1
|
Zhou HY, Chen YH, Chen DD, Wang ZW, Jin LQ, Liu ZQ, Zheng YG. Metabolically Modifying the Central and Competitive Metabolic Pathways for Enhanced D-Pantoic Acid Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2077-2087. [PMID: 39772599 DOI: 10.1021/acs.jafc.4c10512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
D-Pantoic acid is an essential precursor for the synthesis of vitamin B5. However, the microbial synthesis of D-pantoic acid suffers from a low yield. Herein, to improve D-pantoic acid biosynthesis in Escherichia coli, the central metabolic and byproduct-forming pathways were first engineered, increasing the D-pantoic acid titer to 1.55 g/L from 0.75 g/L. Subsequently, the modification was focused on preventing the accumulation of α-ketoglutarate (α-KG). Six genes (ppc, mdh, icd, sucA, kgtP, and dcuA) related to α-KG metabolism and transport were screened by the CRISPRi system and further genetically manipulated. Ultimately, significantly improved D-pantoic acid biosynthesis (2.03 g/L in a shake flask and 14.78 g/L in a 5-L bioreactor) with dramatically reduced formation of byproducts was achieved. To our best knowledge, this is the first attempt to modify the key metabolic targets related to α-KG accumulation for enhanced D-pantoic acid biosynthesis. These findings would also offer valuable insights into the metabolic regulation of other related metabolites.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yi-Hong Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Dou-Dou Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zi-Wen Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Li-Qun Jin
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
2
|
Fei P, Zhang W, Shang Y, Hu P, Gu Y, Luo Y, Wu H. Carbon-negative bio-production of short-chain carboxylic acids (SCCAs) from syngas via the sequential two-stage bioprocess by Moorella thermoacetica and metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2025; 416:131714. [PMID: 39490540 DOI: 10.1016/j.biortech.2024.131714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Syngas can be efficiently converted to acetate by Moorella thermoacetica under anaerobic conditions, which is environmentally friendly. Coupled with acetate production from syngas, using acetate to synthesize value-added compounds such as short-chain carboxylic acids (SCCAs) becomes a negative-carbon process. Escherichia coli is engineered to utilize acetate as the sole carbon source to produce SCCAs. By knocking out some acetyltransferase genes, introducing exogenous pathway and additional cofactor engineering, the strains can synthesize 3.79 g/L of 3-hydroxypropionic acid (3-HP), 1.83 g/L of (R)-3-hydroxybutyric acid (R-3HB), and 2.31 g/L of butyrate. We used M. thermoacetica to produce acetate from syngas. Subsequently, all engineered E. coli strains were able to produce SCCAs from syngas-derived acetate. The titers of 3-HP, R-3HB, and butyrate are 3.75, 1.68, and 2.04 g/L, with carbon sequestration rates of 51.1, 26.3, and 38.1 %. This coupled bioprocess has great potential for producing a range of other value-added chemicals from syngas.
Collapse
Affiliation(s)
- Peng Fei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenrui Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yanzhe Shang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Peng Hu
- Shanghai GTLB Biotech Co., Ltd, 1688 North Guoguan Road, Shanghai 200438, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
3
|
Kutscha R, Tomin T, Birner-Gruenberger R, Bekiaris PS, Klamt S, Pflügl S. Efficiency of acetate-based isopropanol synthesis in Escherichia coli W is controlled by ATP demand. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:110. [PMID: 39103876 DOI: 10.1186/s13068-024-02534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Due to increasing ecological concerns, microbial production of biochemicals from sustainable carbon sources like acetate is rapidly gaining importance. However, to successfully establish large-scale production scenarios, a solid understanding of metabolic driving forces is required to inform bioprocess design. To generate such knowledge, we constructed isopropanol-producing Escherichia coli W strains. RESULTS Based on strain screening and metabolic considerations, a 2-stage process was designed, incorporating a growth phase followed by a nitrogen-starvation phase. This process design yielded the highest isopropanol titers on acetate to date (13.3 g L-1). Additionally, we performed shotgun and acetylated proteomics, and identified several stress conditions in the bioreactor scenarios, such as acid stress and impaired sulfur uptake. Metabolic modeling allowed for an in-depth characterization of intracellular flux distributions, uncovering cellular demand for ATP and acetyl-CoA as limiting factors for routing carbon toward the isopropanol pathway. Moreover, we asserted the importance of a balance between fluxes of the NADPH-providing isocitrate dehydrogenase (ICDH) and the product pathway. CONCLUSIONS Using the newly gained system-level understanding for isopropanol production from acetate, we assessed possible engineering approaches and propose process designs to maximize production. Collectively, our work contributes to the establishment and optimization of acetate-based bioproduction systems.
Collapse
Affiliation(s)
- Regina Kutscha
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | - Pavlos Stephanos Bekiaris
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
4
|
Gu P, Li F, Huang Z, Gao J. Application of Acetate as a Substrate for the Production of Value-Added Chemicals in Escherichia coli. Microorganisms 2024; 12:309. [PMID: 38399713 PMCID: PMC10891810 DOI: 10.3390/microorganisms12020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
At present, the production of the majority of valuable chemicals is dependent on the microbial fermentation of carbohydrate substrates. However, direct competition is a potential problem for microbial feedstocks that are also used within the food/feed industries. The use of alternative carbon sources, such as acetate, has therefore become a research focus. As a common organic acid, acetate can be generated from lignocellulosic biomass and C1 gases, as well as being a major byproduct in microbial fermentation, especially in the presence of an excess carbon source. As a model microorganism, Escherichia coli has been widely applied in the production of valuable chemicals using different carbon sources. Recently, several valuable chemicals (e.g., succinic acid, itaconic acid, isobutanol, and mevalonic acid) have been investigated for synthesis in E. coli using acetate as the sole carbon source. In this review, we summarize the acetate metabolic pathway in E. coli and recent research into the microbial production of chemical compounds in E. coli using acetate as the carbon source. Although microbial synthetic pathways for different compounds have been developed in E. coli, the production titer and yield are insufficient for commercial applications. Finally, we discuss the development prospects and challenges of using acetate for microbial fermentation.
Collapse
Affiliation(s)
- Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| | - Fangfang Li
- Yantai Food and Drug Control and Test Center, Yantai 264003, China;
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| |
Collapse
|
5
|
Zhu J, Liu W, Wang M, Di H, Lü C, Xu P, Gao C, Ma C. Poly-3-hydroxybutyrate production from acetate by recombinant Pseudomonas stutzeri with blocked L-leucine catabolism and enhanced growth in acetate. Front Bioeng Biotechnol 2023; 11:1297431. [PMID: 38026858 PMCID: PMC10663377 DOI: 10.3389/fbioe.2023.1297431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Acetate is a low-cost feedstock for the production of different bio-chemicals. Electrochemical reduction of CO2 into acetate and subsequent acetate fermentation is a promising method for transforming CO2 into value-added chemicals. However, the significant inhibitory effect of acetate on microbial growth remains a barrier for acetate-based biorefinery. In this study, the deletion of genes involved in L-leucine degradation was found to be beneficial for the growth of Pseudomonas stutzeri A1501 in acetate. P. stutzeri (Δpst_3217), in which the hydroxymethylglutaryl-CoA lyase catalyzing β-hydroxy-β-methylglutaryl-CoA into acetyl-CoA and acetoacetate was deleted, grew faster than other mutants and exhibited increased tolerance to acetate. Then, the genes phbCAB from Ralstonia eutropha H16 for poly-3-hydroxybutyrate (PHB) biosynthesis were overexpressed in P. stutzeri (∆pst_3217) and the recombinant strain P. stutzeri (∆pst_3217-phbCAB) can accumulate 0.11 g L-1 PHB from commercial acetate. Importantly, P. stutzeri (∆pst_3217-phbCAB) can also use CO2-derived acetate to produce PHB and the accumulated PHB accounted for 5.42% (w/w) of dried cell weight of P. stutzeri (∆pst_3217-phbCAB).
