1
|
Zhang YX, Gao JY, Wang MM, Qi WD, Chen QY, Wang YH, Cai WF, Guo K. Enrichment of nitrogen-fixing hydrogen-oxidizing bacteria community for efficient microbial protein production in airlift reactor. BIORESOURCE TECHNOLOGY 2025; 428:132443. [PMID: 40139468 DOI: 10.1016/j.biortech.2025.132443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Autotrophic nitrogen-fixing hydrogen-oxidizing bacteria (NF-HOB) have the capability to directly utilize carbon dioxide and dinitrogen for the sustainable production of microbial protein (MP), offering a promising alternative for food and feed applications. However, the low production rate of MP remains a major bottleneck for the practical implementation of NF-HOB. This study enriched a highly active and stable NF-HOB functional community for enhanced MP production. Utilizing an airlift reactor and implementing a two-stage gas supply strategy achieved a maximum cell dry weight (CDW) of 4.8 g/L and a biomass yield of 0.25 g CDW/L/day, surpassing previously reported values. The produced MP exhibited an essential amino acid profile superior to soybean meal and comparable to fish meal, with a notable accumulation of branched-chain amino acids (BCAAs). These findings provide new insights into NF-HOB enrichment strategies and further highlight their potential as a sustainable platform for MP production.
Collapse
Affiliation(s)
- Yu-Xiao Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jia-Yao Gao
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng-Meng Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei-Dong Qi
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qing-Yun Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yun-Hai Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Wen-Fang Cai
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Kun Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Pyzola SM, Dhakal P, Coyne MS, Grove JH, Vandiviere MM, Matocha CJ. Transformation of organic matter under anoxic conditions in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178899. [PMID: 40037227 DOI: 10.1016/j.scitotenv.2025.178899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 03/06/2025]
Abstract
The transformation of organic matter under anoxic conditions is mediated by hydrolysis and fermentation processes resulting in products such as acetate and hydrogen which are then utilized by microorganisms in respiration. Respiring microorganisms employ an array of electron acceptors in soils, including nitrate, manganese(IV), iron(III), and sulfate, which are consumed depending on availability and decreasing Gibbs free energy yield. The classical view is that respiration is more rapid than fermentation and these two processes do not co-occur, however, evidence has mounted to challenge this view. In addition, it is unclear how the production of ammonium during ammonification of soil organic nitrogen is intertwined with fermentation and respiration. Accordingly, stirred-batch microcosms were incubated to quantify relevant chemical species over time (acetate, nitrate, iron(II), manganese(II), and ammonium) using native terminal electron acceptors (TEAs) and soil organic matter in four soils varying in drainage status under anoxic conditions. The net rate of acetate production in one of the moderately well-drained (Sadler) soils was 1.1 ± 0.07 μmol g-1 d-1, which was similar to Mn(II) accumulation rates (0.95 ± 0.3 μmol g-1 d-1, P = 0.57). A similar trend was observed in the well-drained (Feliciana) soil, indicating that Mn(IV) respiration and fermentation can co-occur in certain soils. In the other moderately well drained and the poorly drained soil, acetate production was suppressed due in part to elevated native nitrate levels, which raised the redox potential and acted as a competitive electron acceptor. Across all four soils, ammonification rates were positively correlated with acetate formation rates (r = 0.88, P < 0.001), suggesting the possibility of amino acid fermentation during these anoxic incubations. These results challenge the current paradigm that the fermentation step in anoxic organic matter decomposition is slow and Mn(IV) respiration is rapid, with implications for organic matter transformations and nutrient cycling.
Collapse
Affiliation(s)
- S M Pyzola
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - P Dhakal
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - M S Coyne
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - J H Grove
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - M M Vandiviere
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - C J Matocha
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
3
|
Salvatori G, Giampaoli O, Marchetti A, Miccheli A, Virdis B, Sciubba F, Villano M. 13C-Labelled Glucose Reveals Shifts in Fermentation Pathway During Cathodic Electro-Fermentation with Mixed Microbial Culture. CHEMSUSCHEM 2025; 18:e202401033. [PMID: 39222403 PMCID: PMC11739826 DOI: 10.1002/cssc.202401033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Cathodic Electro-Fermentation (CEF) is an innovative approach to manage the spectrum of products deriving from anaerobic fermentation. Herein, mixed microbial culture fermentation using a ternary mixture containing labelled 13C glucose and non-labelled acetate and ethanol was studied to identify the role of polarization on the metabolic pathways of glucose fermentation. CEF at an applied potential of -700 mV (vs. SHE, Standard Hydrogen Electrode) enhanced the production yield of acetate, propionate, and butyrate (0.90±0.10, 0.22±0.03, and 0.34±0.05 mol/mol; respectively) compared to control tests performed at open circuit potential (OCP) (0.54±0.09, 0.15±0.04, and 0.20±0.001 mol/mol, respectively). Results indicate that CEF affected the 13C labelled fermented product levels and their fractional 13C enrichments, allowing to establish metabolic pathway models. This work demonstrates that, under cathodic polarization, the abundance of both fully 13C labelled propionate and butyrate isotopomers increased compared to control tests. The effect of CEF is mainly due to intermediates initially produced from the glucose metabolic transformation in the presence of non-labelled acetate and ethanol as external substrates. These findings represent a significant advancement in current knowledge of CEF, which offers a promising tool to control mixed cultures bioprocesses.
Collapse
Affiliation(s)
- Gaia Salvatori
- Department of ChemistrySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Ottavia Giampaoli
- NMR-Based Metabolomics LaboratorySapienza University of RomeP.le Aldo Moro 500185RomeItaly
- Department of Environmental BiologySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Angela Marchetti
- Department of ChemistrySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Alfredo Miccheli
- NMR-Based Metabolomics LaboratorySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Bernardino Virdis
- Australian Centre for Water and Environmental BiotechnologyThe University of QueenslandBrisbaneQLD 4072Australia
| | - Fabio Sciubba
- NMR-Based Metabolomics LaboratorySapienza University of RomeP.le Aldo Moro 500185RomeItaly
- Department of Environmental BiologySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| | - Marianna Villano
- Department of ChemistrySapienza University of RomeP.le Aldo Moro 500185RomeItaly
| |
Collapse
|
4
|
Bouranis JA, Tfaily MM. Inside the microbial black box: a redox-centric framework for deciphering microbial metabolism. Trends Microbiol 2024; 32:1170-1178. [PMID: 38825550 DOI: 10.1016/j.tim.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024]
Abstract
Microbial metabolism influences the global climate and human health and is governed by the balance between NADH and NAD+ through redox reactions. Historically, oxidative (i.e., catabolism) and reductive (i.e., fermentation) pathways have been studied in isolation, obscuring the complete metabolic picture. However, new omics technologies and biotechnological tools now allow an integrated system-level understanding of the drivers of microbial metabolism through observation and manipulation of redox reactions. Here we present perspectives on the importance of viewing microbial metabolism as the dynamic interplay between oxidative and reductive processes and apply this framework to diverse microbial systems. Additionally, we highlight novel biotechnologies to monitor and manipulate microbial redox status to control metabolism in unprecedented ways. This redox-focused systems biology framework enables a more mechanistic understanding of microbial metabolism.
Collapse
Affiliation(s)
- John A Bouranis
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85719, USA
| | - Malak M Tfaily
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85719, USA.
| |
Collapse
|
5
|
Zhang Y, Li J, Lian X, Li L, Yong YC, Meng J. Efficient caproate production from lignocellulose via single-step electro-fermentation platform without organic electron donor. BIORESOURCE TECHNOLOGY 2024; 411:131319. [PMID: 39173961 DOI: 10.1016/j.biortech.2024.131319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Caproate production by microbial fermentation gained the advantages of sustainability and eco-friendliness, but challenged by sterile fermentation environment, necessity of organic electron donors. Here, a single-step electro-fermentation (EF) process of mixed culture was proposed for caprate production from rice straw. At the optimal potential of -0.8 V, caproate concentration, yield and selectivity in the neutral red (NR)-mediated EF system were 2.4 g/L, 0.2 g/g and 26.6%. Long-term operation accumulated 5.3 g/L caproate with the yield and selectivity of 0.2 g/g and 34.2% in the EF+NR system. Bioaugmentation by dosing chain-elongation microbial consortium further improved the caproate production, yield and selectivity to 9.1 g/L, 0.3 g/g and 41.5%, respectively. The improved caproate production in the bioaugmented EF+NR system was likely due to the enhanced interspecies electron transfer, reconstructed microbial community, multiple electron donors and suitable pH environment. Present study offers a feasible strategy for cost-effective caprate production directly from waste biomass.
