1
|
Cho K, Lee JS. Revisiting the impact of genomic hot spots: C12orf35 locus as a hot spot and engineering target. Biotechnol Bioeng 2024; 121:3642-3649. [PMID: 38978356 DOI: 10.1002/bit.28801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Traditional Chinese hamster ovary (CHO) cell line development is based on random integration (RI) of transgene that causes clonal variation and subsequent large-scale clone screening. Therefore, site-specific integration (SSI) of transgenes into genomic hot spots has recently emerged as an alternative method for cell line development. However, the specific mechanisms underlying hot spot site formation remain unclear. In this study, we aimed to generate landing pad (LP) cell lines via the RI of transgenes encoding fluorescent reporter proteins flanked by recombination sites to facilitate recombinase-mediated cassette exchange. The RI-based LP cell line expressing high reporter levels with spontaneous C12orf35 locus deletion exhibited similar reporter fluorescent protein levels compared to targeted integrants with an identical reporter LP construct at the CHO genome hot spot, the C12orf35 locus. Additionally, Resf1, a C12orf35 locus gene, knockout (KO) in the RI-based LP cell line with conserved C12orf35 increased reporter expression levels, comparable to those in cell lines with C12orf35 locus disruption. These results indicate that the effect of SSI into the C12orf35 locus, a genomic hot spot, on high-level transgene expression was caused by C12orf35 disruption. In contrast to C12orf35 KO, KO at other well-known hot spot sites at specific loci of genes, including Fer1L4, Hprt1, Adgrl4, Clcc1, Dop1b, and Ddc, did not increase transgene expression. Overall, our findings suggest that C12orf35 is a promising engineering target and a hot spot for SSI-based cell line development.
Collapse
Affiliation(s)
- Kyuhee Cho
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
2
|
Zeh N, Schmidt M, Schulz P, Fischer S. The new frontier in CHO cell line development: From random to targeted transgene integration technologies. Biotechnol Adv 2024; 75:108402. [PMID: 38950872 DOI: 10.1016/j.biotechadv.2024.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Cell line development represents a crucial step in the development process of a therapeutic glycoprotein. Chinese hamster ovary (CHO) cells are the most frequently employed mammalian host cell system for the industrial manufacturing of biologics. The predominant application of CHO cells for heterologous recombinant protein expression lies in the relative simplicity of stably introducing ectopic DNA into the CHO host cell genome. Since CHO cells were first used as expression host for the industrial production of biologics in the late 1980s, stable genomic transgene integration has been achieved almost exclusively by random integration. Since then, random transgene integration had become the gold standard for generating stable CHO production cell lines due to a lack of viable alternatives. However, it was eventually demonstrated that this approach poses significant challenges on the cell line development process such as an increased risk of inducing cell line instability. In recent years, significant discoveries of new and highly potent (semi)-targeted transgene integration systems have paved the way for a technological revolution in the cell line development sector. These advanced methodologies comprise the application of transposase-, recombinase- or Cas9 nuclease-mediated site-specific genomic integration techniques, which enable a scarless transfer of the transgene expression cassette into transcriptionally active loci within the host cell genome. This review summarizes recent advancements in the field of transgene integration technologies for CHO cell line development and compare them to the established random integration approach. Moreover, advantages and limitations of (semi)-targeted integration techniques are discussed, and benefits and opportunities for the biopharmaceutical industry are outlined.
Collapse
Affiliation(s)
- Nikolas Zeh
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Moritz Schmidt
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Patrick Schulz
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH and Co.KG, Biberach an der Riss, Germany.