Collapse
Affiliation(s)
- Jieni Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mengjiao Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Haiyan Di
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
6
|
Gu P, Li F, Huang Z. Engineering Escherichia coli for Isobutanol Production from Xylose or Glucose-Xylose Mixture. Microorganisms 2023; 11:2573. [PMID: 37894231 PMCID: PMC10609591 DOI: 10.3390/microorganisms11102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Aiming to overcome the depletion of fossil fuels and serious environmental pollution, biofuels such as isobutanol have garnered increased attention. Among different synthesis methods, the microbial fermentation of isobutanol from raw substrate is a promising strategy due to its low cost and environmentally friendly and optically pure products. As an important component of lignocellulosics and the second most common sugar in nature, xylose has become a promising renewable resource for microbial production. However, bottlenecks in xylose utilization limit its wide application as substrates. In this work, an isobutanol synthetic pathway from xylose was first constructed in E. coli MG1655 through the combination of the Ehrlich and Dahms pathways. The engineering of xylose transport and electron transport chain complexes further improved xylose assimilation and isobutanol production. By optimizing xylose supplement concentration, the recombinant E. coli strain BWL4 could produce 485.35 mg/L isobutanol from 20 g/L of xylose. To our knowledge, this is the first report related to isobutanol production using xylose as a sole carbon source in E. coli. Additionally, a glucose-xylose mixture was utilized as the carbon source. The Entner-Doudorof pathway was used to assimilate glucose, and the Ehrlich pathway was applied for isobutanol production. After carefully engineering the recombinant E. coli, strain BWL9 could produce 528.72 mg/L isobutanol from a mixture of 20 g/L glucose and 10 g/L xylose. The engineering strategies applied in this work provide a useful reference for the microbial production of isobutanol from xylose or glucose-xylose mixture.
Collapse
Affiliation(s)
- Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| | - Fangfang Li
- Yantai Food and Drug Control and Test Center, Yantai 264003, China;
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| |
Collapse
|
7
|
Zhang S, Su J, Liu S, Ren Y, Cao S. Regulating mechanism of denitrifier Comamonas sp. YSF15 in response to carbon deficiency: Based on carbon/nitrogen functions and bioaggregation. ENVIRONMENTAL RESEARCH 2023; 235:116661. [PMID: 37451570 DOI: 10.1016/j.envres.2023.116661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
There is an urgent demand to investigate mechanisms for the improvement of denitrification in carbon-deficient environment, which will effectively reduce the eutrophication in water bodies polluted by nitrate. In this study, denitrifying bacterium Comamonas sp. YSF15 was used to explore the differences in different carbon source concentrations, with the complete genome, metabolomics, and other detecting methods. Results showed that strain YSF15 was able to achieve efficient denitrification, with complete pathways for denitrification and central carbon metabolism. The carbon deficiency prompted the bacteria to use extracellular amino acid-like metabolites initially, to alleviate inhibition and maintain bioactivity, which also facilitated glycogen storage. The biogenic inhibitors (tautomycin, navitoclax, and glufosinate) at extremely low level potentially favored the competitiveness and intraspecific utilization of extracellular polysaccharides (PS). Optimal solutions for bioaggregation in carbon-deficient condition are achieved by regulating the hydrophobicity, and hydrogen bond in extracellular metabolites. The strategy contributes to the maintenance of bioactivity and adaptation to carbon deficiency. Overall, this study provides a new perspective on understanding the denitrification strategies in carbon-deficient environment, and helps to improve the nitrate removal in low-carbon wastewater treatment.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
8
|
Boecker S, Schulze P, Klamt S. Growth-coupled anaerobic production of isobutanol from glucose in minimal medium with Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:148. [PMID: 37789464 PMCID: PMC10548627 DOI: 10.1186/s13068-023-02395-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND The microbial production of isobutanol holds promise to become a sustainable alternative to fossil-based synthesis routes for this important chemical. Escherichia coli has been considered as one production host, however, due to redox imbalance, growth-coupled anaerobic production of isobutanol from glucose in E. coli is only possible if complex media additives or small amounts of oxygen are provided. These strategies have a negative impact on product yield, productivity, reproducibility, and production costs. RESULTS In this study, we propose a strategy based on acetate as co-substrate for resolving the redox imbalance. We constructed the E. coli background strain SB001 (ΔldhA ΔfrdA ΔpflB) with blocked pathways from glucose to alternative fermentation products but with an enabled pathway for acetate uptake and subsequent conversion to ethanol via acetyl-CoA. This strain, if equipped with the isobutanol production plasmid pIBA4, showed robust exponential growth (µ = 0.05 h-1) under anaerobic conditions in minimal glucose medium supplemented with small amounts of acetate. In small-scale batch cultivations, the strain reached a glucose uptake rate of 4.8 mmol gDW-1 h-1, a titer of 74 mM and 89% of the theoretical maximal isobutanol/glucose yield, while secreting only small amounts of ethanol synthesized from acetate. Furthermore, we show that the strain keeps a high metabolic activity also in a pulsed fed-batch bioreactor cultivation, even if cell growth is impaired by the accumulation of isobutanol in the medium. CONCLUSIONS This study showcases the beneficial utilization of acetate as a co-substrate and redox sink to facilitate growth-coupled production of isobutanol under anaerobic conditions. This approach holds potential for other applications with different production hosts and/or substrate-product combinations.
Collapse
Affiliation(s)
- Simon Boecker
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- University of Applied Sciences Berlin, Seestr. 64, 13347, Berlin, Germany
| | - Peter Schulze
- Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| |
Collapse
|
9
|
Gu P, Zhao S, Niu H, Li C, Jiang S, Zhou H, Li Q. Synthesis of isobutanol using acetate as sole carbon source in Escherichia coli. Microb Cell Fact 2023; 22:196. [PMID: 37759284 PMCID: PMC10537434 DOI: 10.1186/s12934-023-02197-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND With concerns about depletion of fossil fuel and environmental pollution, synthesis of biofuels such as isobutanol from low-cost substrate by microbial cell factories has attracted more and more attention. As one of the most promising carbon sources instead of food resources, acetate can be utilized by versatile microbes and converted into numerous valuable chemicals. RESULTS An isobutanol synthetic pathway using acetate as sole carbon source was constructed in E. coli. Pyruvate was designed to be generated via acetyl-CoA by pyruvate-ferredoxin oxidoreductase YdbK or anaplerotic pathway. Overexpression of transhydrogenase and NAD kinase increased the isobutanol titer of recombinant E. coli from 121.21 mg/L to 131.5 mg/L under batch cultivation. Further optimization of acetate supplement concentration achieved 157.05 mg/L isobutanol accumulation in WY002, representing the highest isobutanol titer by using acetate as sole carbon source. CONCLUSIONS The utilization of acetate as carbon source for microbial production of valuable chemicals such as isobutanol could reduce the consumption of food-based substrates and save production cost. Engineering strategies applied in this study will provide a useful reference for microbial production of pyruvate derived chemical compounds from acetate.
Collapse
Affiliation(s)
- Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Shuo Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hao Niu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Chengwei Li
- RZBC GROUP CO., LTD, Rizhao, 276800, Shandong, China
| | | | - Hao Zhou
- RZBC GROUP CO., LTD, Rizhao, 276800, Shandong, China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
10
|
Kim SH, Hwang JH, Kim HJ, Oh SJ, Kim HJ, Shin N, Kim SH, Park JH, Bhatia SK, Yang YH. Enhancement of biohydrogen production in Clostridium acetobutylicum ATCC 824 by overexpression of glyceraldehyde-3-phosphate dehydrogenase gene. Enzyme Microb Technol 2023; 168:110244. [PMID: 37196383 DOI: 10.1016/j.enzmictec.2023.110244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023]
Abstract
In the dark fermentation of hydrogen, development of production host is crucial as bacteria act on substrates and produce hydrogen. The present study aimed to improve hydrogen production through the development of Clostridium acetobutylicum as a superior biohydrogen producer. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which produces NADH/NADPH for metabolites and energy in primary pathways, was introduced to enhance hydrogen production. The strain CAC824-G containing gapC that encodes GAPDH showed a 66.3 % higher hydrogen production than the wild-type strain, with increased NADH and NADPH pools. Glucose consumption and other byproducts, such as acetone, butanol, and ethanol, were also high in CAC824-G. Overexpression of gapC resulted in increased hydrogen production with sugars obtained from different biomass, even in the presence of inhibitors such as vanillin, 5-hydroxymethylfufural, acetic acid, and formic acid. Our results imply that overexpression of gapC in Clostridium is possible to expand the production of the reported biochemicals to produce hydrogen.
