1
|
Hsiang CC, Ng IS. Deciphering Transcription-Translation-Folding (TX-TL-FD) for Enhancing Cutinase Production in T7 System and Genetic Chaperone-Equipped Escherichia coli Strains. ACS Synth Biol 2025; 14:1843-1852. [PMID: 40329912 DOI: 10.1021/acssynbio.5c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
T7 RNA polymerase (T7RNAP), orthogonal to the T7 promoter, is a powerful tool in engineered Escherichia coli that enables the production of many different harsh enzymes. Still, it requires precise control, particularly when expressing toxic proteins. The optimized strategy for the interconnected processes of transcription (TX), translation (TL), and protein folding (FD) in the T7 system is still not well understood. Therefore, we developed a quantitative adjustment index (AI) to evaluate all regulatory factors within the "tri-synergistic TX-TL-FD" pathway to obtain high-level production of leaf-branch compost cutinase mutant (ICCM), an enzyme challenging to express in soluble form. Among six E. coli chassis (BD, B7G, BKJ, C43, C7G, and CKJ), and considering the effect of replication origin, ribosome binding site (RBS), and chaperones, we identified T7RNAP level and translation initiation region (TIR) as the primary determinants of expression efficiency. Coordinated regulation of TX-TL proved the most effective performance, thus enhancing ICCM expression by 90%. In contrast, FD optimization through temperature modulation yielded only 10% enhancement. Notably, molecular chaperones of GroELS and DnaK/J showed benefits only after achieving optimal TX-TL balance. This hierarchical framework of trisynergistic regulation in the T7 system provides a universal strategy to express complex proteins in engineered E. coli.
Collapse
Affiliation(s)
- Chuan-Chieh Hsiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
2
|
Cui M, Wong O, Shi K, Li Q, Wang W. Customized design of host-independent T7 expression system (HITES) for a broad host range. J Biotechnol 2025; 398:202-214. [PMID: 39778814 DOI: 10.1016/j.jbiotec.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Efficient methods and universal DNA elements are eagerly required for the expression of proteins and the production of target chemicals in synthetic biology and metabolic engineering. This paper develops a customized-design approach by utilizing the host-independent T7 expression system (HITES), which facilitates the rational design and rapid construction of T7 expression systems. Firstly, the EiL (Upper-limit value of initial enzyme activity) value is discovered to play a pivotal factor in the successful construction of the T7 expression system, different host strains exhibit varying EiL values, and this study presents a method to measure the EiL values. Secondly, E. coli DH5α is chosen as the host strain, and it demonstrates that various strategies to modulate T7 RNA polymerase activity can efficiently construct the HITES T7 expression system in E. coli DH5α under the guidance of EiL. Lastly, the customized-design of HITES enables the efficient expression of sfGFP and D-MIase proteins across 13 host strains, guided by EiL values. This customized-design method of HITES offers a streamlined pathway for T7 system construction across a broad range of hosts and serves as an enabling tool for synthetic biology, metabolic engineering, and enzyme engineering.
Collapse
Affiliation(s)
- Mingxin Cui
- Department of Chemical Engineering, Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing 100084, China; College of Chemical Engineering, Qinghai University, Xining, Qinghai 810016, China
| | - Okei Wong
- Department of Chemical Engineering, Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing 100084, China
| | - Kexin Shi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiang Li
- Department of Chemical Engineering, Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing 100084, China.
| | - Wenya Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
de Marco A. Recent advances in recombinant production of soluble proteins in E. coli. Microb Cell Fact 2025; 24:21. [PMID: 39815265 PMCID: PMC11736966 DOI: 10.1186/s12934-025-02646-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND E. coli still remains the most commonly used organism to produce recombinant proteins in research labs. This condition is mirrored by the attention that researchers dedicate to understanding the biology behind protein expression, which is then exploited to improve the effectiveness of the technology. This effort is witnessed by an impressive number of publications, and this review aims to organize the most relevant novelties proposed in recent years. RESULTS The examined contributions address several of the known bottlenecks related to recombinant expression in E. coli, such as improved glycosylation pathways, more reliable production of proteins whose folding depends on the formation of disulfide bonds, the possibility of controlling and even benefiting from the formation of aggregates or the need to overcome the dependence of bacteria on antibiotics during bacterial culture. Nevertheless, the majority of the published papers aimed at identifying the conditions for optimal control of the translation process to achieve maximal yields of functional exogenous proteins. CONCLUSIONS Despite community commitment, the critical question of what really is the metabolic burden and how it affects both host metabolism and recombinant protein production remains elusive because some experimental results are contradictory. This contribution aims to offer researchers a tool to orient themselves in this complexity. The new capacities offered by artificial intelligence tools could help clarifying this issue, but the training phase will probably require more systematic experimental approaches to collect sufficiently uniform data.