| |
Collapse
|
3
|
Majocha MR, Jackson DE, Ha NH, Amin R, Pangrácová M, Ross CR, Yang HH, Lee MP, Hunter KW. Resf1 is a compound G4 quadruplex-associated tumor suppressor for triple negative breast cancer. PLoS Genet 2024; 20:e1011236. [PMID: 38722825 PMCID: PMC11081379 DOI: 10.1371/journal.pgen.1011236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/27/2024] [Indexed: 05/13/2024] Open
Abstract
Patients with ER-negative breast cancer have the worst prognosis of all breast cancer subtypes, often experiencing rapid recurrence or progression to metastatic disease shortly after diagnosis. Given that metastasis is the primary cause of mortality in most solid tumors, understanding metastatic biology is crucial for effective intervention. Using a mouse systems genetics approach, we previously identified 12 genes associated with metastatic susceptibility. Here, we extend those studies to identify Resf1, a poorly characterized gene, as a novel metastasis susceptibility gene in ER- breast cancer. Resf1 is a large, unstructured protein with an evolutionarily conserved intron-exon structure, but with poor amino acid conservation. CRISPR or gene trap mouse models crossed to the Polyoma Middle-T antigen genetically engineered mouse model (MMTV-PyMT) demonstrated that reduction of Resf1 resulted in a significant increase in tumor growth, a shortened overall survival time, and increased incidence and number of lung metastases, consistent with patient data. Furthermore, an analysis of matched tail and primary tissues revealed loss of the wildtype copy in tumor tissue, consistent with Resf1 being a tumor suppressor. Mechanistic analysis revealed a potential role of Resf1 in transcriptional control through association with compound G4 quadruplexes in expressed sequences, particularly those associated with ribosomal biogenesis. These results suggest that loss of Resf1 enhances tumor progression in ER- breast cancer through multiple alterations in both transcriptional and translational control.
Collapse
Affiliation(s)
- Megan R. Majocha
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, United States of America
| | - Devin E. Jackson
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, United States of America
| | - Ngoc-Han Ha
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ruhul Amin
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marie Pangrácová
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christina R. Ross
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Howard H. Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maxwell P. Lee
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kent W. Hunter
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Schloßhauer JL, Cavak N, Zemella A, Thoring L, Kubick S. Cell Engineering and Cultivation of Chinese Hamster Ovary Cells for the Development of Orthogonal Eukaryotic Cell-free Translation Systems. Front Mol Biosci 2022; 9:832379. [PMID: 35586195 PMCID: PMC9109823 DOI: 10.3389/fmolb.2022.832379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
The investigation of protein structures, functions and interactions often requires modifications to adapt protein properties to the specific application. Among many possible methods to equip proteins with new chemical groups, the utilization of orthogonal aminoacyl-tRNA synthetase/tRNA pairs enables the site-specific incorporation of non-canonical amino acids at defined positions in the protein. The open nature of cell-free protein synthesis reactions provides an optimal environment, as the orthogonal components do not need to be transported across the cell membrane and the impact on cell viability is negligible. In the present work, it was shown that the expression of orthogonal aminoacyl-tRNA synthetases in CHO cells prior to cell disruption enhanced the modification of the pharmaceutically relevant adenosine A2a receptor. For this purpose, in complement to transient transfection of CHO cells, an approach based on CRISPR/Cas9 technology was selected to generate a translationally active cell lysate harboring endogenous orthogonal aminoacyl-tRNA synthetase.
Collapse
Affiliation(s)
- Jeffrey L. Schloßhauer
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Niño Cavak
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
| | - Anne Zemella
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
| | - Lena Thoring
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
| | - Stefan Kubick
- Branch Bioanalytics and Bioprocesses (IZI-BB), Fraunhofer Institute for Cell Therapy and Immunology (IZI), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus –Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
- *Correspondence: Stefan Kubick,
| |
Collapse
|
5
|
Stadermann A, Gamer M, Fieder J, Lindner B, Fehrmann S, Schmidt M, Schulz P, Gorr IH. Structural analysis of random transgene integration in CHO manufacturing cell lines by targeted sequencing. Biotechnol Bioeng 2021; 119:868-880. [PMID: 34935125 PMCID: PMC10138747 DOI: 10.1002/bit.28012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
Abstract
