1
|
Vodovnik M, Lindič N. Towards the application of nature's catalytic nanomachines: Cellulosomes in 2nd generation biofuel production. Biotechnol Adv 2025; 79:108523. [PMID: 39892314 DOI: 10.1016/j.biotechadv.2025.108523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Cellulosomes are highly efficient, complex multi-enzyme assemblies, predominantly found in anaerobic bacteria, which offer substantial potential for second-generation biofuel production through efficient lignocellulosic biomass degradation, thus reducing the need for costly pretreatments. Recent advances in cellulosome research have significantly contributed to developing more efficient consolidated bioprocessing (CBP) platforms for biofuel production. This review highlights the latest progress in designing cellulosomes for optimized enzyme synergy and substrate specificity, as well as advances in engineering cellulosome-producing whole-cell biocatalysts tailored for biofuel applications. Apart from recombinant approaches to the development of CBP platforms, metabolic engineering of cellulosome-producing strains (CPS) and co-culture systems that combine CPS with solvent-producing microbes are also discussed. Current challenges and future directions are outlined that emphasize the role of cellulosomes as powerful tools in advancing the efficiency of lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Maša Vodovnik
- Chair of Microbial Diversity, Microbiomics and Microbiology, Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia.
| | - Nataša Lindič
- Department of biochemistry, molecular and structural biology, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Kamale C, Rauniyar A, Bhaumik P. Rational design facilitates the improvement of glucose tolerance and catalytic properties of a β-glucosidase from Acetivibrio thermocellus. FEBS J 2025; 292:1174-1196. [PMID: 39764622 DOI: 10.1111/febs.17394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/09/2024] [Accepted: 12/30/2024] [Indexed: 03/06/2025]
Abstract
Cellulases are an ensemble of enzymes that hydrolyze cellulose chains into fermentable glucose and hence are widely used in bioethanol production. The last enzyme of the cellulose degradation pathway, β-glucosidase, is inhibited by its product, glucose. The product inhibition by glucose hinders cellulose hydrolysis limiting the saccharification during bioethanol production. Thus, engineered β-glucosidases with enhanced glucose tolerance and catalytic efficiency are essential. This study focuses on the rational engineering of β-glucosidase from Acetivibrio thermocellus (WT-AtGH1). Recombinant WT-AtGH1 exhibited activity on cellobiose and p-nitrophenyl-β-d-glucoside as substrates and retained around 80% of its activity over 48 h at 55 °C, pH 5.5. However, WT-AtGH1 showed low glucose tolerance of 380 mm as compared to the required IC50 value of > 800 mm for industrial use. Thus, a rational design approach was utilized to enhance the glucose tolerance of this enzyme. We determined the 3 Å resolution crystal structure of WT-AtGH1. The structure-based engineered G168W-AtGH1 and S242W-AtGH1 mutants exhibited improved glucose tolerance of 840 and 612 mm, respectively. Surprisingly, S242L-AtGH1 mutant showed ~ 2.5-fold increase in the catalytic efficiency as compared to WT-AtGH1. A combinatorial effect of improved glucose tolerance, as well as enhanced catalytic efficiency, was observed for the G168W-S242L-AtGH1 mutant. All the mutants with enhanced properties showed considerable stability at industrial operating conditions of 55 °C and pH 5.5. Thus, we present mutants of WT-AtGH1 with improved glucose tolerance and kinetic properties that have the potential to increase the efficiency of saccharification during biofuel production.
Collapse
Affiliation(s)
- Chinmay Kamale
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Abhishek Rauniyar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
3
|
Novak JK, Gardner JG. Current models in bacterial hemicellulase-encoding gene regulation. Appl Microbiol Biotechnol 2024; 108:39. [PMID: 38175245 PMCID: PMC10766802 DOI: 10.1007/s00253-023-12977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The discovery and characterization of bacterial carbohydrate-active enzymes is a fundamental component of biotechnology innovation, particularly for renewable fuels and chemicals; however, these studies have increasingly transitioned to exploring the complex regulation required for recalcitrant polysaccharide utilization. This pivot is largely due to the current need to engineer and optimize enzymes for maximal degradation in industrial or biomedical applications. Given the structural simplicity of a single cellulose polymer, and the relatively few enzyme classes required for complete bioconversion, the regulation of cellulases in bacteria has been thoroughly discussed in the literature. However, the diversity of hemicelluloses found in plant biomass and the multitude of carbohydrate-active enzymes required for their deconstruction has resulted in a less comprehensive understanding of bacterial hemicellulase-encoding gene regulation. Here we review the mechanisms of this process and common themes found in the transcriptomic response during plant biomass utilization. By comparing regulatory systems from both Gram-negative and Gram-positive bacteria, as well as drawing parallels to cellulase regulation, our goals are to highlight the shared and distinct features of bacterial hemicellulase-encoding gene regulation and provide a set of guiding questions to improve our understanding of bacterial lignocellulose utilization. KEY POINTS: • Canonical regulatory mechanisms for bacterial hemicellulase-encoding gene expression include hybrid two-component systems (HTCS), extracytoplasmic function (ECF)-σ/anti-σ systems, and carbon catabolite repression (CCR). • Current transcriptomic approaches are increasingly being used to identify hemicellulase-encoding gene regulatory patterns coupled with computational predictions for transcriptional regulators. • Future work should emphasize genetic approaches to improve systems biology tools available for model bacterial systems and emerging microbes with biotechnology potential. Specifically, optimization of Gram-positive systems will require integration of degradative and fermentative capabilities, while optimization of Gram-negative systems will require bolstering the potency of lignocellulolytic capabilities.
Collapse
Affiliation(s)
- Jessica K Novak
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, MD, USA
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
4
|
Le Y, Zhang M, Wu P, Wang H, Ni J. Biofuel production from lignocellulose via thermophile-based consolidated bioprocessing. ENGINEERING MICROBIOLOGY 2024; 4:100174. [PMID: 39628591 PMCID: PMC11610967 DOI: 10.1016/j.engmic.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 12/06/2024]
Abstract
The depletion of fossil fuels and their impact on the environment have led to efforts to develop alternative sustainable fuels. While biofuel derived from lignocellulose is considered a sustainable, renewable, and green energy source, enhancing biofuel production and achieving a cost-effective bioconversion of lignocellulose at existing bio-refineries remains a challenge. Consolidated bioprocessing (CBP) using thermophiles can simplify this operation by integrating multiple processes, such as hydrolytic enzyme production, lignocellulose degradation, biofuel fermentation, and product distillation. This paper reviews recent developments in the conversion of lignocellulose to biofuel using thermophile-based CBP. First, advances in thermostable enzyme and thermophilic lignocellulolytic microorganism discovery and development for lignocellulosic biorefinery use are outlined. Then, several thermophilic CBP candidates and thermophilic microbes engineered to drive CBP of lignocellulose are reviewed. CRISPR/Cas-based genome editing tools developed for thermophiles are also highlighted. The potential applications of the Design-Build-Test-Learn (DBTL) synthetic biology strategy for designing and constructing thermophilic CBP hosts are also discussed in detail. Overall, this review illustrates how to develop highly sophisticated thermophilic CBP hosts for use in lignocellulosic biorefinery applications.