Collapse
Affiliation(s)
- Ario de Marco
- Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, Nova Gorica, 5000, Slovenia.
| |
Collapse
|
4
|
Avsharian LC, Loganathan S, Ebelt ND, Shalamzari AF, Rodarte Muñoz I, Manuel ER. Tumor-Colonizing E. coli Expressing Both Collagenase and Hyaluronidase Enhances Therapeutic Efficacy of Gemcitabine in Pancreatic Cancer Models. Biomolecules 2024; 14:1458. [PMID: 39595636 PMCID: PMC11591662 DOI: 10.3390/biom14111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Desmoplasia is a hallmark feature of pancreatic ductal adenocarcinoma (PDAC) that contributes significantly to treatment resistance. Approaches to enhance drug delivery into fibrotic PDAC tumors continue to be an important unmet need. In this study, we have engineered a tumor-colonizing E. coli-based agent that expresses both collagenase and hyaluronidase as a strategy to reduce desmoplasia and enhance the intratumoral perfusion of anticancer agents. Overall, we observed that the tandem expression of both these enzymes by tumor-colonizing E. coli resulted in the reduced presence of intratumoral collagen and hyaluronan, which likely contributed to the enhanced chemotherapeutic efficacy observed when used in combination. These results highlight the importance of combination treatments involving the depletion of desmoplastic components in PDAC before or during treatment.
Collapse
Affiliation(s)
- Lara C. Avsharian
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (L.C.A.); (S.L.); (N.D.E.)
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA;
| | - Suvithanandhini Loganathan
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (L.C.A.); (S.L.); (N.D.E.)
| | - Nancy D. Ebelt
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (L.C.A.); (S.L.); (N.D.E.)
| | - Azadeh F. Shalamzari
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA;
| | - Itzel Rodarte Muñoz
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (L.C.A.); (S.L.); (N.D.E.)
| | - Edwin R. Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (L.C.A.); (S.L.); (N.D.E.)
| |
Collapse
|
5
|
Lu M, Xu J, Wang Z, Wang Y, Wu J, Yang L. In silico mining and identification of a novel lipase from Paenibacillus larvae: Rational protein design for improving catalytic performance. Enzyme Microb Technol 2024; 179:110472. [PMID: 38889604 DOI: 10.1016/j.enzmictec.2024.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Lipases play a vital role in various biological processes, from lipid metabolism to industrial applications. However, the ever-evolving challenges and diverse substrates necessitate the continual exploration of novel high-performance lipases. In this study, we employed an in silico mining approach to search for lipases with potential high sn-1,3 selectivity and catalytic activity. The identified novel lipase, PLL, from Paenibacillus larvae subsp. larvae B-3650 exhibited a specific activity of 111.2 ± 5.5 U/mg towards the substrate p-nitrophenyl palmitate (pNPP) and 6.9 ± 0.8 U/mg towards the substrate olive oil when expressed in Escherichia coli (E. coli). Computational design of cysteine mutations was employed to enhance the catalytic performance of PLL. Superior stability was achieved with the mutant K7C/A386C/H159C/K108C (2M3/2M4), showing an increase in melting temperature (Tm) by 1.9°C, a 2.05-fold prolonged half-life at 45°C, and no decrease in enzyme activity. Another mutant, K7C/A386C/A174C/A243C (2M1/2M3), showed a 4.9-fold enhancement in specific activity without compromising stability. Molecular dynamics simulations were conducted to explore the mechanisms of these two mutants. Mutant 2M3/2M4 forms putative disulfide bonds in the loop region, connecting the N- and C-termini of PLL, thus enhancing overall structural rigidity without impacting catalytic activity. The cysteines introduced in mutant 2M1/2M3 not only form new intramolecular hydrogen bonds but also alter the polarity and volume of the substrate-binding pocket, facilitating the entry of large substrate pNPP. These results highlight an efficient in silico exploration approach for novel lipases, offering a rapid and efficient method for enhancing catalytic performance through rational protein design.