Genetically modified CHO cell lines are traditionally used for the production of biopharmaceuticals. However, an in-depth molecular understanding of the mechanism and exact position of transgene integration into the genome of pharmaceutical manufacturing cell lines is still scarce. Next Generation Sequencing (NGS) holds great promise for strongly facilitating the understanding of CHO cell factories, as it has matured to a powerful and affordable technology for cellular genotype analysis. Targeted Locus Amplification (TLA) combined with NGS allows for robust detection of genomic positions of transgene integration and structural genomic changes occurring upon stable integration of expression vectors. TLA was applied to generate comparative genomic fingerprints of several CHO production cell lines expressing different monoclonal antibodies. Moreover, high producers resulting from an additional round of transfection of an existing cell line (supertransfection) were analyzed to investigate the integrity and the number of integration sites. Our analyses enabled detailed genetic characterization of the integration regions with respect to the number of integrates and structural changes of the host cell's genome. Single integration sites per clone with concatenated transgene copies could be detected and were in some cases found to be associated with genomic rearrangements, deletions or translocations. Supertransfection resulted in an increase in titer associated with an additional integration site per clone. Based on the TLA fingerprints, CHO cell lines originating from the same mother clone could clearly be distinguished. Interestingly, two CHO cell lines originating from the same mother clone were shown to differ genetically and phenotypically despite of their identical TLA fingerprints. Taken together, TLA provides an accurate genetic characterization with respect to transgene integration sites compared to conventional methods and represents a valuable tool for a comprehensive evaluation of CHO production clones early in cell line development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anna Stadermann
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Martin Gamer
- R&D Project Management NBEs, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Jürgen Fieder
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Benjamin Lindner
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Steffen Fehrmann
- Genedata AG, Selector BU, Margarethenstrasse 38, 4053, Basel, Switzerland
| | - Moritz Schmidt
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Patrick Schulz
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Ingo H Gorr
- Analytical Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| |
Collapse
|
6
|
Tihanyi B, Nyitray L. Recent advances in CHO cell line development for recombinant protein production. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:25-34. [PMID: 34895638 DOI: 10.1016/j.ddtec.2021.02.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
Recombinant proteins used in biomedical research, diagnostics and different therapies are mostly produced in Chinese hamster ovary cells in the pharmaceutical industry. These biotherapeutics, monoclonal antibodies in particular, have shown remarkable market growth in the past few decades. The increasing demand for high amounts of biologics requires continuous optimization and improvement of production technologies. Research aims at discovering better means and methods for reaching higher volumetric capacity, while maintaining stable product quality. An increasing number of complex novel protein therapeutics, such as viral antigens, vaccines, bi- and tri-specific monoclonal antibodies, are currently entering industrial production pipelines. These biomolecules are, in many cases, difficult to express and require tailored product-specific solutions to improve their transient or stable production. All these requirements boost the development of more efficient expression optimization systems and high-throughput screening platforms to facilitate the design of product-specific cell line engineering and production strategies. In this minireview, we provide an overview on recent advances in CHO cell line development, targeted genome manipulation techniques, selection systems and screening methods currently used in recombinant protein production.
Collapse
Affiliation(s)
- Borbála Tihanyi
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary.
| |
Collapse
|
7
|
Shamie I, Duttke SH, Karottki KJLC, Han CZ, Hansen AH, Hefzi H, Xiong K, Li S, Roth SJ, Tao J, Lee GM, Glass CK, Kildegaard HF, Benner C, Lewis NE. A Chinese hamster transcription start site atlas that enables targeted editing of CHO cells. NAR Genom Bioinform 2021; 3:lqab061. [PMID: 34268494 PMCID: PMC8276764 DOI: 10.1093/nargab/lqab061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 01/05/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are widely used for producing biopharmaceuticals, and engineering gene expression in CHO is key to improving drug quality and affordability. However, engineering gene expression or activating silent genes requires accurate annotation of the underlying regulatory elements and transcription start sites (TSSs). Unfortunately, most TSSs in the published Chinese hamster genome sequence were computationally predicted and are frequently inaccurate. Here, we use nascent transcription start site sequencing methods to revise TSS annotations for 15 308 Chinese hamster genes and 3034 non-coding RNAs based on experimental data from CHO-K1 cells and 10 hamster tissues. We further capture tens of thousands of putative transcribed enhancer regions with this method. Our revised TSSs improves upon the RefSeq annotation by revealing core sequence features of gene regulation such as the TATA box and the Initiator and, as exemplified by targeting the glycosyltransferase gene Mgat3, facilitate activating silent genes by CRISPRa. Together, we envision our revised annotation and data will provide a rich resource for the CHO community, improve genome engineering efforts and aid comparative and evolutionary studies.
