Ullrich
- Department of Bio- and Environmental Sciences
- TU Dresden
- 02763 Zittau
- Germany
| | | | | | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla
- CSIC
- E-41012 Seville
- Spain
| | - Martin Hofrichter
- Department of Bio- and Environmental Sciences
- TU Dresden
- 02763 Zittau
- Germany
| | | | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla
- CSIC
- E-41012 Seville
- Spain
| |
Collapse
|
45
|
|
46
|
Olmedo A, del Río JC, Kiebist J, Ullrich R, Hofrichter M, Scheibner K, Martínez AT, Gutiérrez A. Fatty Acid Chain Shortening by a Fungal Peroxygenase. Chemistry 2017; 23:16985-16989. [PMID: 29083064 PMCID: PMC5725704 DOI: 10.1002/chem.201704773] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 11/08/2022]
Abstract
A recently discovered peroxygenase from the fungus Marasmius rotula (MroUPO) is able to catalyze the progressive one-carbon shortening of medium and long-chain mono- and dicarboxylic acids by itself alone, in the presence of H2 O2 . The mechanism, analyzed using H218 O2 , starts with an α-oxidation catalyzed by MroUPO generating an α-hydroxy acid, which is further oxidized by the enzyme to a reactive α-keto intermediate whose decarboxylation yields the one-carbon shorter fatty acid. Compared with the previously characterized peroxygenase of Agrocybe aegerita, a wider heme access channel, enabling fatty acid positioning with the carboxylic end near the heme cofactor (as seen in one of the crystal structures available) could be at the origin of the unique ability of MroUPO shortening carboxylic acid chains.
Collapse
Affiliation(s)
- Andrés Olmedo
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSICReina Mercedes 1041012SevilleSpain
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSICReina Mercedes 1041012SevilleSpain
| | - Jan Kiebist
- JenaBios GmbHLöbstedter Str. 8007749JenaGermany
| | | | | | | | - Angel T. Martínez
- Centro de Investigaciones Biológicas, CSICRamiro de Maeztu 928040MadridSpain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSICReina Mercedes 1041012SevilleSpain
| |
Collapse
|
47
|
Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalisations. Nat Catal 2017; 1:55-62. [PMID: 29430568 PMCID: PMC5798593 DOI: 10.1038/s41929-017-0001-5] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Peroxygenases offer attractive means to address challenges in selective oxyfunctionalisation chemistry. Despite their attractiveness, the application of peroxygenases in synthetic chemistry remains challenging due to their facile inactivation by the stoichiometric oxidant (H2O2). Often atom inefficient peroxide generation systems are required, which show little potential for large scale implementation. Here we show that visible light-driven, catalytic water oxidation can be used for in situ generation of H2O2 from water, rendering the peroxygenase catalytically active. In this way the stereoselective oxyfunctionalisation of hydrocarbons can be achieved by simply using the catalytic system, water and visible light.
Collapse
|
48
|
Deshpande AB, Chidley HG, Oak PS, Pujari KH, Giri AP, Gupta VS. Isolation and characterization of 9-lipoxygenase and epoxide hydrolase 2 genes: Insight into lactone biosynthesis in mango fruit (Mangifera indica L.). PHYTOCHEMISTRY 2017; 138:65-75. [PMID: 28291596 DOI: 10.1016/j.phytochem.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/03/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
Uniqueness and diversity of mango flavour across various cultivars are well known. Among various flavour metabolites lactones form an important class of aroma volatiles in certain mango varieties due to their ripening specific appearance and lower odour detection threshold. In spite of their biological and biochemical importance, lactone biosynthetic pathway in plants remains elusive. Present study encompasses quantitative real-time analysis of 9-lipoxygenase (Mi9LOX), epoxide hydrolase 2 (MiEH2), peroxygenase, hydroperoxide lyase and acyl-CoA-oxidase genes during various developmental and ripening stages in fruit of Alphonso, Pairi and Kent cultivars with high, low and no lactone content and explains their variable lactone content. Study also covers isolation, recombinant protein characterization and transient over-expression of Mi9LOX and MiEH2 genes in mango fruits. Recombinant Mi9LOX utilized linoleic and linolenic acids, while MiEH2 utilized aromatic and fatty acid epoxides as their respective substrates depicting their role in fatty acid metabolism. Significant increase in concentration of δ-valerolactone and δ-decalactone upon Mi9LOX over-expression and that of δ-valerolactone, γ-hexalactone and δ-hexalactone upon MiEH2 over-expression further suggested probable involvement of these genes in lactone biosynthesis in mango.