Collapse
Affiliation(s)
- Yafei Zhang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Xu Lian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Lin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| |
Collapse
|
6
|
Muksy R, Kolo K. Characterization of methanogens from landfill samples: implications for sustainable biogas production. BIOFOULING 2024; 40:549-562. [PMID: 39212051 DOI: 10.1080/08927014.2024.2393841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/20/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
This case study aimed to isolate and identify methanogenic bacteria from landfill soil, mud, and leachate samples to assess their role in anaerobic digestion and biogas production. Anaerobic digestion involves the breakdown of organic matter by a diverse group of bacteria under oxygen-free conditions, resulting in the production of methane and carbon dioxide. The collected samples from the landfill were cultured in a modified mineral salt medium (MSM). Microscopic observations revealed distinct coccus and bacillus morphologies of the isolated methanogenic bacteria. Gas production experiments and substrate utilization studies identified two types of methanogens. Methanosarcina sp., which utilized acetate and methanol for methane production, and Methanobacterium sp., utilizing hydrogen and carbon dioxide, as well as acetate. Scanning electron microscope (SEM) analysis confirmed the different morphotypes of the isolated methanogens. The study findings demonstrated the presence of diverse methanogens in the landfill environment, contributing to anaerobic digestion and biogas production.
Collapse
Affiliation(s)
- Renjbar Muksy
- Scientific Research Centre, Soran University, Soran, Iraq
| | - Kamal Kolo
- Scientific Research Centre, Soran University, Soran, Iraq
| |
Collapse
|
7
|
Salar-García MJ, Ortiz-Martínez VM, Sánchez-Segado S, Valero Sánchez R, Sáez López A, Lozano Blanco LJ, Godínez-Seoane C. Sustainable Production of Biofuels and Biochemicals via Electro-Fermentation Technology. Molecules 2024; 29:834. [PMID: 38398584 PMCID: PMC10891623 DOI: 10.3390/molecules29040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The energy crisis and climate change are two of the most concerning issues for human beings nowadays. For that reason, the scientific community is focused on the search for alternative biofuels to conventional fossil fuels as well as the development of sustainable processes to develop a circular economy. Bioelectrochemical processes have been demonstrated to be useful for producing bioenergy and value-added products from several types of waste. Electro-fermentation has gained great attention in the last few years due to its potential contribution to biofuel and biochemical production, e.g., hydrogen, methane, biopolymers, etc. Conventional fermentation processes pose several limitations in terms of their practical and economic feasibility. The introduction of two electrodes in a bioreactor allows the regulation of redox instabilities that occur in conventional fermentation, boosting the overall process towards a high biomass yield and enhanced product formation. In this regard, key parameters such as the type of culture, the nature of the electrodes as well as the operating conditions are crucial in order to maximize the production of biofuels and biochemicals via electro-fermentation technology. This article comprises a critical overview of the benefits and limitations of this emerging bio-electrochemical technology and its contribution to the circular economy.
Collapse
Affiliation(s)
- María José Salar-García
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Alfonso XIII, Aulario C, 30203 Cartagena, Spain;
| | - Víctor Manuel Ortiz-Martínez
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Sergio Sánchez-Segado
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Raúl Valero Sánchez
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Alfonso XIII, Aulario C, 30203 Cartagena, Spain;
| | - Antonia Sáez López
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Luis Javier Lozano Blanco
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Carlos Godínez-Seoane
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| |
Collapse
|
8
|
Vidal-Antich C, Peces M, Perez-Esteban N, Mata-Alvarez J, Dosta J, Astals S. Impact of food waste composition on acidogenic co-fermentation with waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157920. [PMID: 35952870 DOI: 10.1016/j.scitotenv.2022.157920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The impact of food waste (FW) composition on co-fermentation performance was studied to elucidate if adjusting FW composition can be used to drive the fermentation yield and profile, which is relevant for biorefinery applications. First, the impact of individual FW components (i.e., fruit, vegetables, pasta, rice, meat, fish, and cellulose) was assessed. Subsequently, the effect of mixing a protein-rich component and a carbohydrate-rich component was studied (i.e., fish/fruit and fish/cellulose, and meat/rice and meat/vegetable). All experiments were carried out in mesophilic batch assays using waste activated sludge (WAS) as main substrate, the same mixture ratio (70 % WAS +30 % FW on VS basis), and no pH control. Results showed that each FW component had a distinct effect on VFA yield and profile, with protein-rich components reaching the highest VFA yields; 502 and 442 mgCOD/gVS for WAS/Fish and WAS/Meat, respectively. A positive interaction on VFA yield was observed when mixing a protein-rich and a carbohydrate-rich component. This interaction was not proportional to the co-substrates proportion in the mixtures. On the other hand, the VFA profile was clearly driven by the components in the mixture, including both WAS and FW composition. Overall, these results indicate that predicting the VFA yield of WAS/FW co-fermentation is not just related to FW composition, but FW composition could be used to adjust the VFA profile to a certain extent.
Collapse
Affiliation(s)
- C Vidal-Antich
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M Peces
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - N Perez-Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J Mata-Alvarez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
9
|
Zhao W, Yan B, Ren ZJ, Wang S, Zhang Y, Jiang H. Highly selective butyric acid production by coupled acidogenesis and ion substitution electrodialysis. WATER RESEARCH 2022; 226:119228. [PMID: 36244139 DOI: 10.1016/j.watres.2022.119228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Selective production of carboxylic acids (CAs) from mixed culture fermentation remains a difficult task in organic waste valorization. Herein, we developed a facile and sustainable carbon loop strategy to regulate the fermentation micro-environment and steer acidogenesis towards selective butyric acid production. This new ion substitution electrodialysis-anaerobic membrane bioreactor (ISED-AnMBR) integrated system demonstrated a high butyric acid production at 11.19 g/L with a mass fraction of 76.05%. In comparison, only 1.04 g/L with a mass fraction of 30.56% was observed in the uncoupled control reactor. The carbon recovery reached a maximum of 96.09% with the assistance of ISED. Inorganic carbon assimilation was believed to be an important contributor, which was verified by 13C isotopic tracing. Microbial community structure shows the dominance of Clostridia (80.16%) in the unique micro-environment (e.g., pH 4.80-5.50) controlled by ISED, which is believed beneficial to the growth of such fermentative bacteria with main products of butyric acid and acetic acid. In addition, the emergence of chain elongators such as Clostridium sensu stricto 12 was observed to have a great influence on butyric acid production. This work provides a new approach to generate tailored longer chain carboxylic acids from organic waste with high titer thus contributing to a circular economy.
Collapse
Affiliation(s)
- Wenyan Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, China.
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yang Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.
| | - Heqing Jiang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao 266101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
10
|
Lee JTE, Dutta N, Zhang L, Tsui TTH, Lim S, Tio ZK, Lim EY, Sun J, Zhang J, Wang CH, Ok YS, Ahring BK, Tong YW. Bioaugmentation of Methanosarcina thermophila grown on biochar particles during semi-continuous thermophilic food waste anaerobic digestion under two different bioaugmentation regimes. BIORESOURCE TECHNOLOGY 2022; 360:127590. [PMID: 35811056 DOI: 10.1016/j.biortech.2022.127590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
This study presents the effect of bioaugmentation of thermophilic anaerobic digestion of food waste with Methanosarcina thermophila grown on a wood-derived biochar. Two different supplementation regimes were tested, namely a single bioaugmentation (SBABC) in which 10% v/v of the microbes grown on biochar (1 g/L) is added at setup of the reactors, versus a routine bioaugmentation (RBABC) wherein the same amount of supplements were added over 10 feeding cycles. The optimally performing 'R' and 'S' reactors had increased methane yields by 37% and 32% over their respective controls while reactors SBABC 2 and 3 produced 21.89% and 56.09% higher average methane yield than RBABC 2 and 3, respectively. It appears that a single dose bioaugmentation is advantageous for improving AD as analysed in terms of average methane yield and VFA production. This study provides the basis for understanding how biochar and bioaugmentation can be used for engineering sustainable pilot-scale AD processes.
Collapse
Affiliation(s)
- Jonathan T E Lee
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Nalok Dutta
- Bioproducts, Sciences and Engineering Laboratory, Washington State University Tricities. Biological Systems Engineering, Washington State University, USA
| | - Le Zhang
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Thomas T H Tsui
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Shuhan Lim
- Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Zhi Kai Tio
- Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Ee Yang Lim
- Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Jiachen Sun
- Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, China
| | - Chi-Hwa Wang
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Birgitte K Ahring
- Bioproducts, Sciences and Engineering Laboratory, Washington State University Tricities. Biological Systems Engineering, Washington State University, USA
| | - Yen Wah Tong
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore.
| |
Collapse
|
11
|
Virdis B, Hoelzle R, Marchetti A, Boto ST, Rosenbaum MA, Blasco-Gómez R, Puig S, Freguia S, Villano M. Electro-fermentation: Sustainable bioproductions steered by electricity. Biotechnol Adv 2022; 59:107950. [PMID: 35364226 DOI: 10.1016/j.biotechadv.2022.107950] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 01/06/2023]
Abstract
The market of biobased products obtainable via fermentation processes is steadily increasing over the past few years, driven by the need to create a decarbonized economy. To date, industrial fermentation (IF) employs either pure or mixed microbial cultures (MMC) whereby the type of the microbial catalysts and the used feedstock affect metabolic pathways and, in turn, the type of product(s) generated. In many cases, especially when dealing with MMC, the economic viability of IF is hindered by factors such as the low attained product titer and selectivity, which ultimately challenge the downstream recovery and purification steps. In this context, electro-fermentation (EF) represents an innovative approach, based on the use of a polarized electrode interface to trigger changes in the rate, yield, titer or product distribution deriving from traditional fermentation processes. In principle, the electrode in EF can act as an electron acceptor (i.e., anodic electro-fermentation, AEF) or donor (i.e., cathodic electro-fermentation, CEF), or simply as a mean to control the oxidation-reduction potential of the fermentation broth. However, the molecular and biochemical basis underlying the EF process are still largely unknown. This review paper provides a comprehensive overview of recent literature studies including both AEF and CEF examples with either pure or mixed microbial cultures. A critical analysis of biochemical, microbiological, and engineering aspects which presently hamper the transition of the EF technology from the laboratory to the market is also presented.