Collapse
Affiliation(s)
- Sang Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si 63243, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
11
|
Cho DH, Kim HJ, Oh SJ, Hwang JH, Shin N, Bhatia SK, Yoon JJ, Jeon JM, Yang YH. Strategy for efficiently utilizing Escherichia coli cells producing isobutanol by combining isobutanol and indigo production systems. J Biotechnol 2023; 367:62-70. [PMID: 37019156 DOI: 10.1016/j.jbiotec.2023.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Isobutanol is a potential biofuel, and its microbial production systems have demonstrated promising results. In a microbial system, the isobutanol produced is secreted into the media; however, the cells remaining after fermentation cannot be used efficiently during the isobutanol recovery process and are discarded as waste. To address this, we aimed to investigate the strategy of utilizing these remaining cells by combining the isobutanol production system with the indigo production system, wherein the product accumulates intracellularly. Accordingly, we constructed E. coli systems with genes, such as acetolactate synthase gene (alsS), ketol-acid reductoisomerase gene (ilvC), dihydroxyl-acid dehydratase (ilvD), and alpha-ketoisovalerate decarboxylase gene (kivD), for isobutanol production and genes, such as tryptophanase gene (tnaA) and flavin-containing monooxygenase gene (FMO), for indigo production. This system produced isobutanol and indigo simultaneously while accumulating indigo within cells. The production of isobutanol and indigo exhibited a strong linear correlation up to 72 h of production time; however, the pattern of isobutanol and indigo production varied. To our knowledge, this study is the first to simultaneously produce isobutanol and indigo and can potentially enhance the economy of biochemical production.
Collapse
Affiliation(s)
- Do Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, South Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea.
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, South Korea.
| |
Collapse
|
12
|
Zhuo XZ, Chou SC, Li SY. Producing medium-chain-length polyhydroxyalkanoate from diverse feedstocks by deregulating unsaturated fatty acid biosynthesis in Escherichia coli. BIORESOURCE TECHNOLOGY 2022; 365:128078. [PMID: 36216288 DOI: 10.1016/j.biortech.2022.128078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The fatty acid metabolism in Escherichia coli has served as a basic metabolic chassis for medium-chain-length polyhydroxyalkanoate (mcl-PHA) production. In this study, the phaG and phaC1 genes from Pseudomonas entomophila L48 were first cloned as pGRN08. E. coli BL21P (E. coli BL21(DE3) ΔptsG) containing pGRN08 was able to produce 23 ± 3 and 7 ± 0 mg/L homopolymer poly(3-hydroxydecanoate)(P(3HD)) from glucose and xylose, respectively. Next, a gene, PSEEN0908 (encoding a putative 3-hydroxyacyl-CoA ligase), from P. entomophila L48 was found to increase the performance of mcl-PHA production. The induction of the fatty acid biosynthesis repressor (FabR), a transcription regulator that represses UFA biosynthesis, in E. coli substantially increased the mcl-PHA production by an order of magnitude from both unrelated and related carbon source conversion. A mcl-PHA concentration of 179 ± 1 mg/L and a content of 5.79 ± 0.16 % were obtained, where 31 mol% was 3-hydroxyoctanoate (3HO) and 69 mol% was 3HD.
Collapse
Affiliation(s)
- Xiao-Zhen Zhuo
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Chiao Chou
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
13
|
Scown CD. Prospects for carbon-negative biomanufacturing. Trends Biotechnol 2022; 40:1415-1424. [PMID: 36192249 DOI: 10.1016/j.tibtech.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 01/21/2023]
Abstract
Biomanufacturing has the potential to reduce demand for petrochemicals and mitigate climate change. Recent studies have also suggested that some of these products can be net carbon negative, effectively removing CO2 from the atmosphere and locking it up in products. This review explores the magnitude of carbon removal achievable through biomanufacturing and discusses the likely fate of carbon in a range of target molecules. Solvents, cleaning agents, or food and pharmaceutical additives will likely re-release their carbon as CO2 at the end of their functional lives, while carbon incorporated into non-compostable polymers can result in long-term sequestration. Future research can maximize its impact by focusing on reducing emissions, achieving performance advantages, and enabling a more circular carbon economy.
Collapse
Affiliation(s)
- Corinne D Scown
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Life-Cycle, Economics and Agronomy Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Energy and Biosciences Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Gong G, Wu B, Liu L, Li J, Zhu Q, He M, Hu G. Metabolic engineering using acetate as a promising building block for the production of bio-based chemicals. ENGINEERING MICROBIOLOGY 2022; 2:100036. [PMID: 39628702 PMCID: PMC11610983 DOI: 10.1016/j.engmic.2022.100036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/06/2024]
Abstract
The production of biofuels and biochemicals derived from microbial fermentation has received a lot of attention and interest in light of concerns about the depletion of fossil fuel resources and climatic degeneration. However, the economic viability of feedstocks for biological conversion remains a barrier, urging researchers to develop renewable and sustainable low-cost carbon sources for future bioindustries. Owing to the numerous advantages, acetate has been regarded as a promising feedstock targeting the production of acetyl-CoA-derived chemicals. This review aims to highlight the potential of acetate as a building block in industrial biotechnology for the production of bio-based chemicals with metabolic engineering. Different alternative approaches and routes comprised of lignocellulosic biomass, waste streams, and C1 gas for acetate generation are briefly described and evaluated. Then, a thorough explanation of the metabolic pathway for biotechnological acetate conversion, cellular transport, and toxin tolerance is described. Particularly, current developments in metabolic engineering of the manufacture of biochemicals from acetate are summarized in detail, with various microbial cell factories and strategies proposed to improve acetate assimilation and enhance product formation. Challenges and future development for acetate generation and assimilation as well as chemicals production from acetate is eventually shown. This review provides an overview of the current status of acetate utilization and proves the great potential of acetate with metabolic engineering in industrial biotechnology.
Collapse
Affiliation(s)
| | | | - Linpei Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Qili Zhu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| |
Collapse
|
15
|
Wang Z, Liu C, Wang S, Hou X, Gong P, Li X, Liang Z, Liu J, Zhang L, Zhang Y. Segmented MS/MS acquisition of a1 ion-based strategy for in-depth proteome quantitation. Anal Chim Acta 2022; 1232:340491. [DOI: 10.1016/j.aca.2022.340491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 11/01/2022]
|
16
|
Mutyala S, Kim JR. Recent advances and challenges in the bioconversion of acetate to value-added chemicals. BIORESOURCE TECHNOLOGY 2022; 364:128064. [PMID: 36195215 DOI: 10.1016/j.biortech.2022.128064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Acetate is a major byproduct of the bioconversion of the greenhouse gas carbon dioxide, pretreatment of lignocellulose biomass, and microbial fermentation. The utilization and valorization of acetate have been emphasized in transforming waste to clean energy and value-added platform chemicals, contributing to the development of a closed carbon loop toward a low-carbon circular bio-economy. Acetate has been used to produce several platform chemicals, including succinate, 3-hydroxypropionate, and itaconic acid, highlighting the potential of acetate to synthesize many biochemicals and biofuels. On the other hand, the yields and titers have not reached the theoretical maximum. Recently, recombinant strain development and pathway regulation have been suggested to overcome this limitation. This review provides insights into the important constraints limiting the yields and titers of the biochemical and metabolic pathways of bacteria capable of metabolizing acetate for acetate bioconversion. The current developments in recombinant strain engineering are also discussed.
Collapse
Affiliation(s)
- Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
17
|
Lee HJ, Kim B, Kim S, Cho DH, Jung H, Bhatia SK, Gurav R, Ahn J, Park JH, Choi KY, Yang YH. Controlling catabolite repression for isobutanol production using glucose and xylose by overexpressing the xylose regulator. J Biotechnol 2022; 359:21-28. [PMID: 36152769 DOI: 10.1016/j.jbiotec.2022.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 10/31/2022]
Abstract
Using lignocellulosic biomass is immensely beneficial for the economical production of biochemicals. However, utilizing mixed sugars from lignocellulosic biomass is challenging because of bacterial preference for specific sugar such as glucose. Although previous studies have attempted to overcome this challenge, no studies have been reported on isobutanol production from mixed sugars in the Escherichia coli strain. To overcome catabolite repression of xylose and produce isobutanol using mixed sugars, we applied the combination of three strategies: (1) deletion of the gene for the glucose-specific transporter of the phosphotransferase system (ptsG); (2) overexpression of glucose kinase (glk) and glucose facilitator protein (glf); and (3) overexpression of the xylose regulator (xylR). xylR gene overexpression resulted in 100% of glucose and 82.5% of xylose consumption in the glucose-xylose mixture (1:1). Moreover, isobutanol production increased by 192% in the 1:1 medium, equivalent to the amount of isobutanol produced using only glucose. These results indicate the effectiveness of xylR overexpression in isobutanol production. Our findings demonstrated various strategies to overcome catabolite repression for a specific product, isobutanol. The present study suggests that the selected strategy in E. coli could overcome the major challenge using lignocellulosic biomass to produce isobutanol.