Collapse
Affiliation(s)
- Isaac Shamie
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Sascha H Duttke
- Department of Medicine, University of California, San Diego 92093, USA
| | - Karen J la Cour Karottki
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | - Anders H Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Hooman Hefzi
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Kai Xiong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Shangzhong Li
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| | - Samuel J Roth
- Department of Medicine, University of California, San Diego 92093, USA
| | - Jenhan Tao
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | - Gyun Min Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Denmark
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego 92093, USA
| | | | | | - Nathan E Lewis
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego 92093, USA
| |
Collapse
|
8
|
Hamaker NK, Lee KH. A Site-Specific Integration Reporter System That Enables Rapid Evaluation of CRISPR/Cas9-Mediated Genome Editing Strategies in CHO Cells. Biotechnol J 2020; 15:e2000057. [PMID: 32500600 DOI: 10.1002/biot.202000057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/09/2020] [Indexed: 12/12/2022]
Abstract
Targeted gene knockout and site-specific integration (SSI) are powerful genome editing techniques to improve the development of industrially relevant Chinese hamster ovary (CHO) cell lines. However, past efforts to perform SSI in CHO cells are characterized by low efficiencies. Moreover, numerous strategies proposed to boost SSI efficiency in mammalian cell types have yet to be evaluated head to head or in combination to appreciably boost efficiencies in CHO. To enable systematic and rapid optimization of genome editing methods, the SSIGNAL (site-specific integration and genome alteration) reporter system is developed. This tool can analyze CRISPR (clustered regularly interspaced palindromic repeats)/Cas9 (CRISPR-associated protein 9)-mediated disruption activity alone or in conjunction with SSI efficiency. The reporter system uses green and red dual-fluorescence signals to indicate genotype states within four days following transfection, facilitating rapid data acquisition via standard flow cytometry instrumentation. In addition to describing the design and development of the system, two of its applications are demonstrated by first comparing transfection conditions to maximize CRISPR/Cas9 activity and subsequently assessing the efficiency of several promising SSI strategies. Due to its sensitivity and versatility, the SSIGNAL reporter system may serve as a tool to advance genome editing technology.
Collapse
Affiliation(s)
- Nathaniel K Hamaker
- Biopharmaceutical Innovation Center, Newark, DE, 19713, USA.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Kelvin H Lee
- Biopharmaceutical Innovation Center, Newark, DE, 19713, USA.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
9
|
Fan Y, Jiang W, Ran F, Luo R, An L, Hang H. An Efficient Exogenous Gene Insertion Site in CHO Cells with High Transcription Level to Enhance AID-Induced Mutation. Biotechnol J 2020; 15:e1900313. [PMID: 31975519 DOI: 10.1002/biot.201900313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/18/2019] [Indexed: 11/10/2022]
Abstract
Antibodies have been extensively used for the purpose of scientific research, clinical diagnosis, and therapy. Combination of in vitro somatic hypermutation and mammalian cell surface display has been an efficient technology for antibody or other proteins optimization, in which the efficiency of activation-induced cytidine deaminase (AID) mutations in genes is one of the most important key factors. Gene transcriptional level has been found to be positively proportional to AID-induced mutation frequency. Thus, construction of the cell clone bearing a gene of interest (GOI) with high transcription level can increase AID-induced mutations. In this study, a retargetable gene cassette is inserted onto predetermined chromosome site (ywhae gene site) which is among the genes with the highest as well as stable transcription, and is found that one subsite is suitable to be retargeted for efficient protein display in Chinese hamster ovary (CHO) cells. The resultant cell clone (T31) has higher and more stable transcription/expression than CHO-puro clone which was previously established through the strategy of random insertion followed by a high-throughput selection. It also possesses a significantly higher mutation frequency to GOI than CHO-puro cells; thus, it is a better clone for the in vitro improvement of antibody affinity, and probably other properties.
Collapse
Affiliation(s)
- Yingjun Fan
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Jiang
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fanlei Ran
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruiqi Luo
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili An
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haiying Hang
- Key Laboratory of Protein and Peptide Drugs, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
10
|
Schweickert PG, Cheng Z. Application of Genetic Engineering in Biotherapeutics Development. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Yamano-Adachi N, Ogata N, Tanaka S, Onitsuka M, Omasa T. Characterization of Chinese hamster ovary cells with disparate chromosome numbers: Reduction of the amount of mRNA relative to total protein. J Biosci Bioeng 2019; 129:121-128. [PMID: 31303495 DOI: 10.1016/j.jbiosc.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Chromosomes in Chinese hamster ovary (CHO) cells are labile. We have shown that high-chromosome-number CHO cells have greater potential to become robust producers of recombinant proteins. One explanation being the increase in transgene integration sites. However, high-chromosome-number cell clones produce more IgG3 following culture of single-cell clones, even under conditions that yield the same number of integrations as cells with normal chromosome numbers. Here, we characterized high-chromosome-number cells by transcriptome analysis. RNA standards were used to normalize transcriptomes of cells that had different chromosome numbers. Our results demonstrate that the mRNA ratio of β-actin and many other genes in high-chromosome-number cells to that in normal-chromosome-number cells per cell (normalized to RNA standards) was smaller than the equivalent genomic size and cell volume ratios. Many genes encoding membrane proteins are more highly expressed in high-chromosome-number cells, probably due to differences in cell size caused by the increase in chromosomes. In addition, genes related to histone modification and lipid metabolism are differentially expressed. The reduced transcript level required per protein produced in total and the different intracellular signal transductions might be key factors for antibody production.