Collapse
Affiliation(s)
- Yilin Le
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengqi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Pengju Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Huilei Wang
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
5
|
Vaz LP, Sears HB, Miranda EA, Holwerda EK, Lynd LR. Solubilization of sugarcane bagasse by mono and cocultures of thermophilic anaerobes with and without cotreatment. BIORESOURCE TECHNOLOGY 2024; 406:130982. [PMID: 38879055 DOI: 10.1016/j.biortech.2024.130982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Cotreatment, mechanical disruption of lignocellulosic biomass during microbial fermentation, is a potential alternative to thermochemical pretreatment as a means of increasing the accessibility of lignocellulose to biological attack. Successful implementation of cotreatment requires microbes that can withstand milling, while solubilizing and utilizing carbohydrates from lignocellulose. In this context, cotreatment with thermophilic, lignocellulose-fermenting bacteria has been successfully evaluated for a number of lignocellulosic feedstocks. Here, cotreatment was applied to sugarcane bagasse using monocultures of the cellulose-fermenting Clostridium thermocellum and cocultures with the hemicellulose-fermenting Thermoanaerobacterium thermosaccharolyticum. This resulted in 76 % carbohydrate solubilization (a 1.8-fold increase over non-cotreated controls) on 10 g/L solids loading, having greater effect on the hemicellulose fraction. With cotreatment, fermentation by wild-type cultures at low substrate concentrations increased cumulative product formation by 45 % for the monoculture and 32 % for the coculture. These findings highlight the potential of cotreatment for enhancing deconstruction of sugarcane bagasse using thermophilic bacteria.
Collapse
Affiliation(s)
- Luisa P Vaz
- Universidade Estadual de Campinas, School of Chemical Engineering, Department of Materials and Bioprocess Engineering, Av. Albert Einstein 500, Campinas, SP 13083-852, Brazil
| | - Helen B Sears
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA
| | - Everson A Miranda
- Universidade Estadual de Campinas, School of Chemical Engineering, Department of Materials and Bioprocess Engineering, Av. Albert Einstein 500, Campinas, SP 13083-852, Brazil
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA.
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA
| |
Collapse
|
6
|
Chou KJ, Croft T, Hebdon SD, Magnusson LR, Xiong W, Reyes LH, Chen X, Miller EJ, Riley DM, Dupuis S, Laramore KA, Keller LM, Winkelman D, Maness PC. Engineering the cellulolytic bacterium, Clostridium thermocellum, to co-utilize hemicellulose. Metab Eng 2024; 83:193-205. [PMID: 38631458 DOI: 10.1016/j.ymben.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
Consolidated bioprocessing (CBP) of lignocellulosic biomass holds promise to realize economic production of second-generation biofuels/chemicals, and Clostridium thermocellum is a leading candidate for CBP due to it being one of the fastest degraders of crystalline cellulose and lignocellulosic biomass. However, CBP by C. thermocellum is approached with co-cultures, because C. thermocellum does not utilize hemicellulose. When compared with a single-species fermentation, the co-culture system introduces unnecessary process complexity that may compromise process robustness. In this study, we engineered C. thermocellum to co-utilize hemicellulose without the need for co-culture. By evolving our previously engineered xylose-utilizing strain in xylose, an evolved clonal isolate (KJC19-9) was obtained and showed improved specific growth rate on xylose by ∼3-fold and displayed comparable growth to a minimally engineered strain grown on the bacteria's naturally preferred substrate, cellobiose. To enable full xylan deconstruction to xylose, we recombinantly expressed three different β-xylosidase enzymes originating from Thermoanaerobacterium saccharolyticum into KJC19-9 and demonstrated growth on xylan with one of the enzymes. This recombinant strain was capable of co-utilizing cellulose and xylan simultaneously, and we integrated the β-xylosidase gene into the KJC19-9 genome, creating the KJCBXint strain. The strain, KJC19-9, consumed monomeric xylose but accumulated xylobiose when grown on pretreated corn stover, whereas the final KJCBXint strain showed significantly greater deconstruction of xylan and xylobiose. This is the first reported C. thermocellum strain capable of degrading and assimilating hemicellulose polysaccharide while retaining its cellulolytic capabilities, unlocking significant potential for CBP in advancing the bioeconomy.
Collapse
Affiliation(s)
- Katherine J Chou
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA.
| | - Trevor Croft
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Skyler D Hebdon
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Lauren R Magnusson
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Wei Xiong
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Luis H Reyes
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA; Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Xiaowen Chen
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Emily J Miller
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Danielle M Riley
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Sunnyjoy Dupuis
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Kathrin A Laramore
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Lisa M Keller
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Dirk Winkelman
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Pin-Ching Maness
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| |
Collapse
|
7
|
Tjo H, Conway JM. Sugar transport in thermophiles: Bridging lignocellulose deconstruction and bioconversion. J Ind Microbiol Biotechnol 2024; 51:kuae020. [PMID: 38866721 PMCID: PMC11212667 DOI: 10.1093/jimb/kuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Biomass degrading thermophiles play an indispensable role in building lignocellulose-based supply chains. They operate at high temperatures to improve process efficiencies and minimize mesophilic contamination, can overcome lignocellulose recalcitrance through their native carbohydrate-active enzyme (CAZyme) inventory, and can utilize a wide range of sugar substrates. However, sugar transport in thermophiles is poorly understood and investigated, as compared to enzymatic lignocellulose deconstruction and metabolic conversion of sugars to value-added chemicals. Here, we review the general modes of sugar transport in thermophilic bacteria and archaea, covering the structural, molecular, and biophysical basis of their high-affinity sugar uptake. We also discuss recent genetic studies on sugar transporter function. With this understanding of sugar transport, we discuss strategies for how sugar transport can be engineered in thermophiles, with the potential to enhance the conversion of lignocellulosic biomass into renewable products. ONE-SENTENCE SUMMARY Sugar transport is the understudied link between extracellular biomass deconstruction and intracellular sugar metabolism in thermophilic lignocellulose bioprocessing.