Collapse
Affiliation(s)
- Hong-Ju Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Suhyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Do-Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Heeju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, South Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), South Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, South Korea.
| |
Collapse
|
18
|
Ye DY, Noh MH, Moon JH, Milito A, Kim M, Lee JW, Yang JS, Jung GY. Kinetic compartmentalization by unnatural reaction for itaconate production. Nat Commun 2022; 13:5353. [PMID: 36097012 PMCID: PMC9468356 DOI: 10.1038/s41467-022-33033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/29/2022] [Indexed: 11/09/2022] Open
Abstract
Physical compartmentalization of metabolism using membranous organelles in eukaryotes is helpful for chemical biosynthesis to ensure the availability of substrates from competitive metabolic reactions. Bacterial hosts lack such a membranous system, which is one of the major limitations for efficient metabolic engineering. Here, we employ kinetic compartmentalization with the introduction of an unnatural enzymatic reaction by an engineered enzyme as an alternative strategy to enable substrate availability from competitive reactions through kinetic isolation of metabolic pathways. As a proof of concept, we kinetically isolate the itaconate synthetic pathway from the tricarboxylic acid cycle in Escherichia coli, which is natively separated by mitochondrial membranes in Aspergillus terreus. Specifically, 2-methylcitrate dehydratase is engineered to alternatively catalyze citrate and kinetically secure cis-aconitate for efficient production using a high-throughput screening system. Itaconate production can be significantly improved with kinetic compartmentalization and its strategy has the potential to be widely applicable.
Collapse
Affiliation(s)
- Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Myung Hyun Noh
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jo Hyun Moon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Alfonsina Milito
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jae-Seong Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea. .,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
19
|
Yoon J, Bae J, Kang S, Cho BK, Oh MK. Poly-3-hydroxybutyrate production in acetate minimal medium using engineered Methylorubrum extorquens AM1. BIORESOURCE TECHNOLOGY 2022; 353:127127. [PMID: 35398538 DOI: 10.1016/j.biortech.2022.127127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Acetate is regarded as a sustainable microbial feedstock that is synthesized from biowastes such as synthesis gas (syngas), carbon dioxide, lignocellulose, or organic waste. In this study, Methylorubrum extorquens AM1 was engineered to improve the production of bioplastic poly-3-hydroxybutyrate (PHB) using acetate as the sole carbon source. To utilize acetate as a carbon source and methanol as an energy source, acs encoding acetyl-CoA synthetase and fdh from Burkholderia stabilis were overexpressed, while ftfL involved in the assimilation of methanol into formyl-tetrahydrofolate was deleted. The yields of biomass and PHB from acetate significantly improved, and the growth rate and PHB content of the bacteria increased. In addition, sustainability of the PHB production was demonstrated using acetate derived from carbon dioxide and syngas. This study shows that biopolymers could be synthesized efficiently using acetate as the sole carbon source through metabolic engineering and the supply of energy cofactors.
Collapse
Affiliation(s)
- Jihee Yoon
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seulgi Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
20
|
Biohydrogen production from glycerol by novel Clostridium sp. SH25 and its application to biohydrogen car operation. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1146-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Li N, Zeng W, Zhou J, Xu S. O-Acetyl-L-homoserine production enhanced by pathway strengthening and acetate supplementation in Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:27. [PMID: 35287716 PMCID: PMC8922893 DOI: 10.1186/s13068-022-02114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND O-Acetyl-L-homoserine (OAH) is an important potential platform chemical. However, low levels of production of OAH are greatly limiting its industrial application. Furthermore, as a common and safe amino acid-producing strain, Corynebacterium glutamicum has not yet achieved efficient production of OAH. RESULTS First, exogenous L-homoserine acetyltransferase was introduced into an L-homoserine-producing strain, resulting in the accumulation of 0.98 g/L of OAH. Second, by comparing different acetyl-CoA biosynthesis pathways and adding several feedstocks (acetate, citrate, and pantothenate), the OAH titer increased 2.3-fold to 3.2 g/L. Then, the OAH titer further increased by 62.5% when the expression of L-homoserine dehydrogenase and L-homoserine acetyltransferase was strengthened via strong promoters. Finally, the engineered strain produced 17.4 g/L of OAH in 96 h with acetate as the supplementary feedstock in a 5-L bioreactor. CONCLUSIONS This is the first report on the efficient production of OAH with C. glutamicum as the chassis, which would provide a good foundation for industrial production of OAH.
Collapse
Affiliation(s)
- Ning Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
22
|
Shi LL, Zheng Y, Tan BW, Li ZJ. Establishment of a carbon-efficient xylulose cleavage pathway in Escherichia coli to metabolize xylose. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Lakshmi NM, Binod P, Sindhu R, Awasthi MK, Pandey A. Microbial engineering for the production of isobutanol: current status and future directions. Bioengineered 2021; 12:12308-12321. [PMID: 34927549 PMCID: PMC8809953 DOI: 10.1080/21655979.2021.1978189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fermentation-derived alcohols have gained much attention as an alternate fuel due to its minimal effects on atmosphere. Besides its application as biofuel it is also used as raw material for coating resins, deicing fluid, additives in polishes, etc. Among the liquid alcohol type of fuels, isobutanol has more advantage than ethanol. Isobutanol production is reported in native yeast strains, but the production titer is very low which is about 200 mg/L. In order to improve the production, several genetic and metabolic engineering approaches have been carried out. Genetically engineered organism has been reported to produce maximum of 50 g/L of isobutanol which is far more than the native strain without any modification. In bacteria mostly last two steps in Ehrlich pathway, catalyzed by enzymes ketoisovalerate decarboxylase and alcohol dehydrogenase, are heterologously expressed to improve the production. Native Saccharomyces cerevisiae can produce isobutanol in negligible amount since it possesses the pathway for its production through valine degradation pathway. Further modifications in the existing pathways made the improvement in isobutanol production in many microbial strains. Fermentation using cost-effective lignocellulosic biomass and an efficient downstream process can yield isobutanol in environment friendly and sustainable manner. The present review describes the various genetic and metabolic engineering practices adopted to improve the isobutanol production in microbial strains and its downstream processing.
Collapse
Affiliation(s)
- Nair M Lakshmi
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, Uttar Pradesh India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West a & F University, Yangling, Shaanxi China
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research (Csir-iitr), Lucknow India.,Centre for Energy and Environmental Sustainability, Lucknow Uttar Pradesh, India
| |
Collapse
|
24
|
Wang Y, Xu J, Jin Z, Xia X, Zhang W. Improvement of acetyl-CoA supply and glucose utilization increases l-leucine production in Corynebacterium glutamicum. Biotechnol J 2021; 17:e2100349. [PMID: 34870372 DOI: 10.1002/biot.202100349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND l-Leucine is one of important essential amino acids with multiple industrial applications, whose market requirements cannot be met because of the lower productivity. MAIN METHODS AND MAJOR RESULTS In this study, a strain of Corynebacterium glutamicum with high l-leucine yield was constructed to enhance its acetyl-CoA supply and glucose utilization. One copy of leuA under the control of a strong promoter was incorporated into the C. glutamicum genome. Then, acetyl-CoA supply was increased by the integration of a terminator in front of gltA and by the heterogeneous overexpression of acetyl-CoA synthetase (Acs) and deacetylase (CobB) derived from Escherichia coli. Next, the transcriptional regulator SugR was deleted to enhance glucose uptake via a phosphotransferase-mediated route. In fed-batch fermentation performed in a 5-L reactor, l-leucine production of 40.11±0.73 g/L was achieved under the optimized conditions, with the l-leucine yield and productivity of 0.25 g/g glucose and 0.59 g/L/h, respectively. CONCLUSIONS AND IMPLICATIONS These results represent a significant improvement in the l-leucine titer of C. glutamicum, indicating that the process possesses highly potential for industrial application. These strategies can be also expanded to enable the production of other value-added biochemicals derived from the intermediates of central carbon metabolism. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yingyu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, WuXi, 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, China
| | - Jianzhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, WuXi, 214122, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, China
| | - Weiguo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, China
| |
Collapse
|
25
|
Kiefer D, Merkel M, Lilge L, Hausmann R, Henkel M. High cell density cultivation of Corynebacterium glutamicum on bio-based lignocellulosic acetate using pH-coupled online feeding control. BIORESOURCE TECHNOLOGY 2021; 340:125666. [PMID: 34352645 DOI: 10.1016/j.biortech.2021.125666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Acetate represents a promising alternative carbon source for future industrial biotechnology. In this study, the high potential of Corynebacterium glutamicum for utilizing acetate as sole carbon source was demonstrated. Batch culture studies revealed that C. glutamicum ATCC 13032 naturally exhibits high acetate tolerance with maximum growth rates (µmax = 0.47 h-1) similar to those on D-glucose. Based on a simple and auto-regulated pH-coupled feeding strategy which utilizes bio-acetic acid in pure form, a novel and high-efficient fed-batch process was developed in a 42 L stirred-tank bioreactor. By optimizing the carbon-to-nitrogen (C/N) feeding ratio, maximum biomass concentrations of 80.2 gCDW/L were achieved with a space-time yield of 66.6 gCDW/L·d. In addition, a process model was implemented describing the time-courses of biomass growth and substrate concentrations. This is the first study in which an industrial platform organism was grown to high cell densities using green, lignocellulosic acetate as an alternative carbon source.