Collapse
Affiliation(s)
- Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Norichika Ogata
- Nihon BioData Corporation, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| | - Sho Tanaka
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-8506, Japan.
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Hamaker NK, Lee KH. Site-specific Integration Ushers in a New Era of Precise CHO Cell Line Engineering. Curr Opin Chem Eng 2018; 22:152-160. [PMID: 31086757 DOI: 10.1016/j.coche.2018.09.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chinese hamster ovary (CHO) cells are widely used for the production of therapeutic proteins. Customarily, CHO production cell lines are established through random integration, which requires laborious screening of many clones to isolate suitable producers. In contrast, site-specific integration (SSI) accelerates cell line development by targeting integration of transgenes to pre-validated genomic loci capable of supporting high and stable expression. To date, a relatively small number of these so called 'hot spots' have been identified, mainly through empirical methods. Nevertheless, nuclease-mediated and recombinase-mediated SSI have revolutionized cell line engineering by enabling rational and reproducible transgene targeting.
Collapse
Affiliation(s)
- Nathaniel K Hamaker
- Delaware Biotechnology Institute, Newark, DE.,Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Kelvin H Lee
- Delaware Biotechnology Institute, Newark, DE.,Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| |
Collapse
|
13
|
Laux H, Romand S, Nuciforo S, Farady CJ, Tapparel J, Buechmann‐Moeller S, Sommer B, Oakeley EJ, Bodendorf U. Degradation of recombinant proteins by Chinese hamster ovary host cell proteases is prevented by matriptase‐1 knockout. Biotechnol Bioeng 2018; 115:2530-2540. [DOI: 10.1002/bit.26731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Holger Laux
- Integrated Biologics Profiling UnitNovartis Pharma AGBasel Switzerland
| | - Sandrine Romand
- Integrated Biologics Profiling UnitNovartis Pharma AGBasel Switzerland
| | - Sandro Nuciforo
- Integrated Biologics Profiling UnitNovartis Pharma AGBasel Switzerland
- Department of BiomedicineUniversity Hospital Basel, University of BaselBasel Switzerland
| | - Christopher J. Farady
- Autoimmunity, Transplantation & Inflammatory DiseaseNovartis Institutes for Biomedical ResearchBasel Switzerland
| | - Joel Tapparel
- Early Phase DevelopmentNovartis Pharma AGBasel Switzerland
| | - Stine Buechmann‐Moeller
- Autoimmunity, Transplantation & Inflammatory DiseaseNovartis Institutes for Biomedical ResearchBasel Switzerland
| | | | - Edward J. Oakeley
- Autoimmunity, Transplantation & Inflammatory DiseaseNovartis Institutes for Biomedical ResearchBasel Switzerland
| | - Ursula Bodendorf
- Autoimmunity, Transplantation & Inflammatory DiseaseNovartis Institutes for Biomedical ResearchBasel Switzerland
| |
Collapse
|
14
|
Zhao M, Wang J, Luo M, Luo H, Zhao M, Han L, Zhang M, Yang H, Xie Y, Jiang H, Feng L, Lu H, Zhu J. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35. Appl Microbiol Biotechnol 2018; 102:6105-6117. [PMID: 29789882 DOI: 10.1007/s00253-018-9021-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most widely used mammalian hosts for recombinant protein production. However, by conventional random integration strategy, development of a high-expressing and stable recombinant CHO cell line has always been a difficult task due to the heterogenic insertion and its caused requirement of multiple rounds of selection. Site-specific integration of transgenes into CHO hot spots is an ideal strategy to overcome these challenges since it can generate isogenic cell lines with consistent productivity and stability. In this study, we investigated three sites with potential high transcriptional activities: C12orf35, HPRT, and GRIK1, to determine the possible transcriptional hot spots in CHO cells, and further construct a reliable site-specific integration strategy to develop recombinant cell lines efficiently. Genes encoding representative proteins mCherry and anti-PD1 monoclonal antibody were targeted into these three loci respectively through CRISPR/Cas9 technology. Stable cell lines were generated successfully after a single round of selection. In comparison with a random integration control, all the targeted integration cell lines showed higher productivity, among which C12orf35 locus was the most advantageous in both productivity and cell line stability. Binding affinity and N-glycan analysis of the antibody revealed that all batches of product were of similar quality independent on integrated sites. Deep sequencing demonstrated that there was low level of off-target mutations caused by CRISPR/Cas9, but none of them contributed to the development process of transgene cell lines. Our results demonstrated the feasibility of C12orf35 as the target site for exogenous gene integration, and strongly suggested that C12orf35 targeted integration mediated by CRISPR/Cas9 is a reliable strategy for the rapid development of recombinant CHO cell lines.