Collapse
Affiliation(s)
- Hansen Tjo
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jonathan M Conway
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
- High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
8
|
Daley SR, Gallanosa PM, Sparling R. Kinetic characterization of annotated glycolytic enzymes present in cellulose-fermenting Clostridium thermocellum suggests different metabolic roles. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:112. [PMID: 37438781 DOI: 10.1186/s13068-023-02362-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND The efficient production of sustainable biofuels is important for the reduction of greenhouse gas emissions. Clostridium thermocellum ATCC 27405 is a candidate for ethanol production from lignocellulosic biomass using consolidated bioprocessing. Fermentation of cellulosic biomass goes through an atypical glycolytic pathway in this thermophilic bacterium, with various glycolytic enzymes capable of utilizing different phosphate donors, including GTP and inorganic pyrophosphate (PPi), in addition to or in place of the usual ATP. C. thermocellum contains three annotated phosphofructokinases (PFK) genes, the expression of which have all been detected through proteomics and transcriptomics. Pfp (Cthe_0347) was previously characterized as pyrophosphate dependent with fructose-6-phosphate (F6P) as its substrate. RESULTS We now demonstrate that this enzyme can also phosphorylate sedoheptulose-7-phosphate (an intermediate in the pentose phosphate pathway), with the Vmax and Km of F6P being approximately 15 folds higher and 43 folds lower, respectively, in comparison to sedoheptulose-7-phosphate. Purified PfkA shows preference for GTP as the phosphate donor as opposed to ATP with a 12.5-fold difference in Km values while phosphorylating F6P. Allosteric regulation is a factor at play in PfkA activity, with F6P exhibiting positive cooperativity, and an apparent requirement for ammonium ions to attain maximal activity. Phosphoenolpyruvate and PPi were the only inhibitors for PfkA determined from the study, which corroborates what is known about enzymes from this subfamily. The activation or inhibition by these ligands lends support to the argument that glycolysis is regulated by metabolites such as PPi and NH4+ in the organism. PfkB, showed no activity with F6P, but had significant activity with fructose, while utilizing either ATP or GTP, making it a fructokinase. Rounding out the upper glycolysis pathway, the identity of the fructose-1,6-bisphosphate aldolase in the genome was verified and reported to have substantial activity with fructose-1,6-bisphosphate, in the presence of the divalent ion, Zn2+. CONCLUSION These findings along with previous proteomic data suggest that Pfp, plays a role in both glycolysis and the pentose phosphate pathway, while PfkA and PfkB may phosphorylate sugars in glycolysis but is responsible for sugar metabolism elsewhere under conditions outside of growth on sufficient cellobiose.
Collapse
Affiliation(s)
- Steve R Daley
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Patricia Mae Gallanosa
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, 213 Buller Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
9
|
Radouani F, Sanchez-Cid C, Silbande A, Laure A, Ruiz-Valencia A, Robert F, Vogel TM, Salvin P. Evolution and interaction of microbial communities in mangrove microbial fuel cells and first description of Shewanella fodinae as electroactive bacterium. Bioelectrochemistry 2023; 153:108460. [PMID: 37224603 DOI: 10.1016/j.bioelechem.2023.108460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Understanding exoelectrogenic bacteria mechanisms and their interactions in complex biofilm is critical for the development of microbial fuel cells (MFCs). In this article, assumptions concerning the benefits of the complex sediment microbial community for electricity production were explored with both the complex microbial community and isolates identified as Shewanella. Analysis of the microbial community revealed a strong influence of the sediment community on anodes and electrolytes compared to that of only water. Moreover, while Pelobacteraceae-related genera were dominant in our MFCs instead of Desulfuromonas and Geobacter as usually reported, the electroactive Shewanella algae and Shewanella fodinae were isolated and cultivated from the anodic biofilm. S. fodinae, described for the first time as an electroactive bacterium to the best of our knowledge, led to a maximal current density of 3.6 A/m2 set as 0.3 V/SCE in a three-electrode set-up fed with lactate. S. algae, in a complex medium containing several available substrates, showed several preferential oxidative behaviors including a diauxic behavior. In pure culture and under our conditions, S. fodinae and S. algae were not able to use acetate as a sole electron donor. However, their presence in our acetate-fed MFCs and the adaptive behavior of S. algae hint a syntrophic interaction between the bacteria to optimize the use of the substrate in a complex environment.
Collapse
Affiliation(s)
- Fatima Radouani
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, CNRS UMR 5005 Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Adèle Silbande
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Adeline Laure
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Azariel Ruiz-Valencia
- Environmental Microbial Genomics, CNRS UMR 5005 Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Florent Robert
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Timothy M Vogel
- Université de Lyon, Université Claude Bernard Lyon 1, UMR 5557, UMR INRAe 1418, VetAgro Sup, Écologie Microbienne, équipe BEER, F-69622 Villeurbanne, France
| | - Paule Salvin
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France.
| |
Collapse
|
10
|
Pretreatment and catalytic conversion of lignocellulosic and algal biomass into biofuels by metal organic frameworks. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
11
|
Shah TA, Zhihe L, Zhiyu L, Zhang A, Lu D, Fang W, Xuan H. Whole cell of pure Clostridium butyricum CBT-1 from anaerobic bioreactor effectively hydrolyzes agro-food waste into biohydrogen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4853-4865. [PMID: 35974282 DOI: 10.1007/s11356-022-22443-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/04/2022] [Indexed: 06/18/2023]
Abstract
Recycling organic waste and converting them into renewable energy are a promising route for environment protection and effective biochemical reactions suitable for industrial hydrogen synthesis. This study targeted to isolate a pure anaerobic culture with potential to hydrolyze different biomass and production of biohydrogen. For this, a sample of full-scale anaerobic digester, fed with a multicomponent solid, was inoculated on Reinforced Clostridial Medium (RCM) in strict anaerobic conditions. An anaerobic Clostridium butyricum CBT-1 strain was isolated, identified from morphological and 16S rRNA sequence. The CBT-1 culture expressed amylase, cellulase and peroxidases activities. The strain exhibited visual decolorization of both Azure B and crystal violet dyes. In batch fermentation experiment, the CBT-1 produced highest of 3.06, 2.67 and 2.46 mol/mol H2 yield from glucose, starch and cellulose respectively, whereas, the CBT-1 showed low 0.43 mol H2/mol of substrate from untreated rice straw due to lignin in compact structure and comparatively high H2 yield of 1.91 and 2.01 mol H2/mol of substrate rice straw hydrolysate and kitchen food waste (KFWS) respectively. The cumulative volumetric yield of H2 was 358.15, 300.8 and 294.5NmL/gSub from glucose, starch and cellulose respectively. Similarly, the cumulative H2 volume was 76.7, 184.4, 237.2 NmL/gVS from untreated rice straw, rice straw hydrolysate and kitchen food waste. This study emphasizes the prospects to find similar robust anaerobic culture for hydrolyzing complex biomass. Such strains could be used as standard co-inoculum for biohydrogen obtaining and as the biocatalyst for commercial scale applications.