Collapse
Affiliation(s)
- Dirk Kiefer
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Manuel Merkel
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Lars Lilge
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Rudolf Hausmann
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Marius Henkel
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany.
| |
Collapse
|
26
|
Liu M, Guo L, Fu Y, Huo M, Qi Q, Zhao G. Bacterial protein acetylation and its role in cellular physiology and metabolic regulation. Biotechnol Adv 2021; 53:107842. [PMID: 34624455 DOI: 10.1016/j.biotechadv.2021.107842] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 12/28/2022]
Abstract
Protein acetylation is an evolutionarily conserved posttranslational modification. It affects enzyme activity, metabolic flux distribution, and other critical physiological and biochemical processes by altering protein size and charge. Protein acetylation may thus be a promising tool for metabolic regulation to improve target production and conversion efficiency in fermentation. Here we review the role of protein acetylation in bacterial physiology and metabolism and describe applications of protein acetylation in fermentation engineering and strategies for regulating acetylation status. Although protein acetylation has become a hot topic, the regulatory mechanisms have not been fully characterized. We propose future research directions in protein acetylation.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China; CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Likun Guo
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Yingxin Fu
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Meitong Huo
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China; CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
27
|
Metabolic engineering of Escherichia coli for the production of isobutanol: a review. World J Microbiol Biotechnol 2021; 37:168. [PMID: 34487256 DOI: 10.1007/s11274-021-03140-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
With the ongoing depletion of fossil fuel resources and emerging environmental issues, increasing research effort is being dedicated to producing biofuels from renewable substrates. With its advantages over ethanol in terms of energy density, octane number, and hygroscopicity, isobutanol is considered a potential alternative to traditional gasoline. However, as wild-type microorganisms cannot achieve the production of isobutanol with high titers and yields, rational genetic engineering has been employed to enhance its production. Herein, we review the latest developments in the metabolic engineering of Escherichia coli for the production of isobutanol, including those related to the utilization of diverse carbon sources, balancing the redox state, improving isobutanol tolerance, and application of synthetic biology circuits and tools.
Collapse
|
28
|
Fei P, Luo Y, Lai N, Wu H. Biosynthesis of (R)-3-hydroxybutyric acid from syngas-derived acetate in engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2021; 336:125323. [PMID: 34051572 DOI: 10.1016/j.biortech.2021.125323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Acetate is a potential non-food carbon source for industrial production, coping with the shortage of food-based feedstocks. (R)-3-hydroxybutyric acid (R-3HB) can be used as an important chiral intermediate in the fine chemical and pharmaceutical industry. In this study, the R-3HB biosynthesis pathway was successfully constructed when genes of β-ketothiolase (phaA), acetoacetyl-CoA reductase (phaB) from Ralstonia eutropha, and propionyl-CoA transferases (pct) from Clostridium beijerinckii 8052 were introducedinto Escherichia coli. The effects of host E. coli strains, different propionyl-CoA transferases, and post-induction temperatures were investigated. The final concentration of R-3HB reached 0.86 g/L using acetate as the sole carbon source. Subsequently, a kind of culture broth containing the syngas-derived acetate was used to produce 1.02 g/L of R-3HB with a yield of 0.26 g/g. Inthis study, the engineered E. coli strain could efficiently utilize syngas-derived acetate to synthesize R-3HB.
Collapse
Affiliation(s)
- Peng Fei
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ningyu Lai
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
29
|
Co-Production of Isobutanol and Ethanol from Prairie Grain Starch Using Engineered Saccharomyces cerevisiae. FERMENTATION 2021. [DOI: 10.3390/fermentation7030150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Isobutanol is an important and valuable platform chemical and an appealing biofuel that is compatible with contemporary combustion engines and existing fuel distribution infrastructure. The present study aimed to compare the potential of triticale, wheat and barley starch as feedstock for isobutanol production using an engineered strain of Saccharomyces cerevisiae. A simultaneous saccharification and fermentation (SSF) approach showed that all three starches were viable feedstock for co-production of isobutanol and ethanol and could produce titres similar to that produced using purified sugar as feedstock. A fed-batch process using triticale starch yielded 0.006 g isobutanol and 0.28 g ethanol/g starch. Additionally, it is demonstrated that Fusarium graminearum infected grain starch contaminated with mycotoxin can be used as an effective feedstock for isobutanol and ethanol co-production. These findings demonstrate the potential for triticale as a purpose grown energy crop and show that mycotoxin-contaminated grain starch can be used as feedstock for isobutanol biosynthesis, thus adding value to a grain that would otherwise be of limited use.
Collapse
|
30
|
Da YY, Liu ZH, Zhu R, Li ZJ. Coutilization of glucose and acetate for the production of pyruvate by engineered Escherichia coli. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Kim Y, Lama S, Agrawal D, Kumar V, Park S. Acetate as a potential feedstock for the production of value-added chemicals: Metabolism and applications. Biotechnol Adv 2021; 49:107736. [PMID: 33781888 DOI: 10.1016/j.biotechadv.2021.107736] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Acetate is regarded as a promising carbon feedstock in biological production owing to its possible derivation from C1 gases such as CO, CO2 and methane. To best use of acetate, comprehensive understanding of acetate metabolisms from genes and enzymes to pathways and regulations is needed. This review aims to provide an overview on the potential of acetate as carbon feedstock for industrial biotechnology. Biochemical, microbial and biotechnological aspects of acetate metabolism are described. Especially, the current state-of-the art in the production of value-added chemicals from acetate is summarized. Challenges and future perspectives are also provided.
Collapse
Affiliation(s)
- Yeonhee Kim
- School of Energy and Chemical Engineering, UNIST, 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Suman Lama
- School of Energy and Chemical Engineering, UNIST, 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield, MK430AL, United Kingdom.
| | - Sunghoon Park
- School of Energy and Chemical Engineering, UNIST, 50, UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
32
|
Application of a dissolved oxygen control strategy to increase the expression of Streptococcus suis glutamate dehydrogenase in Escherichia coli. World J Microbiol Biotechnol 2021; 37:60. [PMID: 33709221 DOI: 10.1007/s11274-021-03025-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
The accumulation of acetate in Escherichia coli inhibits cell growth and desired protein synthesis, and cell density and protein expression are increased by reduction of acetate excretion. Dissolved oxygen (DO) is an important parameter for acetate synthesis, and the accumulation of acetate is inversely correlated to DO level. In this study, the effect of DO levels on glutamate dehydrogenase (GDH) expression was investigated, and then different DO control strategies were tested for effects on GDH expression. DO control strategy IV (50% 0-9 h, 30% 9-18 h) provided the highest cell density (15.43 g/L) and GDH concentration (3.42 g/L), values 1.59- and 1.99-times higher than those achieved at 10% DO. The accumulation of acetate was 2.24 g/L with DO control strategy IV, a decrease of 40.74% relative to that achieved for growth at 10% DO. Additionally, under DO control strategy IV, there was lower expression of PoxB, a key enzyme for acetate synthesis, at both the transcriptional and translational level. At the same time, higher transcription and protein expression levels were observed for a glyoxylate shunt gene (aceA), an acetate uptake gene (acs), gluconeogensis and anaplerotic pathways genes (pckA, ppsA, ppc, and sfcA), and a TCA cycle gene (gltA). The flux of acetate with DO strategy IV was 8.4%, a decrease of 62.33% compared with the flux at 10% DO. This decrease represents both lower flux for acetate synthesis and increased flux of reused acetate.