Collapse
Affiliation(s)
- Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert Hoelzle
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angela Marchetti
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Santiago T Boto
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Ramiro Blasco-Gómez
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Sebastià Puig
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
12
|
Perez-Esteban N, Vinardell S, Vidal-Antich C, Peña-Picola S, Chimenos JM, Peces M, Dosta J, Astals S. Potential of anaerobic co-fermentation in wastewater treatments plants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152498. [PMID: 34968594 DOI: 10.1016/j.scitotenv.2021.152498] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 05/25/2023]
Abstract
Fermentation (not anaerobic digestion) is an emerging biotechnology to transform waste into easily assimilable organic compounds such as volatile fatty acids, lactic acid and alcohols. Co-fermentation, the simultaneous fermentation of two or more waste, is an opportunity for wastewater treatment plants (WWTPs) to increase the yields of sludge mono-fermentation. Most publications have studied waste activated sludge co-fermentation with food waste or agri-industrial waste. Mixing ratio, pH and temperature are the most studied variables. The highest fermentation yields have been generally achieved in mixtures dominated by the most biodegradable substrate at circumneutral pH and mesophilic conditions. Nonetheless, most experiments have been performed in batch assays which results are driven by the capabilities of the starting microbial community and do not allow evaluating the microbial acclimation that occurs under continuous conditions. Temperature, pH, hydraulic retention time and organic load are variables that can be controlled to optimise the performance of continuous co-fermenters (i.e., favour waste hydrolysis and fermentation and limit the proliferation of methanogens). This review also discusses the integration of co-fermentation with other biotechnologies in WWTPs. Overall, this review presents a comprehensive and critical review of the achievements on co-fermentation research and lays the foundation for future research.
Collapse
Affiliation(s)
- N Perez-Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Vinardell
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - C Vidal-Antich
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Peña-Picola
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J M Chimenos
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M Peces
- Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
13
|
Logroño W, Nikolausz M, Harms H, Kleinsteuber S. Physiological Effects of 2-Bromoethanesulfonate on Hydrogenotrophic Pure and Mixed Cultures. Microorganisms 2022; 10:microorganisms10020355. [PMID: 35208809 PMCID: PMC8877471 DOI: 10.3390/microorganisms10020355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
Mixed or pure cultures can be used for biomethanation of hydrogen. Sodium 2-bromoethanesulfonate (BES) is an inhibitor of methanogenesis used to investigate competing reactions like homoacetogenesis in mixed cultures. To understand the effect of BES on the hydrogenotrophic metabolism in a biomethanation process, anaerobic granules from a wastewater treatment plant, a hydrogenotrophic enrichment culture, and pure cultures of Methanococcus maripaludis and Methanobacterium formicicum were incubated under H2/CO2 headspace in the presence or absence of BES, and the turnover of H2, CO2, CH4, formate and acetate was analyzed. Anaerobic granules produced the highest amount of formate after 24 h of incubation in the presence of BES. Treating the enrichment culture with BES led to the accumulation of formate. M. maripaludis produced more formate than M. formicicum when treated with BES. The non-inhibited methanogenic communities produced small amounts of formate whereas the pure cultures did not. The highest amount of acetate was produced by the anaerobic granules concomitantly with formate consumption. These results indicate that formate is an important intermediate of hydrogenotrophic metabolism accumulating upon methanogenesis inhibition.
Collapse
|
14
|
Suo Y, Yin W, Wu W, Cao W, Zhu Q, Mu Y. A large-scale pico-droplet array for viable bacteria digital counting and dynamic tracking based on a thermosetting oil. Analyst 2022; 147:3305-3314. [DOI: 10.1039/d2an00680d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and rapid method was developed for real-time monitoring and digital counting of bacterial growth, and it can provide dynamic information at high resolution in the process.
Collapse
Affiliation(s)
- Yuanjie Suo
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
| | - Weihong Yin
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, PR China
| | - Wenshuai Wu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, PR China
| | - Wenjian Cao
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
| | - Qiangyuan Zhu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, PR China
| |
Collapse
|
15
|
Atasoy M, Cetecioglu Z. Bioaugmented Mixed Culture by Clostridium aceticum to Manipulate Volatile Fatty Acids Composition From the Fermentation of Cheese Production Wastewater. Front Microbiol 2021; 12:658494. [PMID: 34539589 PMCID: PMC8446653 DOI: 10.3389/fmicb.2021.658494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Production of targeted volatile fatty acid (VFA) composition by fermentation is a promising approach for upstream and post-stream VFA applications. In the current study, the bioaugmented mixed microbial culture by Clostridium aceticum was used to produce an acetic acid dominant VFA mixture. For this purpose, anaerobic sequencing batch reactors (bioaugmented and control) were operated under pH 10 and fed by cheese processing wastewater. The efficiency and stability of the bioaugmentation strategy were monitored using the production and composition of VFA, the quantity of C. aceticum (by qPCR), and bacterial community profile (16S rRNA Illumina Sequencing). The bioaugmented mixed culture significantly increased acetic acid concentration in the VFA mixture (from 1170 ± 18 to 122 ± 9 mgCOD/L) compared to the control reactor. Furthermore, the total VFA production (from 1254 ± 11 to 5493 ± 36 mgCOD/L) was also enhanced. Nevertheless, the bioaugmentation could not shift the propionic acid dominancy in the VFA mixture. The most significant effect of bioaugmentation on the bacterial community profile was seen in the relative abundance of the Thermoanaerobacterales Family III. Incertae sedis, its relative abundance increased simultaneously with the gene copy number of C. aceticum during bioaugmentation. These results suggest that there might be a syntropy between species of Thermoanaerobacterales Family III. Incertae sedis and C. aceticum. The cycle analysis showed that 6 h (instead of 24 h) was adequate retention time to achieve the same acetic acid and total VFA production efficiency. Biobased acetic acid production is widely applicable and economically competitive with petroleum-based production, and this study has the potential to enable a new approach as produced acetic acid dominant VFA can replace external carbon sources for different processes (such as denitrification) in WWTPs. In this way, the higher treatment efficiency for WWTPs can be obtained by recovered substrate from the waste streams that promote a circular economy approach.
Collapse
Affiliation(s)
- Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
16
|
Investigation on the Interactive Effects between Temperature and Chemical Composition of Organic Wastes on Anaerobic Co-Digestion Performance. Processes (Basel) 2021. [DOI: 10.3390/pr9091682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Synergistic effects among different chemical components under the anaerobic co-digestion (AcoD) process played an important role in improving its performance, which might be affected by the digesting temperature. The results showed that the actual methane production (AMP) and gasification rate (GR) of 50% lipid content were the highest, and the carbohydrate and protein content should be adjusted according to the temperature. Under mesophilic conditions, the M1 reactor with high protein content (carbohydrate–lipid–protein ratio, CLP = 20:50:30) had the highest AMP of 552.02 mL/g VS and GR of 74.72%. However, as the temperature increased, the high protein content produced high levels of ammonia nitrogen (AN) and free ammonia (FA), which formed a certain degree of ammonia inhibition, resulting in lower AMP and GR. Under thermophilic conditions, the low protein T2 reactor (CLP = 40:50:10) had the highest AMP and GR at 485.45 mL/g VS and 67.18%. In addition, the M1 and T2 reactors had the highest microbial diversity, which promoted substrate degradation and methane production. In the M1 reactor, acetoclastic metabolism is the main methanogenic pathway, while in the T2 reactor changes to hydrogenotrophic metabolism. Therefore, understanding the synergistic effect between temperature and chemical compositions was an effective way to improve the AcoD effect.
Collapse
|
17
|
Wu Y, Xia M, Zhang X, Li X, Zhang R, Yan Y, Lang F, Zheng Y, Wang M. Unraveling the metabolic network of organic acids in solid-state fermentation of Chinese cereal vinegar. Food Sci Nutr 2021; 9:4375-4384. [PMID: 34401086 PMCID: PMC8358386 DOI: 10.1002/fsn3.2409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 12/27/2022] Open
Abstract
Shanxi aged vinegar (SAV) is fermented by multispecies microorganism with solid-state fermentation (SSF) technology, which contains a variety of organic acids. However, the metabolic network of them in SSF is still unclear. In this study, metagenomics technology was used to reveal the microbial community and functional genes in SAV fermentation. The metabolic network of key organic acids with taste active value higher than 1 was reconstructed for the first time, including acetate, lactate, malate, citrate, succinate, and tartrate. The results show pyruvate is the core compound in the metabolic network of organic acids. Metabolic pathway of acetate plays a pivotal role in this network, and acetate has regulatory function on metabolism of other organic acids. Acetobacter and Lactobacillus are the predominant genera for organic acid metabolism in SSF of SAV. This is also the first report on metabolic network of organic acids in cereal vinegar, adding new knowledge on the flavor substance metabolism during multispecies fermentation of traditional fermented food.