Collapse
Affiliation(s)
- Tawaf Ali Shah
- Department of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China.
| | - Li Zhihe
- Department of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Li Zhiyu
- Department of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Andong Zhang
- Department of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Di Lu
- Department of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Wang Fang
- Department of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Han Xuan
- Department of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| |
Collapse
|
12
|
Deivayanai VC, Yaashikaa PR, Senthil Kumar P, Rangasamy G. A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: Pretreatment strategy, technology advances and perspectives. BIORESOURCE TECHNOLOGY 2022; 365:128166. [PMID: 36283663 DOI: 10.1016/j.biortech.2022.128166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 05/16/2023]
Abstract
The globe has dependent on energy generation and utilization for many years; conversely, ecological concerns constrained the world to view hydrogen as an alternative for economic development. Lignocellulosic biomass is broadly accessible as a low-cost renewable feedstock and nonreactive nature; it has received a lot of consideration as a global energy source and the most attractive alternative to replace fossil natural substances for energy production. Pretreatment of lignocellulosic biomass is essential to advance its fragmentation and lower the lignin content for sustainable energy generation. This review's goal is to provide the different pretreatment strategies for enlarging the solubility and surface area of lignocellulosic biomass. The biological conversion of lignocellulosic biomass to hydrogen was reviewed and operational conditions and enhancing methods were discussed. This review summarizes the working conditions, parameters, yield percentages, techno-economic analysis, challenges, and future recommendations on the direct conversion of biomass to hydrogen.
Collapse
Affiliation(s)
- V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
13
|
Winkelman DC, Nikolau BJ. The Effects of Carbon Source and Growth Temperature on the Fatty Acid Profiles of Thermobifida fusca. Front Mol Biosci 2022; 9:896226. [PMID: 35720111 PMCID: PMC9198275 DOI: 10.3389/fmolb.2022.896226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The aerobic, thermophilic Actinobacterium, Thermobifida fusca has been proposed as an organism to be used for the efficient conversion of plant biomass to fatty acid-derived precursors of biofuels or biorenewable chemicals. Despite the potential of T. fusca to catabolize plant biomass, there is remarkably little data available concerning the natural ability of this organism to produce fatty acids. Therefore, we determined the fatty acids that T. fusca produces when it is grown on different carbon sources (i.e., glucose, cellobiose, cellulose and avicel) and at two different growth temperatures, namely at the optimal growth temperature of 50°C and at a suboptimal temperature of 37°C. These analyses establish that T. fusca produces a combination of linear and branched chain fatty acids (BCFAs), including iso-, anteiso-, and 10-methyl BCFAs that range between 14- and 18-carbons in length. Although different carbon sources and growth temperatures both quantitatively and qualitatively affect the fatty acid profiles produced by T. fusca, growth temperature is the greater modifier of these traits. Additionally, genome scanning enabled the identification of many of the fatty acid biosynthetic genes encoded by T. fusca.
Collapse
Affiliation(s)
| | - Basil J. Nikolau
- Department of Biochemistry, Biophysics and Molecular Biology and the Center of Metabolic Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
14
|
Kubis MR, Holwerda EK, Lynd LR. Declining carbohydrate solubilization with increasing solids loading during fermentation of cellulosic feedstocks by Clostridium thermocellum: documentation and diagnostic tests. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:12. [PMID: 35418299 PMCID: PMC8817502 DOI: 10.1186/s13068-022-02110-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/15/2022] [Indexed: 12/31/2022]
Abstract
Background For economically viable 2nd generation biofuels, processing of high solid lignocellulosic substrate concentrations is a necessity. The cellulolytic thermophilic anaerobe Clostridium thermocellum is one of the most effective biocatalysts for solubilization of carbohydrate harbored in lignocellulose. This study aims to document the solubilization performance of Clostridium thermocellum at increasing solids concentrations for two lignocellulosic feedstocks, corn stover and switchgrass, and explore potential effectors of solubilization performance. Results Monocultures of Clostridium thermocellum demonstrated high levels of carbohydrate solubilization for both unpretreated corn stover and switchgrass. However, fractional carbohydrate solubilization decreases with increasing solid loadings. Fermentation of model insoluble substrate (cellulose) in the presence of high solids lignocellulosic spent broth is temporarily affected but not model soluble substrate (cellobiose) fermentations. Mid-fermentation addition of cells (C. thermocellum) or model substrates did not significantly enhance overall corn stover solubilization loaded at 80 g/L, however cultures utilized the model substrates in the presence of high concentrations of corn stover. An increase in corn stover solubilization was observed when water was added, effectively diluting the solids concentration mid-fermentation. Introduction of a hemicellulose-utilizing coculture partner, Thermoanaerobacterium thermosaccharolyticum, increased the fractional carbohydrate solubilization at both high and low solid loadings. Residual solubilized carbohydrates diminished significantly in the presence of T. thermosaccharolyticum compared to monocultures of C. thermocellum, yet a small fraction of solubilized oligosaccharides of both C5 and C6 sugars remained unutilized. Conclusion Diminishing fractional carbohydrate solubilization with increasing substrate loading was observed for C. thermocellum-mediated solubilization and fermentation of unpretreated lignocellulose feedstocks. Results of experiments involving spent broth addition do not support a major role for inhibitors present in the liquid phase. Mid-fermentation addition experiments confirm that C. thermocellum and its enzymes remain capable of converting model substrates during the middle of high solids lignocellulose fermentation. An increase in fractional carbohydrate solubilization was made possible by (1) mid-fermentation solid loading dilutions and (2) coculturing C. thermocellum with T. thermosaccharolyticum, which ferments solubilized hemicellulose. Incomplete utilization of solubilized carbohydrates suggests that a small fraction of the carbohydrates is unaffected by the extracellular carbohydrate-active enzymes present in the culture. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02110-4.
Collapse
Affiliation(s)
- Matthew R Kubis
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.,The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Evert K Holwerda
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA. .,The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.,The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
15
|
Guan Y, Zhu H, Zhu Y, Zhao H, Shu L, Song J, Yang X, Wu Z, Wu L, Yang M. Microbial consortium composed of Cellulomonas ZJW-6 and Acinetobacter DA-25 improves straw lignocellulose degradation. Arch Microbiol 2022; 204:139. [PMID: 35032191 DOI: 10.1007/s00203-021-02748-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 11/02/2022]
Abstract
In the present study, 27 bacterial strains were isolated from environmental samples and screened for higher lignocellulose-degrading efficiency. The best degrader was combined in pairs with 14 strains with high β-glucosidase activity to formulate a consortium. Microbial consortium 625 showed high lignocellulose degradation efficiency. ZJW-6 with low β-glucosidase activity and the best lignocellulose decomposer was identified as a member of Cellulomonas. Consortium 625 composed of ZJW-6 and DA-25, an Acinetobacter, showed the highest degradation rate (57.62%) under optimized conditions. The DA-25 filtrate promoted ZJW-6 growth, upregulating the activity of key lignocellulose-degrading enzymes, including β-glucosidase, endoglucanase, xylanase, laccase, and lignin peroxidase. ZJW-6 and DA-25 worked in a subordination manner when co-cultivated. ZJW-6 acted as the major decomposer whose growth and enzymatic activities were promoted by DA-25. This study proposes a novel microbial consortium with improved lignocellulose degradation efficiency and reduce the C:N ratio of lignocellulose materials, which can enhance bioenergy production.