Collapse
|
33
|
Wang W, Du J, Chen L, Zeng Y, Tan X, Shi Q, Pan X, Wu Z, Zeng Y. Transcriptomic, proteomic, and physiological comparative analyses of flooding mitigation of the damage induced by low-temperature stress in direct seeded early indica rice at the seedling stage. BMC Genomics 2021; 22:176. [PMID: 33706696 PMCID: PMC7952222 DOI: 10.1186/s12864-021-07458-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/19/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Low temperature (LT) often occurs at the seedling stage in the early rice-growing season, especially for direct seeded early-season indica rice, and using flooding irrigation can mitigate LT damage in rice seedlings. The molecular mechanism by which flooding mitigates the damage induced by LT stress has not been fully elucidated. Thus, LT stress at 8 °C, LT accompanied by flooding (LTF) and CK (control) treatments were established for 3 days to determine the transcriptomic, proteomic and physiological response in direct seeded rice seedlings at the seedling stage. RESULTS LT damaged chloroplasts, and thylakoid lamellae, and increased osmiophilic bodies and starch grains compared to CK, but LTF alleviated the damage to chloroplast structure caused by LT. The physiological characteristics of treated plants showed that compared with LT, LTF significantly increased the contents of rubisco, chlorophyll, PEPCK, ATP and GA3 but significantly decreased soluble protein, MDA and ABA contents. 4D-label-free quantitative proteomic profiling showed that photosynthesis-responsive proteins, such as phytochrome, as well as chlorophyll and the tricarboxylic acid cycle were significantly downregulated in LT/CK and LTF/CK comparison groups. However, compared with LT, phytochrome, chlorophyllide oxygenase activity and the glucan branching enzyme in LTF were significantly upregulated in rice leaves. Transcriptomic and proteomic studies identified 72,818 transcripts and 5639 proteins, and 4983 genes that were identified at both the transcriptome and proteome levels. Differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were significantly enriched in glycine, serine and threonine metabolism, biosynthesis of secondary metabolites, glycolysis/gluconeogenesis and metabolic pathways. CONCLUSION Through transcriptomic, proteomic and physiological analyses, we determined that a variety of metabolic pathway changes were induced by LT and LTF. GO and KEGG enrichment analyses demonstrated that DEGs and DEPs were associated with photosynthesis pathways, antioxidant enzymes and energy metabolism pathway-related proteins. Our study provided new insights for efforts to reduce the damage to direct seeded rice caused by low-temperature stress and provided a breeding target for low temperature flooding-resistant cultivars. Further analysis of translational regulation and metabolites may help to elucidate the molecular mechanisms by which flooding mitigates low-temperature stress in direct seeded early indica rice at the seedling stage.
Collapse
Affiliation(s)
- Wenxia Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liming Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yongjun Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xueming Tan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghua Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaohua Pan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ziming Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yanhua Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
34
|
Su Y, Shao W, Zhang A, Zhang W. Improving isobutanol tolerance and titers through EMS mutagenesis in Saccharomyces cerevisiae. FEMS Yeast Res 2021; 21:6147039. [PMID: 33620449 DOI: 10.1093/femsyr/foab012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/20/2021] [Indexed: 11/14/2022] Open
Abstract
Improving yeast tolerance toward isobutanol is a critical issue enabling high-titer industrial production. Here, we used EMS mutagenesis to screen Saccharomyces cerevisiae with greater tolerance toward isobutanol. By this method, we obtained EMS39 with high-viability in medium containing 16 g/L isobutanol. Then, we metabolically engineered isobutanol synthesis in EMS39. About 2μ plasmids carrying PGK1p-ILV2, PGK1p-ILV3 and TDH3p-cox4-ARO10 were used to over-express ILV2, ILV3 and ARO10 genes, respectively, in EMS39 and wild type W303-1A. And the resulting strains were designated as EMS39-20 and W303-1A-20. Our results showed that EMS39-20 increased isobutanol titers by 49.9% compared to W303-1A-20. Whole genome resequencing analysis of EMS39 showed that more than 59 genes had mutations in their open reading frames or regulatory regions. These 59 genes are enriched mainly into cell growth, basal transcription factors, cell integrity signaling, translation initiation and elongation, ribosome assembly and function, oxidative stress response, etc. Additionally, transcriptomic analysis of EMS39-20 was carried out. Finally, reverse engineering tests showed that overexpression of CWP2 and SRP4039 could improve tolerance of S.cerevisiae toward isobutanol. In conclusion, EMS mutagenesis could be used to increase yeast tolerance toward isobutanol. Our study supplied new insights into mechanisms of tolerance toward isobutanol and enhancing isobutanol production in S. cerevisiae.
Collapse
Affiliation(s)
- Yide Su
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| | - Wenju Shao
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| | - Aili Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| | - Weiwei Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, Tianjin 300130, PR China
| |
Collapse
|
35
|
Harding CJ, Cadby IT, Moynihan PJ, Lovering AL. A rotary mechanism for allostery in bacterial hybrid malic enzymes. Nat Commun 2021; 12:1228. [PMID: 33623032 PMCID: PMC7902834 DOI: 10.1038/s41467-021-21528-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Bacterial hybrid malic enzymes (MaeB grouping, multidomain) catalyse the transformation of malate to pyruvate, and are a major contributor to cellular reducing power and carbon flux. Distinct from other malic enzyme subtypes, the hybrid enzymes are regulated by acetyl-CoA, a molecular indicator of the metabolic state of the cell. Here we solve the structure of a MaeB protein, which reveals hybrid enzymes use the appended phosphotransacetylase (PTA) domain to form a hexameric sensor that communicates acetyl-CoA occupancy to the malic enzyme active site, 60 Å away. We demonstrate that allostery is governed by a large-scale rearrangement that rotates the catalytic subunits 70° between the two states, identifying MaeB as a new model enzyme for the study of ligand-induced conformational change. Our work provides the mechanistic basis for metabolic control of hybrid malic enzymes, and identifies inhibition-insensitive variants that may find utility in synthetic biology.
Collapse
Affiliation(s)
- Christopher John Harding
- grid.6572.60000 0004 1936 7486Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Ian Thomas Cadby
- grid.6572.60000 0004 1936 7486Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Patrick Joseph Moynihan
- grid.6572.60000 0004 1936 7486Department of Biosciences, University of Birmingham, Birmingham, UK
| | - Andrew Lee Lovering
- grid.6572.60000 0004 1936 7486Department of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
36
|
Kutscha R, Pflügl S. Microbial Upgrading of Acetate into Value-Added Products-Examining Microbial Diversity, Bioenergetic Constraints and Metabolic Engineering Approaches. Int J Mol Sci 2020; 21:ijms21228777. [PMID: 33233586 PMCID: PMC7699770 DOI: 10.3390/ijms21228777] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 01/20/2023] Open
Abstract
Ecological concerns have recently led to the increasing trend to upgrade carbon contained in waste streams into valuable chemicals. One of these components is acetate. Its microbial upgrading is possible in various species, with Escherichia coli being the best-studied. Several chemicals derived from acetate have already been successfully produced in E. coli on a laboratory scale, including acetone, itaconic acid, mevalonate, and tyrosine. As acetate is a carbon source with a low energy content compared to glucose or glycerol, energy- and redox-balancing plays an important role in acetate-based growth and production. In addition to the energetic challenges, acetate has an inhibitory effect on microorganisms, reducing growth rates, and limiting product concentrations. Moreover, extensive metabolic engineering is necessary to obtain a broad range of acetate-based products. In this review, we illustrate some of the necessary energetic considerations to establish robust production processes by presenting calculations of maximum theoretical product and carbon yields. Moreover, different strategies to deal with energetic and metabolic challenges are presented. Finally, we summarize ways to alleviate acetate toxicity and give an overview of process engineering measures that enable sustainable acetate-based production of value-added chemicals.
Collapse
|
37
|
Novak K, Kutscha R, Pflügl S. Microbial upgrading of acetate into 2,3-butanediol and acetoin by E. coli W. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:177. [PMID: 33110446 PMCID: PMC7584085 DOI: 10.1186/s13068-020-01816-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/10/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Acetate is an abundant carbon source and its use as an alternative feedstock has great potential for the production of fuel and platform chemicals. Acetoin and 2,3-butanediol represent two of these potential platform chemicals. RESULTS The aim of this study was to produce 2,3-butanediol and acetoin from acetate in Escherichia coli W. The key strategies to achieve this goal were: strain engineering, in detail the deletion of mixed-acid fermentation pathways E. coli W ΔldhA ΔadhE Δpta ΔfrdA 445_Ediss and the development of a new defined medium containing five amino acids and seven vitamins. Stepwise reduction of the media additives further revealed that diol production from acetate is mediated by the availability of aspartate. Other amino acids or TCA cycle intermediates did not enable growth on acetate. Cultivation under controlled conditions in batch and pulsed fed-batch experiments showed that aspartate was consumed before acetate, indicating that co-utilization is not a prerequisite for diol production. The addition of aspartate gave cultures a start-kick and was not required for feeding. Pulsed fed-batches resulted in the production of 1.43 g l-1 from aspartate and acetate and 1.16 g l-1 diols (2,3-butanediol and acetoin) from acetate alone. The yield reached 0.09 g diols per g acetate, which accounts for 26% of the theoretical maximum. CONCLUSION This study for the first time showed acetoin and 2,3-butanediol production from acetate as well as the use of chemically defined medium for product formation from acetate in E. coli. Hereby, we provide a solid base for process intensification and the investigation of other potential products.