Collapse
Affiliation(s)
- Menglin Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiaxian Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Manyu Luo
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Han Luo
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Meiqi Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lei Han
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mengxiao Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hui Yang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yueqing Xie
- Jecho Laboratories, Inc., 7320 Executive Way, Frederick, MD, 21704, USA
| | - Hua Jiang
- Jecho Laboratories, Inc., 7320 Executive Way, Frederick, MD, 21704, USA
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China. .,Jecho Laboratories, Inc., 7320 Executive Way, Frederick, MD, 21704, USA.
| |
Collapse
|
15
|
Shen CC, Sung LY, Lin SY, Lin MW, Hu YC. Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference. ACS Synth Biol 2017; 6:1509-1519. [PMID: 28418635 DOI: 10.1021/acssynbio.7b00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chinese hamster ovary (CHO) cells are an important host for biopharmaceutical production. Generation of stable CHO cells typically requires cointegration of dhfr and a foreign gene into chromosomes and subsequent methotrexate (MTX) selection for coamplification of dhfr and foreign gene. CRISPR interference (CRISPRi) is an emerging system that effectively suppresses gene transcription through the coordination of dCas9 protein and guide RNA (gRNA). However, CRISPRi has yet to be exploited in CHO cells. Here we constructed vectors expressing the functional CRISPRi system and proved effective CRISPRi-mediated suppression of dhfr transcription in CHO cells. We next generated stable CHO cell clones coexpressing DHFR, the model protein (EGFP), dCas9 and gRNA targeting dhfr. Combined with MTX selection, CRISPRi-mediated repression of dhfr imparted extra selective pressure to force CHO cells to coamplify more copies of dhfr and egfp genes. Compared with the traditional method relying on MTX selection (up to 250 nM), the CRISPRi approach increased the dhfr copy number ∼3-fold, egfp copy number ∼3.6-fold and enhanced the EGFP expression ∼3.8-fold, without impeding the cell growth. Furthermore, we exploited the CRISPRi approach to enhance the productivity of granulocyte colony stimulating factor (G-CSF) ∼2.3-fold. Our data demonstrate, for the first time, the application of CRISPRi in CHO cells to enhance recombinant protein production and may pave a new avenue to CHO cell engineering.
Collapse
Affiliation(s)
- Chih-Che Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Yu Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shih-Yeh Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Mei-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
16
|
Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol 2017; 251:128-140. [DOI: 10.1016/j.jbiotec.2017.04.028] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/12/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
|
17
|
Ritter A, Nuciforo S, Schulze A, Oertli M, Rauschert T, Voedisch B, Geisse S, Jostock T, Laux H. Fam60A
plays a role for production stabilities of recombinant CHO cell lines. Biotechnol Bioeng 2016; 114:701-704. [DOI: 10.1002/bit.26181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/03/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Anett Ritter
- Novartis Institutes for BioMedical Research; Basel Switzerland
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | - Sandro Nuciforo
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | - Axel Schulze
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | - Mevion Oertli
- Novartis Institutes for BioMedical Research; Basel Switzerland
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | | | - Bernd Voedisch
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | - Sabine Geisse
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | - Thomas Jostock
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | - Holger Laux
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| |
Collapse
|