Collapse
Affiliation(s)
- Yanfang Wu
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation MicrobiologyMinistry of EducationCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Menglei Xia
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation MicrobiologyMinistry of EducationCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and EngineeringShanxi Zilin Vinegar Industry Co., Ltd.TaiyuanChina
| | - Xiaofeng Zhang
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation MicrobiologyMinistry of EducationCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Xiaowei Li
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation MicrobiologyMinistry of EducationCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Rongzhan Zhang
- Tianjin Tianli Duliu Mature Vinegar Co., Ltd.TianjinChina
| | - Yufeng Yan
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and EngineeringShanxi Zilin Vinegar Industry Co., Ltd.TaiyuanChina
| | - Fanfan Lang
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and EngineeringShanxi Zilin Vinegar Industry Co., Ltd.TaiyuanChina
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation MicrobiologyMinistry of EducationCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and EngineeringShanxi Zilin Vinegar Industry Co., Ltd.TaiyuanChina
| | - Min Wang
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial Fermentation MicrobiologyMinistry of EducationCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| |
Collapse
|
18
|
Khatami K, Atasoy M, Ludtke M, Baresel C, Eyice Ö, Cetecioglu Z. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time. CHEMOSPHERE 2021; 275:129981. [PMID: 33662716 DOI: 10.1016/j.chemosphere.2021.129981] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/23/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Bio-based production of materials from waste streams is a pivotal aspect in a circular economy. This study aimed to investigate the influence of inoculum (three different sludge taken from anaerobic digestors), pH (5 & 10) and retention time on production of total volatile fatty acids (VFAs), VFA composition as well as the microbial community during anaerobic digestion of food waste. The highest VFA production was ∼22000 ± 1036 mg COD/L and 12927 ± 1029 mg COD/L on day 15 using the inoculum acclimated to food waste at pH 10 and pH 5, respectively. Acetic acid was the dominant VFA in the batch reactors with initial alkaline conditions, whereas both propionic and acetic acids were the dominant products in the acidic condition. Firmicutes, Chloroflexi and Bacteroidetes had the highest relative abundance in the reactors. VFA generation was positively correlated to the relative abundance of Firmicutes.
Collapse
Affiliation(s)
- Kasra Khatami
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, SE100 44, Sweden.
| | - Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, SE100 44, Sweden.
| | - Maximilian Ludtke
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, SE100 44, Sweden; IVL Swedish Environmental Research Institute, Stockholm, Sweden.
| | | | - Özge Eyice
- School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS, UK.
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, SE100 44, Sweden.
| |
Collapse
|
19
|
Hashemi S, Hashemi SE, Lien KM, Lamb JJ. Molecular Microbial Community Analysis as an Analysis Tool for Optimal Biogas Production. Microorganisms 2021; 9:microorganisms9061162. [PMID: 34071282 PMCID: PMC8226781 DOI: 10.3390/microorganisms9061162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
The microbial diversity in anaerobic digestion (AD) is important because it affects process robustness. High-throughput sequencing offers high-resolution data regarding the microbial diversity and robustness of biological systems including AD; however, to understand the dynamics of microbial processes, knowing the microbial diversity is not adequate alone. Advanced meta-omic techniques have been established to determine the activity and interactions among organisms in biological processes like AD. Results of these methods can be used to identify biomarkers for AD states. This can aid a better understanding of system dynamics and be applied to producing comprehensive models for AD. The paper provides valuable knowledge regarding the possibility of integration of molecular methods in AD. Although meta-genomic methods are not suitable for on-line use due to long operating time and high costs, they provide extensive insight into the microbial phylogeny in AD. Meta-proteomics can also be explored in the demonstration projects for failure prediction. However, for these methods to be fully realised in AD, a biomarker database needs to be developed.
Collapse
Affiliation(s)
- Seyedbehnam Hashemi
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Sayed Ebrahim Hashemi
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Kristian M. Lien
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
| | - Jacob J. Lamb
- Department of Energy and Process Engineering & Enersense, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway; (S.H.); (S.E.H.); (K.M.L.)
- Department of Electronic Systems, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Correspondence:
| |
Collapse
|
20
|
Vidal-Antich C, Perez-Esteban N, Astals S, Peces M, Mata-Alvarez J, Dosta J. Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143763. [PMID: 33288258 DOI: 10.1016/j.scitotenv.2020.143763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
This study investigated waste activated sludge (WAS) and food waste (FW) co-fermentation in batch assays to produce carboxylic acids. Three mixtures (50%, 70% and 90% WAS in VS basis) were studied under different conditions: with and without extra alkalinity, and with and without WAS auto-hydrolysis pre-treatment. All tests were carried out at 35 °C, without pH adjustment and without external inoculum. Experimental results showed that co-fermentation yields, including volatile fatty acids and lactic acid, were always higher than WAS and FW mono-fermentation yields (ca. 100 and 80 mgCOD/gVS, respectively). Co-fermentation yields increased as the proportion of FW in the mixture increased, indicating that the improvement was primarily due to a higher FW degradation under co-fermentation conditions. The maximum co-fermentation yield was on average 480 mgCOD/gVS for the WAS/FW_50/50 mixture. The importance of pH on co-fermentation performance was evident in the experiments carried out with extra alkalinity, which showed that the proportion of WAS in the mixture should be high enough to keep the pH above 5.0. However, fermenters operational conditions should also prevent the enrichment of acetic acid consuming microorganisms. WAS auto-hydrolysis pre-treatment did not enhance co-fermentation yields but showed minor kinetic improvements. Regarding the product profile, butyric acid was enriched as the proportion of FW in the mixture increased and the concomitant pH decreased to the detriment of propionic acid. Propionic acid prevailed under neutral pH in the WAS mono-fermentation and the WAS/FW_90/10 mixture.
Collapse
Affiliation(s)
- C Vidal-Antich
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - N Perez-Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - M Peces
- Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - J Mata-Alvarez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
21
|
Abraham A, Park H, Choi O, Sang BI. Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production - A review. BIORESOURCE TECHNOLOGY 2021; 322:124537. [PMID: 33341713 DOI: 10.1016/j.biortech.2020.124537] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 05/24/2023]
Abstract
The world of bioplastics has expanded rapidly in recent decades, and the new waste stream generated is creating major barriers to waste processing. Anaerobic co-digestion is to be considered one of the best options for the efficient processing of bioplastic waste due to its minimal space requirements, lower degrees of environmental pollution, and renewable energy generation. The higher carbon to nitrogen (C/N) ratio of bioplastics poses a challenge to anaerobic digestion, but co-digestion with lower C/N ratio biowastes can efficiently degrade bioplastics and improve biogas production in the system. In the future, the collection of organic waste in biodegradable plastic bags makes the waste management process easier for anaerobic digestion plants. The present review paper discusses current trends of bioplastic usage, degradation strategies, and the potential of anaerobic co-digestion for waste management with improved energy production in anaerobic digesters.
Collapse
Affiliation(s)
- Amith Abraham
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyojung Park
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Okkyoung Choi
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
22
|
Hoelzle RD, Puyol D, Virdis B, Batstone D. Substrate availability drives mixed culture fermentation of glucose to lactate at steady state. Biotechnol Bioeng 2021; 118:1636-1648. [PMID: 33438216 DOI: 10.1002/bit.27678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 11/10/2022]
Abstract
Mixed-culture fermentation (MCF) enables carbon recycling from complex organic waste streams into valuable feedstock chemicals. Using complex microbial consortia, MCF systems can be tuned to produce a range of biochemicals to meet market demand. However, the metabolic mechanisms and community interactions which drive biochemical production changes under differing conditions are currently poorly understood. These mechanisms are critical to useful MCF production models. Furthermore, predictable product transitions are currently limited to pH-driven changes between butyrate and ethanol, and chain-elongation (fed by lactate, acetate, and ethanol) to butyrate, valerate, and hexanoate. Lactate, a high-value biopolymer feedstock chemical, has been observed in transition states, but sustained production has not been described. In this study, steady state lactate production was achieved by increasing the organic loading rate of a butyrate-producing system from limiting to nonlimiting conditions at pH 5.5. Crucially, butyrate production resumed upon return to substrate-limited conditions. 16S ribosomal DNA community profiling combined with metaproteomics demonstrated that the butyrate-producing lineage Megasphaera redirected carbon flow through the methylglyoxal bypass when substrate was nonlimiting, which altered the community structure and metabolic expression toward lactate production. This metabolic mechanism can be included in future MCF models to describe the changes in product generation in substrate nonlimiting conditions.