Collapse
Affiliation(s)
- Katharina Novak
- Research Area Biochemical Engineering, Environmental and Bioscience Engineering, Institute for Chemical, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Regina Kutscha
- Research Area Biochemical Engineering, Environmental and Bioscience Engineering, Institute for Chemical, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Research Area Biochemical Engineering, Environmental and Bioscience Engineering, Institute for Chemical, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
38
|
Kiefer D, Merkel M, Lilge L, Henkel M, Hausmann R. From Acetate to Bio-Based Products: Underexploited Potential for Industrial Biotechnology. Trends Biotechnol 2020; 39:397-411. [PMID: 33036784 DOI: 10.1016/j.tibtech.2020.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Currently, most biotechnological products are based on microbial conversion of carbohydrate substrates that are predominantly generated from sugar- or starch-containing plants. However, direct competitive uses of these feedstocks in the food and feed industry represent a dilemma, so using alternative carbon sources has become increasingly important in industrial biotechnology. A promising alternative carbon source that may be generated in substantial amounts from lignocellulosic biomass and C1 gases is acetate. This review discusses the underexploited potential of acetate to become a next-generation platform substrate in future industrial biotechnology and summarizes alternative sources and routes for acetate production. Furthermore, biotechnological aspects of microbial acetate utilization and the state of the art of biotechnological acetate conversion into value-added bioproducts are highlighted.
Collapse
Affiliation(s)
- Dirk Kiefer
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Manuel Merkel
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Lars Lilge
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Marius Henkel
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany.
| | - Rudolf Hausmann
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| |
Collapse
|
39
|
Seong W, Han GH, Lim HS, Baek JI, Kim SJ, Kim D, Kim SK, Lee H, Kim H, Lee SG, Lee DH. Adaptive laboratory evolution of Escherichia coli lacking cellular byproduct formation for enhanced acetate utilization through compensatory ATP consumption. Metab Eng 2020; 62:249-259. [PMID: 32931907 DOI: 10.1016/j.ymben.2020.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Acetate has attracted great attention as a carbon source to develop economically feasible bioprocesses for sustainable bioproducts. Acetate is a less-preferred carbon source and a well-known growth inhibitor of Escherichia coli. In this study, we carried out adaptive laboratory evolution of an E. coli strain lacking four genes (adhE, pta, ldhA, and frdA) involved in acetyl-CoA consumption, allowing the efficient utilization of acetate as its sole carbon and energy source. Four genomic mutations were found in the evolved strain through whole-genome sequencing, and two major mutations (in cspC and patZ) mainly contributed to efficient utilization of acetate and tolerance to acetate. Transcriptomic reprogramming was examined by analyzing the genome-wide transcriptome with different carbon sources. The evolved strain showed high levels of intracellular ATP by upregulation of genes involved in NADH and ATP biosynthesis, which facilitated the production of enhanced green fluorescent protein, mevalonate, and n-butanol using acetate alone. This new strain, given its high acetate tolerance and high ATP levels, has potential as a starting host for cell factories targeting the production of acetyl-CoA-derived products from acetate or of products requiring high ATP levels.
Collapse
Affiliation(s)
- Wonjae Seong
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Gui Hwan Han
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Center for Industrialization of Agricultural and Livestock Microorganism (CIALM), Jeongeup, 56212, Republic of Korea
| | - Hyun Seung Lim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Ji In Baek
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seong Keun Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyewon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Haseong Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
40
|
Shi LL, Da YY, Zheng WT, Chen GQ, Li ZJ. Production of polyhydroxyalkanoate from acetate by metabolically engineered Aeromonas hydrophilia. J Biosci Bioeng 2020; 130:290-294. [DOI: 10.1016/j.jbiosc.2020.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/14/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022]
|
41
|
Song HS, Jeon JM, Bhatia SK, Choi TR, Lee SM, Park SL, Lee HS, Yoon JJ, Ahn J, Lee H, Brigham CJ, Choi KY, Yang YH. Enhanced isobutanol production by co-production of polyhydroxybutyrate and cofactor engineering. J Biotechnol 2020; 320:66-73. [DOI: 10.1016/j.jbiotec.2020.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023]
|
42
|
Metabolic engineering of E. coli for producing phloroglucinol from acetate. Appl Microbiol Biotechnol 2020; 104:7787-7799. [PMID: 32737536 DOI: 10.1007/s00253-020-10591-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Phloroglucinol is a three-hydroxyl phenolic compound and has diverse physiological and pharmacological activities such as antivirus and anti-inflammatory activities. Chemical synthesis of phloroglucinol suffered from many drawbacks such as high cost and environmental pollution. To avoid the above issues, microbial phloroglucinol biosynthesis was successfully accomplished in this study, while the abundant and low-cost acetate was used as the main carbon source. Firstly, the toxicity of phloroglucinol was tested, and E. coli BL21(DE3) could tolerate 5 g/L phloroglucinol. The ability of phloroglucinol synthase (PhlD) for catalyzing malonyl-CoA to phloroglucinol was confirmed, and E. coli BL21(DE3) expressing PhlD and acetyl-CoA carboxylase (ACCase) could produce 1107 ± 12 mg/L phloroglucinol from glucose. Then, E. coli BL21(DE3) was engineered to utilize acetate to produce 228 ± 15 mg/L phloroglucinol. Then, the endogenous citrate synthase (GltA) which could catalyze oxaloacetate and acetyl-CoA generated from acetate to citrate was knocked down by CRISPRi system in order to enhance the carbon flux for phloroglucinol production, and the titer was improved to 284 ± 8 mg/L. This work demonstrated that acetate could be used as low-cost substrate to achieve the biosynthesis of phloroglucinol and provided an example of effective utilization of acetate.
Collapse
|
43
|
Shafiq M, Zeb L, Cui G, Jawad M, Chi Z. High-Density pH-Auxostat Fed-Batch Culture of Schizochytrium limacinum SR21 with Acetic Acid as a Carbon Source. Appl Biochem Biotechnol 2020; 192:1163-1175. [PMID: 32700201 DOI: 10.1007/s12010-020-03396-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Schizochytrium limacinum SR21 is an important strain for industrial production of docosahexaenoic acid (DHA), which is an important omega-3 fatty acid used in the nutraceutical and food industry. However, the high cost of carbon sources has limited its further application in the market with much larger volume, such as animal feed for aquaculture, poultry, and livestock. To seek low-cost carbon source, acetic acid is tested in the present study. The effect of different factors, including initial carbon source concentration, pH, aeration rate, and nitrogen sources, on biomass, lipid, and DHA production were tested. With optimized culture conditions, the biomass concentration of 146 g/L, total fatty acids (TFAs) of 82.3 g/L, and DHA content of 23.0 g/L were achieved with a pH-auxostat fed-batch cultivation. These results suggested that acetic acid is a promising feedstock for the low-cost production of DHA. Graphical Abstract.
Collapse
Affiliation(s)
- Muhammad Shafiq
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Liaqat Zeb
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Guannan Cui
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Muhammad Jawad
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, People's Republic of China.
| |
Collapse
|
44
|
Liang L, Liu R, Freed EF, Eckert CA. Synthetic Biology and Metabolic Engineering Employing Escherichia coli for C2-C6 Bioalcohol Production. Front Bioeng Biotechnol 2020; 8:710. [PMID: 32719784 PMCID: PMC7347752 DOI: 10.3389/fbioe.2020.00710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Biofuel production from renewable and sustainable resources is playing an increasingly important role within the fuel industry. Among biofuels, bioethanol has been most widely used as an additive for gasoline. Higher alcohols can be blended at a higher volume compared to ethanol and generate lower greenhouse gas (GHG) emissions without a need to change current fuel infrastructures. Thus, these fuels have the potential to replace fossil fuels in support of more environmentally friendly processes. This review summarizes the efforts to enhance bioalcohol production in engineered Escherichia coli over the last 5 years and analyzes the current challenges for increasing productivities for industrial applications.