Collapse
Affiliation(s)
- Yunpeng Guan
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Hongyu Zhu
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Yuan Zhu
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Hemei Zhao
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Longhua Shu
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Jian Song
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Xue Yang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Zhihai Wu
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Lei Wu
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Meiying Yang
- College of Life Sciences, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
16
|
Assessing the impact of substrate-level enzyme regulations limiting ethanol titer in Clostridium thermocellum using a core kinetic model. Metab Eng 2022; 69:286-301. [PMID: 34982997 DOI: 10.1016/j.ymben.2021.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/20/2022]
Abstract
Clostridium thermocellum is a promising candidate for consolidated bioprocessing because it can directly ferment cellulose to ethanol. Despite significant efforts, achieved yields and titers fall below industrially relevant targets. This implies that there still exist unknown enzymatic, regulatory, and/or possibly thermodynamic bottlenecks that can throttle back metabolic flow. By (i) elucidating internal metabolic fluxes in wild-type C. thermocellum grown on cellobiose via 13C-metabolic flux analysis (13C-MFA), (ii) parameterizing a core kinetic model, and (iii) subsequently deploying an ensemble-docking workflow for discovering substrate-level regulations, this paper aims to reveal some of these factors and expand our knowledgebase governing C. thermocellum metabolism. Generated 13C labeling data were used with 13C-MFA to generate a wild-type flux distribution for the metabolic network. Notably, flux elucidation through MFA alluded to serine generation via the mercaptopyruvate pathway. Using the elucidated flux distributions in conjunction with batch fermentation process yield data for various mutant strains, we constructed a kinetic model of C. thermocellum core metabolism (i.e. k-ctherm138). Subsequently, we used the parameterized kinetic model to explore the effect of removing substrate-level regulations on ethanol yield and titer. Upon exploring all possible simultaneous (up to four) regulation removals we identified combinations that lead to many-fold model predicted improvement in ethanol titer. In addition, by coupling a systematic method for identifying putative competitive inhibitory mechanisms using K-FIT kinetic parameterization with the ensemble-docking workflow, we flagged 67 putative substrate-level inhibition mechanisms across central carbon metabolism supported by both kinetic formalism and docking analysis.
Collapse
|
17
|
Biorefinery Gets Hot: Thermophilic Enzymes and Microorganisms for Second-Generation Bioethanol Production. Processes (Basel) 2021. [DOI: 10.3390/pr9091583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To mitigate the current global energy and the environmental crisis, biofuels such as bioethanol have progressively gained attention from both scientific and industrial perspectives. However, at present, commercialized bioethanol is mainly derived from edible crops, thus raising serious concerns given its competition with feed production. For this reason, lignocellulosic biomasses (LCBs) have been recognized as important alternatives for bioethanol production. Because LCBs supply is sustainable, abundant, widespread, and cheap, LCBs-derived bioethanol currently represents one of the most viable solutions to meet the global demand for liquid fuel. However, the cost-effective conversion of LCBs into ethanol remains a challenge and its implementation has been hampered by several bottlenecks that must still be tackled. Among other factors related to the challenging and variable nature of LCBs, we highlight: (i) energy-demanding pretreatments, (ii) expensive hydrolytic enzyme blends, and (iii) the need for microorganisms that can ferment mixed sugars. In this regard, thermophiles represent valuable tools to overcome some of these limitations. Thus, the aim of this review is to provide an overview of the state-of-the-art technologies involved, such as the use of thermophilic enzymes and microorganisms in industrial-relevant conditions, and to propose possible means to implement thermophiles into second-generation ethanol biorefineries that are already in operation.
Collapse
|
18
|
Wijeyekoon SLJ, Vaidya AA. Woody biomass as a potential feedstock for fermentative gaseous biofuel production. World J Microbiol Biotechnol 2021; 37:134. [PMID: 34258684 DOI: 10.1007/s11274-021-03102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 01/22/2023]
Abstract
Biogas and biohydrogen are compatible gaseous biofuels that can be blended with natural gas for reticulated fuel supply to reduce greenhouse gas emissions. Sustainably grown woody biomass is emerging as a potential feedstock in the production of biofuels. Woody biomass is widely available, uses non-arable land for plantation, does not require synthetic fertilisers to grow and acts as a carbon sink. The cellulose and hemicellulose fractions of wood are renewable sources of sugars that can be used for fermentative production of gaseous biofuels. However, widespread use of wood as a gaseous biofuel feedstock is constrained due to the recalcitrant nature of wood to enzymatic hydrolysis. Pretreatment makes cellulose and hemicellulose accessible to microbial enzymes to produce fermentable sugars. Here we review wood composition, its structure and different pretreatment techniques in the context of their effects on deconstruction of wood to improve hydrolysis and fermentative gaseous fuel production. The anaerobic digestion of pretreated wood for biogas and dark fermentation for biohydrogen production are discussed with reference to gas yields. Key advancements in lab-scale research are described for pretreatments and for pure, co- and mixed culture fermentations. Limitations to yield improvements are identified and future perspectives and prospects of gaseous biofuel production from woody biomass are discussed, with reference to new developments in engineered biocatalysts and process integration.
Collapse
Affiliation(s)
| | - Alankar A Vaidya
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, 3046, New Zealand.