Collapse
Affiliation(s)
- Robert D Hoelzle
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland, Australia.,School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Puyol
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland, Australia.,Group of Chemical and Environmental Engineering, King Juan Carlos University, Móstoles, Madrid, Spain
| | - Bernardino Virdis
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Damien Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Shen R, Jing Y, Feng J, Zhao L, Yao Z, Yu J, Chen J, Chen R. Simultaneous carbon dioxide reduction and enhancement of methane production in biogas via anaerobic digestion of cornstalk in continuous stirred-tank reactors: The influences of biochar, environmental parameters, and microorganisms. BIORESOURCE TECHNOLOGY 2021; 319:124146. [PMID: 32977099 DOI: 10.1016/j.biortech.2020.124146] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The composition of biogas produced by anaerobic digestion (AD) is typically not ideal due to high CO2 content. In the study, cottonwood biochar was used as an enhanced mediator for the continuously stirred tank reactor AD of cornstalk. The effects of substrate loading and biochar dosage on biogas composition, volatile fatty acids (VFAs), NH3-N, and microbial community characteristics were systematically explored. The results showed that the highest volumetric biogas production rate with biochar was 1.40 L/L/d, at the same time, the CO2 content in the biogas decreased by 5.90%, while the CH4 content increased by 7.40%, compared with the values in AD without biochar. Moreover, VFAs were degraded effectively, in particular, the propionic acid concentration decreased by 55.7%. Besides, microbial abundance had positive correlations with environmental parameters. This study could provide valuable information for both the elucidation of strengthening mechanisms of biochar and further large-scale engineering application.
Collapse
Affiliation(s)
- Ruixia Shen
- Academy of Agricultural Planning and Engineering, Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture, Beijing 100125, China
| | - Yong Jing
- Academy of Agricultural Planning and Engineering, Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture, Beijing 100125, China
| | - Jing Feng
- Academy of Agricultural Planning and Engineering, Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture, Beijing 100125, China
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zonglu Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiadong Yu
- Academy of Agricultural Planning and Engineering, Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture, Beijing 100125, China
| | - Jiankun Chen
- Academy of Agricultural Planning and Engineering, Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture, Beijing 100125, China
| | - Runlu Chen
- Academy of Agricultural Planning and Engineering, Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture, Beijing 100125, China
| |
Collapse
|
24
|
Frank BP, Goodwin DG, Bohutskyi P, Phan DC, Lu X, Kuwama L, Bouwer EJ, Fairbrother DH. Influence of polymer type and carbon nanotube properties on carbon nanotube/polymer nanocomposite biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140512. [PMID: 32721719 DOI: 10.1016/j.scitotenv.2020.140512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The interaction of anaerobic microorganisms with carbon nanotube/polymer nanocomposites (CNT/PNC) will play a major role in determining their persistence and environmental fate at the end of consumer use when these nano-enabled materials enter landfills and encounter wastewater. Motivated by the need to understand how different parameters (i.e., polymer type, microbial phenotype, CNT characteristics) influence CNT/PNC biodegradation rates, we have used volumetric biogas measurements and kinetic modeling to study biodegradation as a function of polymer type and CNT properties. In one set of experiments, oxidized multiwall carbon nanotubes (O-MWCNTs) with a range of CNT loadings 0-5% w/w were incorporated into poly-ε-caprolactone (PCL) and polyhydroxyalkanoates (PHA) matrices and subjected to biodegradation by an anaerobic microbial community. For each CNT/PNC, complete polymer biodegradation was ultimately observed, although the rate of biodegradation was inhibited above certain critical CNT loadings dependent upon the polymer type. Higher loadings of pristine MWCNTs were needed to decrease the rate of polymer biodegradation compared to O-MWCNTs, an effect ascribed principally to differences in CNT dispersion within the polymer matrices. Above certain CNT loadings, a CNT mat of similar shape to the initial PNC was formed after polymer biodegradation, while below this threshold, CNT aggregates fragmented in the media. In situations where biodegradation was rapid, methanogen growth was disproportionately inhibited compared to the overall microbial community. Analysis of the results obtained from this study indicates that the inhibitory effect of CNTs on polymer biodegradation rate is greatest under conditions (i.e., polymer type, microbial phenotype, CNT dispersion) where biodegradation of the neat polymer is slowest. This new insight provides a means to predict the environmental fate, persistence, and transformations of CNT-enabled polymer materials.
Collapse
Affiliation(s)
- Benjamin P Frank
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, United States
| | - David G Goodwin
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, United States
| | - Pavlo Bohutskyi
- Biological Sciences Division, Pacific Northwest National Laboratory, 3300 Stevens Dr., Richland, Washington 99354, United States
| | - Duc C Phan
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, United States; Department of Civil and Environmental Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, United States
| | - Xier Lu
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, United States
| | - Leo Kuwama
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, United States
| | - Edward J Bouwer
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, United States
| | - D Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, United States.
| |
Collapse
|
25
|
Fernández-Domínguez D, Astals S, Peces M, Frison N, Bolzonella D, Mata-Alvarez J, Dosta J. Volatile fatty acids production from biowaste at mechanical-biological treatment plants: Focusing on fermentation temperature. BIORESOURCE TECHNOLOGY 2020; 314:123729. [PMID: 32622279 DOI: 10.1016/j.biortech.2020.123729] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The impact of temperature (20, 35, 45, 55, 70 °C) on volatile fatty acid (VFA) production from biowaste collected at a mechanical-biological treatment plant was analysed. Additionally, relevant streams of the treatment plant were characterised to assess seasonality effects and conceive the integration of a fermentation unit. Batch fermentation tests at 35 °C showed the highest VFA yields (0.49-0.59 gCODVFA/gVS). The VFA yield at 35 °C was 2%, 6%, 10% and 14% higher than at 55, 45, 20 and 70 °C, respectively. The VFA profile was not affected by the fermentation temperature nor seasonality and was dominated by acetic, propionic and butyric acid (75-86% CODVFA). The concentration of non-VFA soluble COD and ammoniacal nitrogen in the fermentation liquor increased with temperature. The fermentation unit in the treatment plant was conceived after the pulper and hydrocyclones and before the anaerobic digester, while the fermenter temperature depends on the VFA application.
Collapse
Affiliation(s)
- David Fernández-Domínguez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Sergi Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain.
| | - Miriam Peces
- Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, 9220 Aalborg, Denmark
| | - Nicola Frison
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, 37129 Verona, Italy
| | - Joan Mata-Alvarez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain; Water Research Institute (IdRA), University of Barcelona, 08001 Barcelona, Spain
| | - Joan Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain; Water Research Institute (IdRA), University of Barcelona, 08001 Barcelona, Spain
| |
Collapse
|
26
|
Peces M, Astals S, Jensen PD, Clarke WP. Transition of microbial communities and degradation pathways in anaerobic digestion at decreasing retention time. N Biotechnol 2020; 60:52-61. [PMID: 32858258 DOI: 10.1016/j.nbt.2020.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 01/04/2023]
Abstract
Tuning of operational variables is a common practice to control the anaerobic digestion process and, in advanced applications, to promote the accumulation of fermentation products. However, process variables are interrelated. In this study, the hydraulic retention time (HRT) was decoupled from the organic loading rate (OLR) in order to isolate the effect of HRT as a selective pressure on: process performance, metabolic rates (hydrolytic, acetogenic, and methanogenic) and the microbial community. Four mesophilic anaerobic digesters were subjected to a sequential decrease in HRT from 15 to 8, 4 and 2 days while keeping the OLR constant at chemical oxygen demand of 1 gCOD L r-1 d-1. The results showed that HRT alone was insufficient to washout methanogens from the digesters, which in turn prevented the accumulation of volatile fatty acids (VFA). Methanosaeta was the dominant genus in the four digesters at all HRTs. Metabolic rates showed that process performance was controlled by hydrolysis, with a clear shift in acetogenic rates, from butyrate and propionate degradation to ethanol degradation at 4 and 2d HRT. The change in acetogenic pathways was attributed to a shift in the fermentation pathways co-current with changes in fermentative bacteria. At 2d HRT, biofilm was formed on the walls and paddles of the digesters, probably as a survival strategy. Most of the taxa in the biofilm were also present in the digester media. Overall, it is the combination of HRT with other operational parameters which promotes the washout of methanogens and the accumulation of VFA.
Collapse
Affiliation(s)
- Miriam Peces
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, St. Lucia, 4072, QLD, Australia; Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, 9220 Aalborg, Denmark.
| | - Sergi Astals
- Advanced Water Management Centre, The University of Queensland, St Lucia, 4072, QLD, Australia; Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Paul D Jensen
- Advanced Water Management Centre, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - William P Clarke
- Centre for Solid Waste Bioprocessing, Schools of Civil and Chemical Engineering, The University of Queensland, St. Lucia, 4072, QLD, Australia
| |
Collapse
|
27
|
Logroño W, Popp D, Kleinsteuber S, Sträuber H, Harms H, Nikolausz M. Microbial Resource Management for Ex Situ Biomethanation of Hydrogen at Alkaline pH. Microorganisms 2020; 8:microorganisms8040614. [PMID: 32344539 PMCID: PMC7232305 DOI: 10.3390/microorganisms8040614] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Biomethanation is a promising solution to convert H2 (produced from surplus electricity) and CO2 to CH4 by using hydrogenotrophic methanogens. In ex situ biomethanation with mixed cultures, homoacetogens and methanogens compete for H2/CO2. We enriched a hydrogenotrophic microbiota on CO2 and H2 as sole carbon and energy sources, respectively, to investigate these competing reactions. The microbial community structure and dynamics of bacteria and methanogenic archaea were evaluated through 16S rRNA and mcrA gene amplicon sequencing, respectively. Hydrogenotrophic methanogens and homoacetogens were enriched, as acetate was concomitantly produced alongside CH4. By controlling the media composition, especially changing the reducing agent, the formation of acetate was lowered and grid quality CH4 (≥97%) was obtained. Formate was identified as an intermediate that was produced and consumed during the bioprocess. Stirring intensities ≥ 1000 rpm were detrimental, probably due to shear force stress. The predominating methanogens belonged to the genera Methanobacterium and Methanoculleus. The bacterial community was dominated by Lutispora. The methanogenic community was stable, whereas the bacterial community was more dynamic. Our results suggest that hydrogenotrophic communities can be steered towards the selective production of CH4 from H2/CO2 by adapting the media composition, the reducing agent and the stirring intensity.