Collapse
Affiliation(s)
- Liya Liang
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Rongming Liu
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Emily F. Freed
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
45
|
Bioconversion of Plant Hydrolysate Biomass into Biofuels Using an Engineered Bacillus subtilis and Escherichia coli Mixed-whole Cell Biotransformation. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0487-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Zhou S, Hao T, Xu S, Deng Y. Coenzyme A thioester-mediated carbon chain elongation as a paintbrush to draw colorful chemical compounds. Biotechnol Adv 2020; 43:107575. [PMID: 32512221 DOI: 10.1016/j.biotechadv.2020.107575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
The biosynthesis of various useful chemicals from simple substrates using industrial microorganisms is becoming increasingly crucial to address the challenge of dwindling non-renewable resources. As the most common intermediate substrates in organisms, Coenzyme A (CoA) thioesters play a central role in the carbon chain elongation process of their products. As a result, numerous of chemicals can be synthesized by the iterative addition of various CoA thioester extender units at a given CoA thioester primer backbone. However, these elongation reactions and the product yields are still restricted due to the low enzymatic performance and supply of CoA thioesters. This review highlights the current protein and metabolic engineering strategies used to enhance the diversity and product yield by coupling different primers, extender units, enzymes, and termination pathways, in an attempt to provide a road map for producing a more diverse range of industrial chemicals.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Tingting Hao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shumin Xu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
47
|
Liu W, Zhang R, Wei M, Cao Y, Xian M. Increasing the pyruvate pool by overexpressing phosphoenolpyruvate carboxykinase or triosephosphate isomerase enhances phloroglucinol production in Escherichia coli. Biotechnol Lett 2020; 42:633-640. [PMID: 31965395 DOI: 10.1007/s10529-020-02812-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Acetyl-CoA is a precursor for phloroglucinol (PG), and pyruvate is one of the sources of intracellular acetyl-CoA. Therefore, enhancing intracellular pyruvate levels may help to improve the anabolic pathway of PG. RESULTS In this study, the effects of phosphoenolpyruvate carboxykinase (PckA, encoded by pckA) or triosephosphate isomerase (TpiA, encoded by tpiA) overexpression on the production of PG were studied. Overexpression of pckA or tpiA could enhance the pyruvate anabolic pathway in shake-flask culture compared to the control strain, and the concentration of PG also increased by 44% and 92%, respectively. In addition, the acetate levels were all down regulated by the overexpression of the two genes to some extent and lower acetate level resulted in lower ATP pool and higher survival rate. CONCLUSIONS These results indicate that overexpression of pckA or tpiA can enhance the pyruvate "pool" and PG production in Escherichia coli, which provides a new reference for further increasing the production of PG.
Collapse
Affiliation(s)
- Wen Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Rubing Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Manman Wei
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yujin Cao
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
48
|
Yang H, Zhang C, Lai N, Huang B, Fei P, Ding D, Hu P, Gu Y, Wu H. Efficient isopropanol biosynthesis by engineered Escherichia coli using biologically produced acetate from syngas fermentation. BIORESOURCE TECHNOLOGY 2020; 296:122337. [PMID: 31727559 DOI: 10.1016/j.biortech.2019.122337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 05/23/2023]
Abstract
The shortage of food based feedstocks is a challenge in industrial biomanufacturing. In this study, genetically modified Escherichia coli strains were used to produce isopropanol as the mainly product from acetate, a cost-effective nonfood-based substrate. The isopropanol biosynthesis pathway was constructed by combining genes from Clostridium acetobutylicum (thlA, adc), E. coli (atoDA) and Clostridium beijerinckii (adh). E. coli MG1655 harboring the isopropanol biosynthesis pathway successfully produced isopropanol and low amounts of acetone from pure acetate. The enhancement of the acetate assimilation pathway coupled with cofactor engineering strategy further improved the production of isopropanol to 18.5 mM with a yield of 0.26 mol/mol. With simple treatment, two kinds of biologically produced acetate were utilized to generate 16.7 and 24.5 mM isopropanol with yields of 0.25 and 0.56 mol/mol, respectively. Engineered E. coli with an optimized isopropanol biosynthesis pathway can efficiently utilize biologically produced acetate to synthesize isopropanol.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Can Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ningyu Lai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bing Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Peng Fei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Dawei Ding
- Shanghai GTL Biotech Co., Ltd. 1688 North Guoquan Road, Shanghai 200438, China
| | - Peng Hu
- Shanghai GTL Biotech Co., Ltd. 1688 North Guoquan Road, Shanghai 200438, China
| | - Yang Gu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
49
|
Zhang S, Yang W, Chen H, Liu B, Lin B, Tao Y. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli. Microb Cell Fact 2019; 18:130. [PMID: 31387584 PMCID: PMC6685171 DOI: 10.1186/s12934-019-1177-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/30/2019] [Indexed: 11/24/2022] Open
Abstract
Background Acetyl-CoA is an important metabolic intermediate and serves as an acetylation precursor for the biosynthesis of various value-added acetyl-chemicals. Acetyl-CoA can be produced from glucose, acetate, or fatty acids via metabolic pathways in Escherichia coli. Although glucose is an efficient carbon source for acetyl-CoA production, the pathway from acetate to acetyl-CoA is the shortest and fatty acids can produce acetyl-CoA through fatty acid oxidation along with abundant NADH and FADH2. In this study, metabolically engineered E. coli strains for efficiently supplying acetyl-CoA from glucose, acetate, and fatty acid were constructed and applied in one-step biosynthesis of N-acetylglutamate (NAG) from glutamate and acetyl-CoA. Results A metabolically engineered E. coli strain for NAG production was constructed by overexpressing N-acetylglutamate synthase from Kitasatospora setae in E. coli BW25113 with argB and argA knockout. The strain was further engineered to utilize glucose, acetate, and fatty acid to produce acetyl-CoA. When glucose was used as a carbon source, the combined mutants of ∆ptsG::glk, ∆galR::zglf, ∆poxB::acs, ∆ldhA, and ∆pta were more efficient for supplying acetyl-CoA. The acetyl-CoA synthetase (ACS) pathway and acetate kinase-phosphate acetyltransferase (ACK-PTA) pathway from acetate to acetyl-CoA were investigated, and the ACK-PTA pathway showed to be more efficient for supplying acetyl-CoA. When fatty acid was used as a carbon source, acetyl-CoA supply was improved by deletion of fadR and constitutive expression of fadD under the strong promoter CPA1. Comparison of acetyl-CoA supply from glucose, acetate and palmitic acid revealed that a higher conversion rate of glutamate (98.2%) and productivity (an average of 6.25 mmol/L/h) were obtained when using glucose as a carbon source. The results also demonstrated the great potential of acetate and fatty acid to supply acetyl-CoA, as the molar conversion rate of glutamate was more than 80%. Conclusions Metabolically engineered E. coli strains were developed for NAG production. The metabolic pathways of acetyl-CoA from glucose, acetate, or fatty acid were optimized for efficient acetyl-CoA supply to enhance NAG production. The metabolic strategies for efficient acetyl-CoA supply used in this study can be exploited for other chemicals that use acetyl-CoA as a precursor or when acetylation is involved. Electronic supplementary material The online version of this article (10.1186/s12934-019-1177-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shasha Zhang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Yang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Chen
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Liu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baixue Lin
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Tao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
50
|
Bhatia SK, Gurav R, Choi TR, Han YH, Park YL, Jung HR, Yang SY, Song HS, Yang YH. A clean and green approach for odd chain fatty acids production in Rhodococcus sp. YHY01 by medium engineering. BIORESOURCE TECHNOLOGY 2019; 286:121383. [PMID: 31071574 DOI: 10.1016/j.biortech.2019.121383] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Odd chain fatty acids serve as anti-allergic, anti-inflammatory, and antifungal agents, and are useful for the production of biodiesel. Rhodococcus sp. YHY01 utilizes a wide range of carbon sources and accumulate lipids i.e. fructose (37% w/w dcw) glucose (56% w/w dcw), glycerol (50% w/w dcw), acetate (42% w/w dcw), butyrate (65% w/w dcw), lactate (56% w/w dcw), and propionate (62% w/w dcw). In this study, propionate was proved as the best carbon source and produced 69% odd chain fatty acids of total fatty acids, followed by glycerol (13% odd chain fatty acids of total fatty acids). A synthetic medium optimized with response surface design containing glycerol, propionate, and ammonium chloride (0.32%:0.76%:0.040% w/v) facilitated the production of total fatty acids 69% w/w of dcw, and odd chain fatty acids comprised 85% w/w of total fatty acids. Major odd chain fatty acids were in the order C17:0 > C15:0 > Cis-10-C17:1 > 10Me-C17:0 > C19:0 > Cis-10-C19:1.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea; Institute for Ubiquitous Information Technology and App1ications (CBRU), Konkuk University, Seoul, South Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Yeong Hoon Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Ye-Lim Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Hye-Rim Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Soo-Yeon Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea; Institute for Ubiquitous Information Technology and App1ications (CBRU), Konkuk University, Seoul, South Korea.
| |
Collapse
|