| |
Collapse
|
19
|
Bing RG, Sulis DB, Wang JP, Adams MW, Kelly RM. Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:272-293. [PMID: 33684253 PMCID: PMC10519370 DOI: 10.1111/1758-2229.12943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The potential to convert renewable plant biomasses into fuels and chemicals by microbial processes presents an attractive, less environmentally intense alternative to conventional routes based on fossil fuels. This would best be done with microbes that natively deconstruct lignocellulose and concomitantly form industrially relevant products, but these two physiological and metabolic features are rarely and simultaneously observed in nature. Genetic modification of both plant feedstocks and microbes can be used to increase lignocellulose deconstruction capability and generate industrially relevant products. Separate efforts on plants and microbes are ongoing, but these studies lack a focus on optimal, complementary combinations of these disparate biological systems to obtain a convergent technology. Improving genetic tools for plants have given rise to the generation of low-lignin lines that are more readily solubilized by microorganisms. Most focus on the microbiological front has involved thermophilic bacteria from the genera Caldicellulosiruptor and Clostridium, given their capacity to degrade lignocellulose and to form bio-products through metabolic engineering strategies enabled by ever-improving molecular genetics tools. Bioengineering plant properties to better fit the deconstruction capabilities of candidate consolidated bioprocessing microorganisms has potential to achieve the efficient lignocellulose deconstruction needed for industrial relevance.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Daniel B. Sulis
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Michael W.W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
20
|
Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Rajendran K, Pugazhendhi A, Rao CV, Atabani AE, Kumar G, Yang YH. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144429. [PMID: 33385808 DOI: 10.1016/j.scitotenv.2020.144429] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Biohydrogen is a clean and renewable source of energy. It can be produced by using technologies such as thermochemical, electrolysis, photoelectrochemical and biological, etc. Among these technologies, the biological method (dark fermentation) is considered more sustainable and ecofriendly. Dark fermentation involves anaerobic microbes which degrade carbohydrate rich substrate and produce hydrogen. Lignocellulosic biomass is an abundantly available raw material and can be utilized as an economic and renewable substrate for biohydrogen production. Although there are many hurdles, continuous advancements in lignocellulosic biomass pretreatment technology, microbial fermentation (mixed substrate and co-culture fermentation), the involvement of molecular biology techniques, and understanding of various factors (pH, T, addition of nanomaterials) effect on biohydrogen productivity and yield render this technology efficient and capable to meet future energy demands. Further integration of biohydrogen production technology with other products such as bio-alcohol, volatile fatty acids (VFAs), and methane have the potential to improve the efficiency and economics of the overall process. In this article, various methods used for lignocellulosic biomass pretreatment, technologies in trends to produce and improve biohydrogen production, a coproduction of other energy resources, and techno-economic analysis of biohydrogen production from lignocellulosic biomass are reviewed.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sujit Sadashiv Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Ashwini Ashok Bedekar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill 171005, H.P, India
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Andhra Pradesh 522502, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
21
|
Ariaeenejad S, Kavousi K, Mamaghani ASA, Motahar SFS, Nedaei H, Salekdeh GH. In-silico discovery of bifunctional enzymes with enhanced lignocellulose hydrolysis from microbiota big data. Int J Biol Macromol 2021; 177:211-220. [PMID: 33549667 DOI: 10.1016/j.ijbiomac.2021.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Due to the importance of using lignocellulosic biomass, it is always important to find an effective novel enzyme or enzyme cocktail or fusion enzymes. Identification of bifunctional enzymes through a metagenomic approach is an efficient method for converting agricultural residues and a beneficial way to reduce the cost of enzyme cocktail and fusion enzyme production. In this study, a novel stable bifunctional cellulase/xylanase, PersiCelXyn1 was identified from the rumen microbiota by the multi-stage in-silico screening pipeline and computationally assisted methodology. The enzyme exhibited the optimal activity at pH 5 and 50°C. Analyzing the enzyme activity at extreme temperature, pH, long-term storage, and presence of inhibitors and metal ions, confirmed the stability of the bifunctional enzyme under harsh conditions. Hydrolysis of the rice straw by PersiCelXyn1 showed its capability to degrade both cellulose and hemicellulose polymers. Also, the enzyme improved the degradation of various biomass substrates after 168 h of hydrolysis. Our results demonstrated the power of the multi-stage in-silico screening to identify bifunctional enzymes from metagenomic big data for effective bioconversion of lignocellulosic biomass.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Atefeh Sheykh Abdollahzadeh Mamaghani
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Seyedeh Fatemeh Sadeghian Motahar
- Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Hadi Nedaei
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran; Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Marroquín-Fandiño JE, Ramírez-Acosta CM, Luna-Wandurraga HJ, Valderrama-Rincón JA, Cruz JC, Reyes LH, Valderrama-Rincon JD. Novel external-loop-airlift milliliter scale bioreactors for cell growth studies: Low cost design, CFD analysis and experimental characterization. J Biotechnol 2020; 324:71-82. [PMID: 32991936 DOI: 10.1016/j.jbiotec.2020.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022]
Abstract
Many researchers have limited access to fully equipped laboratory-scale batch bioreactors and chemostats due to their relatively high cost. This becomes particularly prohibitive when multiple replicas of the same experiment are required, but not enough bioreactors are available to operate simultaneously. Additionally, experiments using shaken flasks are common but show significant limitations in terms of maintaining homogeneous conditions in liquid cultures or installing instrumentation for monitoring. Here, we proposed to tackle this significant hurdle by providing a route to make available the manufacture of low-cost, milliliter-scale bioreactors. This approach seems plausible for enabling proof-of-concept experiments before moving to a larger scale without significant investments. The conceptually designed systems were based on external-loop bioreactors due to their flexibility, simplicity, and ease of assembling and testing. Designs were initially evaluated in silico with the aid of COMSOL Multiphysics. The successfully evaluated systems were then constructed via additive manufacturing and assembled for hydrodynamics testing via tracer methods. This was enabled by a newly home-made optical absorbance sensor (OAS) for in-line and real-time measurements. Both the in silico and experimental results indicated close to ideal mixing conditions and low shear stress. Cell growth curves were prepared by culturing Escherichia coli and following its cell density in real-time. Our cell growth rate and maximum cell density were similar to those previously obtained in closely related systems. Therefore, the proposed bioreactors are an affordable alternative for batch and continuous cell growth studies rapidly and inexpensively.
Collapse
Affiliation(s)
| | - Carlos Manuel Ramírez-Acosta
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, 110311, Colombia
| | | | | | - Juan C Cruz
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, South Australia, 5005, Australia; Department of Biomedical Engineering, Universidad de los Andes, Bogotá, 110311, Colombia
| | - Luis H Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, 110311, Colombia
| | - Juan D Valderrama-Rincon
- Grupo GRESIA, Department of Environmental Engineering, Universidad Antonio Nariño, Bogotá, 110231, Colombia.
| |
Collapse
|
23
|
Wu X, Shang Y, Wei Q, Chen J, Zhang H, Chen Y, Gao X, Wang Z, Zhang H. Gut Microbiota in Dholes During Estrus. Front Microbiol 2020; 11:575731. [PMID: 33329438 PMCID: PMC7734286 DOI: 10.3389/fmicb.2020.575731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
The co-evolution of gut microbes and the host plays a vital role in the survival and reproduction of the host. The dhole (Cuon alpinus) has been listed as endangered species by the International Union for Conservation of Nature; therefore, conservation and effective breeding of dholes are essential. Effective estrus can promote reproduction. However, little is known about the relative contribution of estrus in shaping the structure and the functions of fecal microbiota. Here, we investigated the potential association between estrus and the fecal microbiota in dholes using shotgun metagenomic sequencing. We found that the estrus stages in dholes vary significantly in terms of gut bacterial composition and microbiome metabolism and function. Compared with that of non-estrus, adult dholes, the microbiome of estrus adult dholes had a significantly higher abundance of Bacillus faecalis and Veillonella, which play a key role in the synthesis of sex hormones and nucleic acids, energy production, and reproductive cell division. The insulin and energy metabolism-related pathways are significantly enhanced in the gut microbes and the related gluconeogenic enzymes are significantly enriched during estrus. These findings suggest that the structure and metagenome of the fecal microbiome during estrus have a significant effect in promoting estrus in dholes, thus providing a new perspective for dhole conservation.