Collapse
|
28
|
Lackner N, Wagner AO, Markt R, Illmer P. pH and Phosphate Induced Shifts in Carbon Flow and Microbial Community during Thermophilic Anaerobic Digestion. Microorganisms 2020; 8:E286. [PMID: 32093251 PMCID: PMC7074938 DOI: 10.3390/microorganisms8020286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/11/2023] Open
Abstract
pH is a central environmental factor influencing CH4 production from organic substrates, as every member of the complex microbial community has specific pH requirements. Here, we show how varying pH conditions (5.0-8.5, phosphate buffered) and the application of a phosphate buffer per se induce shifts in the microbial community composition and the carbon flow during nine weeks of thermophilic batch digestion. Beside monitoring the methane production as well as volatile fatty acid concentrations, amplicon sequencing of the 16S rRNA gene was conducted. The presence of 100 mM phosphate resulted in reduced CH4 production during the initial phase of the incubation, which was characterized by a shift in the dominant methanogenic genera from a mixed Methanosarcina and Methanoculleus to a pure Methanoculleus system. In buffered samples, acetate strongly accumulated in the beginning of the batch digestion and subsequently served as a substrate for methanogens. Methanogenesis was permanently inhibited at pH values ≤5.5, with the maximum CH4 production occurring at pH 7.5. Adaptations of the microbial community to the pH variations included shifts in the archaeal and bacterial composition, as less competitive organisms with a broad pH range were able to occupy metabolic niches at unfavorable pH conditions.
Collapse
Affiliation(s)
- Nina Lackner
- Department of Microbiology, Universität Innsbruck, 6020 Innsbruck, Austria; (A.O.W.); (R.M.); (P.I.)
| | | | | | | |
Collapse
|
29
|
Li H, Ahmad W, Rong Y, Chen Q, Zuo M, Ouyang Q, Guo Z. Designing an aptamer based magnetic and upconversion nanoparticles conjugated fluorescence sensor for screening Escherichia coli in food. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106761] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Wainaina S, Lukitawesa, Kumar Awasthi M, Taherzadeh MJ. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered 2019; 10:437-458. [PMID: 31570035 PMCID: PMC6802927 DOI: 10.1080/21655979.2019.1673937] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 11/07/2022] Open
Abstract
Anaerobic digestion (AD) is a well-established technology used for producing biogas or biomethane alongside the slurry used as biofertilizer. However, using a variety of wastes and residuals as substrate and mixed cultures in the bioreactor makes AD as one of the most complicated biochemical processes employing hydrolytic, acidogenic, hydrogen-producing, acetate-forming bacteria as well as acetoclastic and hydrogenoclastic methanogens. Hydrogen and volatile fatty acids (VFAs) including acetic, propionic, isobutyric, butyric, isovaleric, valeric and caproic acid and other carboxylic acids such as succinic and lactic acids are formed as intermediate products. As these acids are important precursors for various industries as mixed or purified chemicals, the AD process can be bioengineered to produce VFAs alongside hydrogen and therefore biogas plants can become biorefineries. The current review paper provides the theory and means to produce and accumulate VFAs and hydrogen, inhibit their conversion to methane and to extract them as the final products. The effects of pretreatment, pH, temperature, hydraulic retention time (HRT), organic loading rate (OLR), chemical methane inhibitions, and heat shocking of the inoculum on VFAs accumulation, hydrogen production, VFAs composition, and the microbial community were discussed. Furthermore, this paper highlights the possible techniques for recovery of VFAs from the fermentation media in order to minimize product inhibition as well as to supply the carboxylates for downstream procedures.
Collapse
Affiliation(s)
- Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Lukitawesa
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Mukesh Kumar Awasthi
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, PR China
| | | |
Collapse
|
31
|
Paiano P, Menini M, Zeppilli M, Majone M, Villano M. Electro-fermentation and redox mediators enhance glucose conversion into butyric acid with mixed microbial cultures. Bioelectrochemistry 2019; 130:107333. [DOI: 10.1016/j.bioelechem.2019.107333] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022]
|
32
|
van Lingen HJ, Fadel JG, Moraes LE, Bannink A, Dijkstra J. Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen. J Theor Biol 2019; 480:150-165. [DOI: 10.1016/j.jtbi.2019.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 11/25/2022]
|
33
|
Atasoy M, Eyice O, Schnürer A, Cetecioglu Z. Volatile fatty acids production via mixed culture fermentation: Revealing the link between pH, inoculum type and bacterial composition. BIORESOURCE TECHNOLOGY 2019; 292:121889. [PMID: 31394468 DOI: 10.1016/j.biortech.2019.121889] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
The aim of the study was to investigate the effects of operational parameters, inoculum type and bacterial community on mixed culture fermentation to produce one dominant acid type in the mixture of volatile fatty acids (VFA). The study was performed using three different inocula (large&small granular and slurry) with glucose under various initial pH. The VFA production efficiency reached to 0,97 (gCOD/gSCOD) by granular sludge. VFA composition was changed by initial pH: in neutral conditions, acetic acid; in acidic conditions, acetic and butyric acids, in alkali conditions butyric acid were dominated, respectively. The VFA production was positively affected by the high relative abundance of Firmicutes. On the contrary, a negative correlation was seen between VFA production and the relative abundance of Chloroflexi. The results revealed the physical sludge structure of inoculum was the key factor for production efficiency, whereas, pH was the most important parameter to affect VFA composition.
Collapse
Affiliation(s)
- Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44, Sweden
| | - Ozge Eyice
- School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS, UK
| | - Anna Schnürer
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences, SE 750 07, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44, Sweden.
| |
Collapse
|
34
|
Grand Research Challenges for Sustainable Industrial Biotechnology. Trends Biotechnol 2019; 37:1042-1050. [DOI: 10.1016/j.tibtech.2019.04.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/23/2023]
|
35
|
Metabolic modelling of mixed culture anaerobic microbial processes. Curr Opin Biotechnol 2019; 57:137-144. [DOI: 10.1016/j.copbio.2019.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 01/22/2023]
|
36
|
Zhang M, Zhang Y, Li Z, Zhang C, Tan X, Liu X, Wan C, Yang X, Lee DJ. Anaerobic co-digestion of food waste/excess sludge: substrates - products transformation and role of NADH as an indicator. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:197-206. [PMID: 30472563 DOI: 10.1016/j.jenvman.2018.11.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
The process of anaerobic co-digestion is vital importance to resource recovery from organic solid wastes such as food waste and municipal sludge. However, its application is hindered by the limited understanding on the complex substrates-products transformation reactions and mechanisms therein. In this study, food waste (FW) and excess sludge (ES) from municipal wastewater treatment were mixed at various ratios (ES/FW 5:0, 4:1, 2:1, 1:1, 1:2, 1:4, w/w), and the co-digestion process was studied in a batch test. The consumption of substrates including soluble proteins and carbohydrates, the variation in the intermediates such as various volatile fatty acids, and the production of hydrogen and methane gases were monitored. The results suggested that 4:1 was likely the optimal ratio where substrates were consumed and biogas generated efficiently, whereas 1:2 and 1:4 caused severe inhibition. Fermentation of ES alone produced mainly acetic and propionic acid, while the addition of FW led to butyric acid type fermentation. Intermediates in the fermentation liquid were tentatively identified, and the levels of NADH quantified using 3D-excitation/emission fluorescence spectrometry. One class of the intermediates, tryptophan-like proteins were correlated to the butyric acid accumulation in ES/FW mixtures, and NADH level was proposed as an indicator of VFAs production activities.