Collapse
Affiliation(s)
- Ashish B Deshpande
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, India
| | - Hemangi G Chidley
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, India
| | - Pranjali S Oak
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, India
| | - Keshav H Pujari
- Dr. Balasaheb Sawant Konkan Agriculture University, Dapoli, 415712, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411 008, India.
| |
Collapse
|
49
|
Kiebist J, Schmidtke K, Zimmermann J, Kellner H, Jehmlich N, Ullrich R, Zänder D, Hofrichter M, Scheibner K. A Peroxygenase from Chaetomium globosum Catalyzes the Selective Oxygenation of Testosterone. Chembiochem 2017; 18:563-569. [PMID: 28103392 PMCID: PMC5363369 DOI: 10.1002/cbic.201600677] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 01/18/2023]
Abstract
Unspecific peroxygenases (UPO, EC 1.11.2.1) secreted by fungi open an efficient way to selectively oxyfunctionalize diverse organic substrates, including less-activated hydrocarbons, by transferring peroxide-borne oxygen. We investigated a cell-free approach to incorporate epoxy and hydroxyl functionalities directly into the bulky molecule testosterone by a novel unspecific peroxygenase (UPO) that is produced by the ascomycetous fungus Chaetomium globosum in a complex medium rich in carbon and nitrogen. Purification by fast protein liquid chromatography revealed two enzyme fractions with the same molecular mass (36 kDa) and with specific activity of 4.4 to 12 U mg-1 . Although the well-known UPOs of Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) failed to convert testosterone in a comparative study, the UPO of C. globosum (CglUPO) accepted testosterone as substrate and converted it with total turnover number (TTN) of up to 7000 into two oxygenated products: the 4,5-epoxide of testosterone in β-configuration and 16α-hydroxytestosterone. The reaction performed on a 100 mg scale resulted in the formation of about 90 % of the epoxide and 10 % of the hydroxylation product, both of which could be isolated with purities above 96 %. Thus, CglUPO is a promising biocatalyst for the oxyfunctionalization of bulky steroids and it will be a useful tool for the synthesis of pharmaceutically relevant steroidal molecules.
Collapse
Affiliation(s)
- Jan Kiebist
- Faculty of Environment and Natural SciencesBrandenburg University of Technology Cottbus-SenftenbergUniversitätsplatz 101968SenftenbergGermany
| | - Kai‐Uwe Schmidtke
- Faculty of Environment and Natural SciencesBrandenburg University of Technology Cottbus-SenftenbergUniversitätsplatz 101968SenftenbergGermany
| | - Jörg Zimmermann
- Faculty of Environment and Natural SciencesBrandenburg University of Technology Cottbus-SenftenbergUniversitätsplatz 101968SenftenbergGermany
| | - Harald Kellner
- Department of Bio- and Environmental SciencesTU DresdenInternational Institute ZittauMarkt 2302763ZittauGermany
| | - Nico Jehmlich
- Department of Molecular Systems BiologyHelmholtz-Centre for Environmental ResearchUFZPermoserstrasse 1504318LeipzigGermany
| | - René Ullrich
- Department of Bio- and Environmental SciencesTU DresdenInternational Institute ZittauMarkt 2302763ZittauGermany
| | | | - Martin Hofrichter
- Department of Bio- and Environmental SciencesTU DresdenInternational Institute ZittauMarkt 2302763ZittauGermany
| | - Katrin Scheibner
- Faculty of Environment and Natural SciencesBrandenburg University of Technology Cottbus-SenftenbergUniversitätsplatz 101968SenftenbergGermany
| |
Collapse
|
50
|
Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.10.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|