Collapse
Affiliation(s)
- Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Huanxin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yao Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaodong Gao
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Zhiyong Wang
- Shijiazhuang Wildlife Conservation Center, Shijiazhuang, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
24
|
Transcriptomic analysis of a Clostridium thermocellum strain engineered to utilize xylose: responses to xylose versus cellobiose feeding. Sci Rep 2020; 10:14517. [PMID: 32884054 PMCID: PMC7471329 DOI: 10.1038/s41598-020-71428-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Clostridium (Ruminiclostridium) thermocellum is recognized for its ability to ferment cellulosic biomass directly, but it cannot naturally grow on xylose. Recently, C. thermocellum (KJC335) was engineered to utilize xylose through expressing a heterologous xylose catabolizing pathway. Here, we compared KJC335′s transcriptomic responses to xylose versus cellobiose as the primary carbon source and assessed how the bacteria adapted to utilize xylose. Our analyses revealed 417 differentially expressed genes (DEGs) with log2 fold change (FC) >|1| and 106 highly DEGs (log2 FC >|2|). Among the DEGs, two putative sugar transporters, cbpC and cbpD, were up-regulated, suggesting their contribution to xylose transport and assimilation. Moreover, the up-regulation of specific transketolase genes (tktAB) suggests the importance of this enzyme for xylose metabolism. Results also showed remarkable up-regulation of chemotaxis and motility associated genes responding to xylose feeding, as well as widely varying gene expression in those encoding cellulosomal enzymes. For the down-regulated genes, several were categorized in gene ontology terms oxidation–reduction processes, ATP binding and ATPase activity, and integral components of the membrane. This study informs potentially critical, enabling mechanisms to realize the conceptually attractive Next-Generation Consolidated BioProcessing approach where a single species is sufficient for the co-fermentation of cellulose and hemicellulose.
Collapse
|
25
|
Wu C, Cano M, Gao X, Lo J, Maness P, Xiong W. A quantitative lens on anaerobic life: leveraging the state-of-the-art fluxomics approach to explore clostridial metabolism. Curr Opin Biotechnol 2020; 64:47-54. [DOI: 10.1016/j.copbio.2019.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
|
26
|
Wen Z, Li Q, Liu J, Jin M, Yang S. Consolidated bioprocessing for butanol production of cellulolytic Clostridia: development and optimization. Microb Biotechnol 2020; 13:410-422. [PMID: 31448546 PMCID: PMC7017829 DOI: 10.1111/1751-7915.13478] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/20/2022] Open
Abstract
Butanol is an important bulk chemical, as well as a promising renewable gasoline substitute, that is commonly produced by solventogenic Clostridia. The main cost of cellulosic butanol fermentation is caused by cellulases that are required to saccharify lignocellulose, since solventogenic Clostridia cannot efficiently secrete cellulases. However, cellulolytic Clostridia can natively degrade lignocellulose and produce ethanol, acetate, butyrate and even butanol. Therefore, cellulolytic Clostridia offer an alternative to develop consolidated bioprocessing (CBP), which combines cellulase production, lignocellulose hydrolysis and co-fermentation of hexose/pentose into butanol in one step. This review focuses on CBP advances for butanol production of cellulolytic Clostridia and various synthetic biotechnologies that drive these advances. Moreover, the efforts to optimize the CBP-enabling cellulolytic Clostridia chassis are also discussed. These include the development of genetic tools, pentose metabolic engineering and the improvement of butanol tolerance. Designer cellulolytic Clostridia or consortium provide a promising approach and resource to accelerate future CBP for butanol production.
Collapse
Affiliation(s)
- Zhiqiang Wen
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Qi Li
- College of Life SciencesSichuan Normal UniversityLongquan, Chengdu610101China
| | - Jinle Liu
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Mingjie Jin
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Sheng Yang
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- Huzhou Center of Industrial BiotechnologyShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghai200032China
| |
Collapse
|
27
|
Mazzoli R, Olson D. Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:111-161. [PMID: 32948265 DOI: 10.1016/bs.aambs.2020.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Second generation biorefining, namely fermentation processes based on lignocellulosic feedstocks, has attracted tremendous interest (owing to the large availability and low cost of this biomass) as a strategy to produce biofuels and commodity chemicals that is an alternative to oil refining. However, the innate recalcitrance of lignocellulose has slowed progress toward economically viable processes. Consolidated bioprocessing (CBP), i.e., single-step fermentation of lignocellulose may dramatically reduce the current costs of 2nd generation biorefining. Metabolic engineering has been used as a tool to develop improved microbial strains supporting CBP. Clostridium thermocellum is among the most efficient cellulose degraders isolated so far and one of the most promising host organisms for application of CBP. The development of efficient and reliable genetic tools has allowed significant progress in metabolic engineering of this strain aimed at expanding the panel of growth substrates and improving the production of a number of commodity chemicals of industrial interest such as ethanol, butanol, isobutanol, isobutyl acetate and lactic acid. The present review aims to summarize recent developments in metabolic engineering of this organism which currently represents a reference model for the development of biocatalysts for 2nd generation biorefining.
Collapse
|
28
|
Banerjee S, Mishra G, Roy A. Metabolic Engineering of Bacteria for Renewable Bioethanol Production from Cellulosic Biomass. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0134-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Wang F, Wang M, Zhao Q, Niu K, Liu S, He D, Liu Y, Xu S, Fang X. Exploring the Relationship Between Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Front Microbiol 2019; 10:2035. [PMID: 31551972 PMCID: PMC6746925 DOI: 10.3389/fmicb.2019.02035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Characterizing and engineering microbial communities for lignocellulosic biofuel production has received widespread attention. Previous research has established that Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17 coculture significantly improves overall cellulosic biofuel production efficiency. Here, we investigated this interaction and revealed the mechanism underlying the improved efficiency observed. In contrast to the previously reported mutualistic relationship, a harmful effect toward C. thermocellum JN4 was observed in these microbial consortia. Although T. thermosaccharolyticum GD17 relieves the carbon catabolite repression of C. thermocellum JN4 regarding obtaining more cellobiose or glucose released from lignocellulose, T. thermosaccharolyticum GD17 significantly hampers the growth of C. thermocellum JN4 in coculture. The increased formation of end products is due to the strong competitive metabolic advantage of T. thermosaccharolyticum GD17 over C. thermocellum JN4 in the conversion of glucose or cellobiose into final products. The possibility of controlling and rebalancing these microbial consortia to modulate cellulose degradation was achieved by adding T. thermosaccharolyticum GD17 stimulants into the system. As cellulolytic bacteria are usually at a metabolic disadvantage, these discoveries may apply to a large proportion of cellulosic biofuel-producing microbial consortia. These findings provide a reference for engineering efficient and modular microbial consortia for modulating cellulosic conversion.