Collapse
Affiliation(s)
- Min Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhengwen Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Chen Zhang
- Shanghai Municipal Engineering Design General Institute, Shanghai, 200092, China
| | - Xuejun Tan
- Shanghai Municipal Engineering Design General Institute, Shanghai, 200092, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Xue Yang
- Shanghai Municipal Engineering Design General Institute, Shanghai, 200092, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
37
|
Regueira A, González-Cabaleiro R, Ofiţeru ID, Rodríguez J, Lema JM. Electron bifurcation mechanism and homoacetogenesis explain products yields in mixed culture anaerobic fermentations. WATER RESEARCH 2018; 141:349-356. [PMID: 29804021 DOI: 10.1016/j.watres.2018.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Anaerobic fermentation of organic wastes using microbial mixed cultures is a promising avenue to treat residues and obtain added-value products. However, the process has some important limitations that prevented so far any industrial application. One of the main issues is that we are not able to predict reliably the product spectrum (i.e. the stoichiometry of the process) because the complex microbial community behaviour is not completely understood. To address this issue, in this work we propose a new metabolic network of glucose fermentation by microbial mixed cultures that incorporates electron bifurcation and homoacetogenesis. Our methodology uses NADH balances to analyse published experimental data and evaluate the new stoichiometry proposed. Our results prove for the first time the inclusion of electron bifurcation in the metabolic network as a better description of the experimental results. Homoacetogenesis has been used to explain the discrepancies between observed and theoretically predicted yields of gaseous H2 and CO2 and it appears as the best solution among other options studied. Overall, this work supports the consideration of electron bifurcation as an important biochemical mechanism in microbial mixed cultures fermentations and underlines the importance of considering homoacetogenesis when analysing anaerobic fermentations.
Collapse
Affiliation(s)
- A Regueira
- Dep. of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain; School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, United Kingdom.
| | - R González-Cabaleiro
- School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, United Kingdom; GENOCOV, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - I D Ofiţeru
- School of Engineering, Newcastle University, NE1 7RU, Newcastle upon Tyne, United Kingdom.
| | - J Rodríguez
- Khalifa University of Science and Technology Masdar Institute, PO Box 54244, Abu Dhabi, United Arab Emirates.
| | - J M Lema
- Dep. of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
38
|
Xu J, Wu D, Li Y, Xu J, Gao Z, Song YY. Plasmon-Triggered Hot-Spot Excitation on SERS Substrates for Bacterial Inactivation and in Situ Monitoring. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25219-25227. [PMID: 29995377 DOI: 10.1021/acsami.8b09035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bacterial sensing and inactivating is one of the key steps to prevent bacterial propagation and transfer. Here, using Ag nanoparticle-grafted tungsten oxide films (WO3/Ag), we developed a multifunctional platform that may act as a surface-enhanced Raman spectroscopy substrate for sensitively capturing and counting bacteria. Moreover, we demonstrated that the use of photon-triggered surface plasmon resonance of Ag on the WO3 surface resulted in a significantly improved photocatalytic activity under visible light (638 nm). The photogenerated reactive oxygen species have been shown to be efficient in the inactivation of bacteria, and the bacteria inactivation process could be monitored in situ by Raman spectroscopy. On the basis of the obtained Raman results and fluorescence measurements of green fluorescence protein expressing bacteria, the active species triggered by hot spots was demonstrated to account for broken cell walls. The bacterial cell contents subsequently leaked out, leading to cell degradation. Potentially, our work may provide a promising strategy for capturing and monitoring the bactericidal process at low concentration and, specifically, may help in the investigation of related inactivation approaches and mechanisms.
Collapse
Affiliation(s)
- Jingwen Xu
- Department of Chemistry , Northeastern University , Shenyang 110004 , China
| | - Di Wu
- Department of Chemistry , Northeastern University , Shenyang 110004 , China
| | - Yuzhen Li
- Department of Chemistry , Northeastern University , Shenyang 110004 , China
| | - Jing Xu
- Department of Chemistry , Northeastern University , Shenyang 110004 , China
| | - Zhida Gao
- Department of Chemistry , Northeastern University , Shenyang 110004 , China
| | - Yan-Yan Song
- Department of Chemistry , Northeastern University , Shenyang 110004 , China
| |
Collapse
|
39
|
Yousuf A, Bastidas-Oyanedel JR, Schmidt JE. Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 77:516-521. [PMID: 29716759 DOI: 10.1016/j.wasman.2018.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Food waste landfilling causes environmental degradation, and this work assesses a sustainable food valorization technique. In this study, food waste is converted into lactic acid in a batch assembly by dark fermentation without pH control and without the addition of external inoculum at 37 °C. The effect of total solid (TS), enzymatic and aeration pretreatment was investigated on liquid products concentration and product yield. The maximum possible TS content was 34% of enzymatic pretreated waste, and showed the highest lactic acid concentration of 52 g/L, with a lactic acid selectivity of 0.6 glactic/gtotalacids. The results indicated that aeration pretreatment does not significantly improve product concentration or yield. Non-pretreated waste in a 29% TS system showed a lactic acid concentration of 31 g/L. The results showed that enzymatic pretreated waste at TS of 34% results in the highest production of lactic acid.
Collapse
Affiliation(s)
- Ahasa Yousuf
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Juan-Rodrigo Bastidas-Oyanedel
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Jens Ejbye Schmidt
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
40
|
Villano M, Paiano P, Palma E, Miccheli A, Majone M. Electrochemically Driven Fermentation of Organic Substrates with Undefined Mixed Microbial Cultures. CHEMSUSCHEM 2017; 10:3091-3097. [PMID: 28471044 DOI: 10.1002/cssc.201700360] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Indexed: 06/07/2023]
Abstract
Growing scientific interest in mixed microbial culture-based anaerobic biotechnologies for the production of value-added chemicals and fuels from organic waste residues requires a parallel focus on the development and implementation of strategies to control the distribution of products. This study examined the feasibility of an electrofermentation approach, based on the introduction of a polarized (-700 mV vs. the standard hydrogen electrode) graphite electrode in the fermentation medium, to steer the product distribution during the conversion of organic substrates (glucose, ethanol, and acetate supplied as single compounds or in mixtures) by undefined mixed microbial cultures. In batch experiments, the polarized electrode triggered a nearly 20-fold increase (relative to open circuit controls) in the yield of isobutyrate production (0.43±0.01 vs. 0.02±0.02 mol mol-1 glucose) during the anaerobic fermentation of the ternary mixture of substrates, without adversely affecting the rate of substrate bioconversion. The observed change in the fermentative metabolism was most likely triggered by the (potentiostatic) regulation of the oxidation-reduction potential of the reaction medium rather than by the electrode serving as an electron donor.
Collapse
Affiliation(s)
- Marianna Villano
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Paola Paiano
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Enza Palma
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Alfredo Miccheli
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
41
|
Liu Y, Zhou H, Hu Z, Yu G, Yang D, Zhao J. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosens Bioelectron 2017; 94:131-140. [DOI: 10.1016/j.bios.2017.02.032] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
42
|
Bonk F, Bastidas-Oyanedel JR, Yousef AF, Schmidt JE. Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations. BIORESOURCE TECHNOLOGY 2017; 238:416-424. [PMID: 28458175 DOI: 10.1016/j.biortech.2017.04.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 06/07/2023]
Abstract
Carboxylic acid production from food waste by mixed culture fermentation is an important future waste management option. Obstacles for its implementation are the need of pH control, and a broad fermentation product spectrum leading to increased product separation costs. To overcome these obstacles, the selective production of lactic acid (LA) from model food waste by uncontrolled pH fermentation was tested using different reactor configurations. Batch experiments, semi-continuously fed reactors and a percolation system reached LA concentrations of 32, 16 and 15gCODLA/L, respectively, with selectivities of 93%, 84% and 75% on COD base, respectively. The semi-continuous reactor was dominated by Lactobacillales. Our techno-economic analysis suggests that LA production from food waste can be economically feasible, with LA recovery and low yields remaining as major obstacles. To solve both problems, we successfully applied in-situ product extraction using activated carbon.
Collapse
Affiliation(s)
- Fabian Bonk
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City P.O. Box 54224, Abu Dhabi, United Arab Emirates; UFZ - Helmholtz-Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Juan-Rodrigo Bastidas-Oyanedel
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Ahmed F Yousef
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City P.O. Box 54224, Abu Dhabi, United Arab Emirates
| | - Jens Ejbye Schmidt
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City P.O. Box 54224, Abu Dhabi, United Arab Emirates
| |
Collapse
|
43
|
Puig S, Ganigué R, Batlle-Vilanova P, Balaguer MD, Bañeras L, Colprim J. Tracking bio-hydrogen-mediated production of commodity chemicals from carbon dioxide and renewable electricity. BIORESOURCE TECHNOLOGY 2017; 228:201-209. [PMID: 28063363 DOI: 10.1016/j.biortech.2016.12.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 05/28/2023]
Abstract
This study reveals that reduction of carbon dioxide (CO2) to commodity chemicals can be functionally compartmentalized in bioelectrochemical systems. In the present example, a syntrophic consortium composed by H2-producers (Rhodobacter sp.) in the biofilm is combined with carboxidotrophic Clostridium species, mainly found in the bulk liquid. The performance of these H2-mediated electricity-driven systems could be tracked by the activity of a biological H2 sensory protein identified at cathode potentials between -0.2V and -0.3V vs SHE. This seems to point out that such signal is not strain specific, but could be detected in any organism containing hydrogenases. Thus, the findings of this work open the door to the development of a biosensor application or soft sensors for monitoring such systems.
Collapse
Affiliation(s)
- Sebastià Puig
- LEQUIA, Institute of the Environment, University of Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain.
| | - Ramon Ganigué
- LEQUIA, Institute of the Environment, University of Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain; Centre of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Pau Batlle-Vilanova
- LEQUIA, Institute of the Environment, University of Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain; Department of Innovation and Technology, FCC Aqualia, Balmes Street, 36, 6th Floor, 08007 Barcelona, Spain
| | - M Dolors Balaguer
- LEQUIA, Institute of the Environment, University of Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - Lluís Bañeras
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, E-17071 Girona, Spain
| | - Jesús Colprim
- LEQUIA, Institute of the Environment, University of Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| |
Collapse
|
44
|
Chen Y, Wang T, Shen N, Zhang F, Zeng RJ. High-purity propionate production from glycerol in mixed culture fermentation. BIORESOURCE TECHNOLOGY 2016; 219:659-667. [PMID: 27544916 DOI: 10.1016/j.biortech.2016.08.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
High-purity propionate production from glycerol in mixed culture fermentation (MCF) induced by high ammonium concentration was investigated. Fed-batch experiments revealed that higher ammonium concentration (>2.9g/L) had simultaneous negative effects on acetate and propionate degradation. Propionate production and yield was up to 22.6g/L and 0.45g COD/g COD glycerol, respectively, with a purity of 96%. Sequential batch experiments demonstrated that the yields of propionate were 0.3±0.05, 0.32±0.01, and 0.34±0.03g COD/g COD at a glycerol concentration of 2.78, 4.38, and 5.56g/L, respectively, and the purity of propionate was 91-100%. Microbial community analysis showed that the phylum Firmicutes dominated the bacterial community at different glycerol concentrations. However, the Methanosaeta population decreased from 46% to 6% when glycerol concentration increased from 2.78 to 5.56g/L, resulting in lower acetate degradation rate. Thus, the present study might provide an alternative option for the production of propionate from glycerol via MCF.
Collapse
Affiliation(s)
- Yun Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Ting Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Nan Shen
- School of Environmental Engineering and Science, Yangzhou University, 196 West Huayang Road, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Fang Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Raymond J Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, People's Republic of China.
| |
Collapse
|
45
|
Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N. Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems. Trends Biotechnol 2016; 34:856-865. [DOI: 10.1016/j.tibtech.2016.04.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
|
46
|
Miceli JF, Torres CI, Krajmalnik-Brown R. Shifting the balance of fermentation products between hydrogen and volatile fatty acids: microbial community structure and function. FEMS Microbiol Ecol 2016; 92:fiw195. [PMID: 27633926 DOI: 10.1093/femsec/fiw195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2016] [Indexed: 11/12/2022] Open
Abstract
Fermentation is a key process in many anaerobic environments. Varying the concentration of electron donor fed to a fermenting community is known to shift the distribution of products between hydrogen, fatty acids and alcohols. Work to date has focused mainly on the fermentation of glucose, and how the microbial community structure is affected has not been explored. We fed ethanol, lactate, glucose, sucrose or molasses at 100 me- eq. L-1, 200 me- eq. L-1 or 400 me- eq. L-1 to batch-fed cultures with fermenting, methanogenic communities. In communities fed high concentrations of electron donor, the fraction of electrons channeled to methane decreased, from 34% to 6%, while the fraction of electrons channeled to short chain fatty acids increased, from 52% to 82%, averaged across all electron donors. Ethanol-fed cultures did not produce propionate, but did show an increase in electrons directed to acetate as initial ethanol concentration increased. In glucose, sucrose, molasses and lactate-fed cultures, propionate accumulation co-occurred with known propionate producing organisms. Overall, microbial communities were determined by the substrate provided, rather than its initial concentration, indicating that a change in community function, rather than community structure, is responsible for shifts in the fermentation products produced.
Collapse
Affiliation(s)
- Joseph F Miceli
- Swette Center for Environmental Biotechnology, Arizona State University, 1001 S. McAllister Ave, Tempe 85287, Arizona, USA
| | - César I Torres
- Environmental Biotechnology, Arizona State University, 1001 S. McAllister Ave, Tempe 85287, Arizona, USA
| | - Rosa Krajmalnik-Brown
- Environmental Biotechnology, Arizona State University, 1001 S. McAllister Ave, Tempe 85287, Arizona, USA
| |
Collapse
|
47
|
Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability. Microorganisms 2016; 4:microorganisms4010002. [PMID: 27681895 PMCID: PMC5029507 DOI: 10.3390/microorganisms4010002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/26/2015] [Accepted: 12/08/2015] [Indexed: 12/03/2022] Open
Abstract
Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations.
Collapse
|
48
|
Tamis J, Joosse BM, Loosdrecht MCMV, Kleerebezem R. High-rate volatile fatty acid (VFA) production by a granular sludge process at low pH. Biotechnol Bioeng 2015; 112:2248-55. [PMID: 25950759 DOI: 10.1002/bit.25640] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 11/10/2022]
Abstract
Volatile fatty acids (VFA) are proposed platform molecules for the production of basic chemicals and polymers from organic waste streams. In this study we developed a granular sludge process to produce VFA at high rate, yield and purity while minimizing potential operational costs. A lab-scale anaerobic sequencing batch reactor (ASBR) was fed with 10 g l(-1) glucose as model substrate. Inclusion of a short (2 min) settling phase before effluent discharge enabled effective granulation and very high volumetric conversion rates of 150-300 gCOD l(-1) d(-1) were observed during glucose conversion. The product spectrum remained similar at the tested pH range with acetate and butyrate as the main products, and a total VFA yield of 60-70% on chemical oxygen demand (COD) basis. The requirement for base addition for pH regulation could be reduced from 1.1 to 0.6 mol OH(-) (mol glucose)(-1) by lowering the pH from 5.5 to 4.5. Solids concentrations in the effluent were 0.6 ± 0.3 g l(-1) but could be reduced to 0.02 ± 0.01 g l(-1) by introduction of an additional settling period of 5 min. The efficient production of VFA at low pH with a virtually solid-free effluent increases the economic feasibility of waste-based chemicals and polymer production. Biotechnol.
Collapse
Affiliation(s)
- J Tamis
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, the Netherlands.
| | - B M Joosse
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, the Netherlands
| | - M C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, the Netherlands
| | - R Kleerebezem
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, the Netherlands
| |
Collapse
|
49
|
Jankowska E, Chwiałkowska J, Stodolny M, Oleskowicz-Popiel P. Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation. BIORESOURCE TECHNOLOGY 2015; 190:274-80. [PMID: 25965252 DOI: 10.1016/j.biortech.2015.04.096] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 05/28/2023]
Abstract
Mixed culture fermentation consists of stable microbial population hence waste could be potentially used as a substrates. The aim of the work was to investigate the impact of pH and retention time on the anaerobic mixed culture fermentation. Trials at different pH (4-12) in unbuffered systems were conducted for 5, 10 and 15days. The highest VFAs concentration was achieved after 15days at pH 10 (0.62g/gVSadded), promising results were also achieved for pH 11 (0.54g/gVSadded). For pH 4 and short retention time propionic acid was the major product instead of acetic acid. For batches run at 15days (besides pH 6) caproic acid presence was noticed whereas at pH 11 occurrence of succinic was quantified. Significant correlation between operational factors and fermentation's effluents was proved. Throughout changing simple operating parameters one could design process to produce desirable concentration and composition of VFAs.
Collapse
Affiliation(s)
- Ewelina Jankowska
- Institute of Environmental Engineering, Faculty of Civil and Environmental Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Joanna Chwiałkowska
- Institute of Environmental Engineering, Faculty of Civil and Environmental Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Mikołaj Stodolny
- Department of Kinetics and Catalysis, Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Institute of Environmental Engineering, Faculty of Civil and Environmental Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
50
|
González-Cabaleiro R, Lema JM, Rodríguez J. Metabolic energy-based modelling explains product yielding in anaerobic mixed culture fermentations. PLoS One 2015; 10:e0126739. [PMID: 25992959 PMCID: PMC4436308 DOI: 10.1371/journal.pone.0126739] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/07/2015] [Indexed: 11/19/2022] Open
Abstract
The fermentation of glucose using microbial mixed cultures is of great interest given its potential to convert wastes into valuable products at low cost, however, the difficulties associated with the control of the process still pose important challenges for its industrial implementation. A deeper understanding of the fermentation process involving metabolic and biochemical principles is very necessary to overcome these difficulties. In this work a novel metabolic energy based model is presented that accurately predicts for the first time the experimentally observed changes in product spectrum with pH. The model predicts the observed shift towards formate production at high pH, accompanied with ethanol and acetate production. Acetate (accompanied with a more reduced product) and butyrate are predicted main products at low pH. The production of propionate between pH 6 and 8 is also predicted. These results are mechanistically explained for the first time considering the impact that variable proton motive potential and active transport energy costs have in terms of energy harvest over different products yielding. The model results, in line with numerous reported experiments, validate the mechanistic and bioenergetics hypotheses that fermentative mixed cultures products yielding appears to be controlled by the principle of maximum energy harvest and the necessity of balancing the redox equivalents in absence of external electron acceptors.
Collapse
Affiliation(s)
- Rebeca González-Cabaleiro
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| | - Juan M. Lema
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| | - Jorge Rodríguez
- Institute Centre for Water and Environment (iWater), Department of Chemical and Environmental Engineering (CEE), Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi, United Arab Emirates
| |
Collapse
|