Collapse
Affiliation(s)
- Fangzhong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qi Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shasha Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Didi He
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yan Liu
- College of Life Science, Qufu Normal University, Qufu, China
| | - Shiping Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
30
|
Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, Bai FW. Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnol Adv 2019; 37:491-504. [DOI: 10.1016/j.biotechadv.2019.03.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 11/16/2022]
|
31
|
Marcano-Velazquez JG, Lo J, Nag A, Maness PC, Chou KJ. Developing Riboswitch-Mediated Gene Regulatory Controls in Thermophilic Bacteria. ACS Synth Biol 2019; 8:633-640. [PMID: 30943368 DOI: 10.1021/acssynbio.8b00487] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Thermophilic bacteria are attractive hosts to produce bio-based chemicals. While various genetic manipulations have been employed in the metabolic engineering of thermophiles, a robust means to regulate gene expression in these bacteria (∼55 °C) is missing. Our bioinformatic search for various riboswitches in thermophilic bacteria revealed that major classes of riboswitches are present, suggesting riboswitches' regulatory roles in these bacteria. By building synthetic constructs incorporating natural and engineered purine riboswitch sequences originated from foreign species, we quantified respective riboswitches activities in repressing and up-regulating gene expression in Geobacillus thermoglucosidasius using a green fluorescence protein. The elicited regulatory response was ligand-concentration-dependent. We further demonstrated that riboswitch-mediated gene expression of adhE (responsible for ethanol production) in Clostridium thermocellum can modulate ethanol production, redirect metabolites, and control cell growth in the adhE knockout mutant. This work has made tunable gene expression feasible across different thermophiles for broad applications including biofuels production and gene-to-trait mapping.
Collapse
Affiliation(s)
| | - Jonathan Lo
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United states
| | - Ambarish Nag
- Computational Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United states
| | - Pin-Ching Maness
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United states
| | - Katherine J. Chou
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United states
| |
Collapse
|
32
|
Podolsky IA, Seppälä S, Lankiewicz TS, Brown JL, Swift CL, O'Malley MA. Harnessing Nature's Anaerobes for Biotechnology and Bioprocessing. Annu Rev Chem Biomol Eng 2019; 10:105-128. [PMID: 30883214 DOI: 10.1146/annurev-chembioeng-060718-030340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Industrial biotechnology has the potential to decrease our reliance on petroleum for fuel and bio-based chemical production and also enable valorization of waste streams. Anaerobic microorganisms thrive in resource-limited environments and offer an array of novel bioactivities in this regard that could revolutionize biomanufacturing. However, they have not been adopted for widespread industrial use owing to their strict growth requirements, limited number of available strains, difficulty in scale-up, and genetic intractability. This review provides an overview of current and future uses for anaerobes in biotechnology and bioprocessing in the postgenomic era. We focus on the recently characterized anaerobic fungi (Neocallimastigomycota) native to the digestive tract of large herbivores, which possess a trove of enzymes, pathways, transporters, and other biomolecules that can be harnessed for numerous biotechnological applications. Resolving current genetic intractability, scale-up, and cultivation challenges will unlock the potential of these lignocellulolytic fungi and other nonmodel micro-organisms to accelerate bio-based production.
Collapse
Affiliation(s)
- Igor A Podolsky
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Thomas S Lankiewicz
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Jennifer L Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Candice L Swift
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| |
Collapse
|
33
|
Xin F, Dong W, Zhang W, Ma J, Jiang M. Biobutanol Production from Crystalline Cellulose through Consolidated Bioprocessing. Trends Biotechnol 2019; 37:167-180. [DOI: 10.1016/j.tibtech.2018.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023]
|
34
|
Clostridial whole cell and enzyme systems for hydrogen production: current state and perspectives. Appl Microbiol Biotechnol 2018; 103:567-575. [PMID: 30446778 DOI: 10.1007/s00253-018-9514-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Strictly anaerobic bacteria of the Clostridium genus have attracted great interest as potential cell factories for molecular hydrogen production purposes. In addition to being a useful approach to this process, dark fermentation has the advantage of using the degradation of cheap agricultural residues and industrial wastes for molecular hydrogen production. However, many improvements are still required before large-scale hydrogen production from clostridial metabolism is possible. Here we review the literature on the basic biological processes involved in clostridial hydrogen production, and present the main advances obtained so far in order to enhance the hydrogen productivity, as well as suggesting some possible future prospects.
Collapse
|
35
|
Xiong W, Lo J, Chou KJ, Wu C, Magnusson L, Dong T, Maness P. Isotope-Assisted Metabolite Analysis Sheds Light on Central Carbon Metabolism of a Model Cellulolytic Bacterium Clostridium thermocellum. Front Microbiol 2018; 9:1947. [PMID: 30190711 PMCID: PMC6115520 DOI: 10.3389/fmicb.2018.01947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 01/01/2023] Open
Abstract
Cellulolytic bacteria have the potential to perform lignocellulose hydrolysis and fermentation simultaneously. The metabolic pathways of these bacteria, therefore, require more comprehensive and quantitative understanding. Using isotope tracer, gas chromatography-mass spectrometry, and metabolic flux modeling, we decipher the metabolic network of Clostridium thermocellum, a model cellulolytic bacterium which represents as an attractive platform for conversion of lignocellulose to dedicated products. We uncover that the Embden-Meyerhof-Parnas (EMP) pathway is the predominant glycolytic route whereas the Entner-Doudoroff (ED) pathway and oxidative pentose phosphate pathway are inactive. We also observe that C. thermocellum's TCA cycle is initiated by both Si- and Re-citrate synthase, and it is disconnected between 2-oxoglutarate and oxaloacetate in the oxidative direction; C. thermocellum uses a citramalate shunt to synthesize isoleucine; and both the one-carbon pathway and the malate shunt are highly active in this bacterium. To gain a quantitative understanding, we further formulate a fluxome map to quantify the metabolic fluxes through central metabolic pathways. This work represents the first global in vivo investigation of the principal carbon metabolism of C. thermocellum. Our results elucidate the unique structure of metabolic network in this cellulolytic bacterium and demonstrate the capability of isotope-assisted metabolite studies in understanding microbial metabolism of industrial interests.
Collapse
Affiliation(s)
- Wei Xiong
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Jonathan Lo
- National Renewable Energy Laboratory, Golden, CO, United States
| | | | - Chao Wu
- National Renewable Energy Laboratory, Golden, CO, United States
| | | | - Tao Dong
- National Renewable Energy Laboratory, Golden, CO, United States
| | - PinChing Maness
- National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|