Collapse
Affiliation(s)
- Mengyao Lu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Ziyuan Wang
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yong Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| |
Collapse
|
6
|
Ma HN, Hsiang CC, Ng IS. Tailored expression of ICCM cutinase in engineered Escherichia coli for efficient polyethylene terephthalate hydrolysis. Enzyme Microb Technol 2024; 179:110476. [PMID: 38944965 DOI: 10.1016/j.enzmictec.2024.110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Enzymatic depolymerization of PET waste emerges as a crucial and sustainable solution for combating environmental pollution. Over the past decade, PET hydrolytic enzymes, such as PETase from Ideonella sakaiensis (IsPETases), leaf compost cutinases (LCC), and lipases, have been subjected to rational mutation to enhance their enzymatic properties. ICCM, one of the best LCC mutants, was selected for overexpression in Escherichia coli BL21(DE3) for in vitro PET degradation. However, overexpressing ICCM presents challenges due to its low productivity. A new stress-inducible T7RNA polymerase-regulating E. coli strain, ASIAhsp, which significantly enhances ICCM production by 72.8 % and achieves higher enzyme solubility than other strains. The optimal cultural condition at 30 °C with high agitation, corresponding to high dissolved oxygen levels, has brought the maximum productivity of ICCM and high PET-hydrolytic activity. The most effective PET biodegradation using crude or pure ICCM occurred at pH 10 and 60 °C. Moreover, ICCM exhibited remarkable thermostability, retaining 60 % activity after a 5-day reaction at 60 °C. Notably, crude ICCM eliminates the need for purification and efficiently degrades PET films.
Collapse
Affiliation(s)
- Hsing-Ning Ma
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chuan-Chieh Hsiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
7
|
Ding Q, Liu L. Reprogramming cellular metabolism to increase the efficiency of microbial cell factories. Crit Rev Biotechnol 2024; 44:892-909. [PMID: 37380349 DOI: 10.1080/07388551.2023.2208286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/11/2023] [Indexed: 06/30/2023]
Abstract
Recent studies are increasingly focusing on advanced biotechnological tools, self-adjusting smart microorganisms, and artificial intelligent networks, to engineer microorganisms with various functions. Microbial cell factories are a vital platform for improving the bioproduction of medicines, biofuels, and biomaterials from renewable carbon sources. However, these processes are significantly affected by cellular metabolism, and boosting the efficiency of microbial cell factories remains a challenge. In this review, we present a strategy for reprogramming cellular metabolism to enhance the efficiency of microbial cell factories for chemical biosynthesis, which improves our understanding of microbial physiology and metabolic control. Current methods are mainly focused on synthetic pathways, metabolic resources, and cell performance. This review highlights the potential biotechnological strategy to reprogram cellular metabolism and provide novel guidance for designing more intelligent industrial microbes with broader applications in this growing field.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Hsiang CC, Ng IS. ASIA: An automated stress-inducible adaptor for enhanced stress protein expression in engineered Escherichia coli. Biotechnol Bioeng 2024; 121:1902-1911. [PMID: 38450753 DOI: 10.1002/bit.28691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/08/2024]
Abstract
Orthogonal T7 RNA polymerase (T7RNAP) and T7 promoter is a potent technique for protein expression in broad cells, but the energy requirements associated with this method impede the growth, leading to cell lysis when dealing with toxic and stress proteins. A Lemo21(DE3) strain denoted as L21 offers a solution by fine-tuning T7RNAP levels under rhamnose to induce T7 lysozyme (LysY) and enhance the protein production, but it requires optimization of inducer concentration, cultural temperature, and condition, even the types of carbon sources. Herein, we construct an automated stress-inducible adaptor (ASIA) employing different stress-inducible promoters from Escherichia coli. The ASIA system is designed to automatically regulate LysY expression in response to stress signals, thereby suppressing T7RNAP and amplifying the overexpression of stress protein cutinase ICCM. This approach fine-tunes T7RNAP levels and outperforms L21 in various temperatures and carbon source conditions. The ASIAhtp strain maintains ICCM yield at 91.6 mg/g-DCW even in the limiting carbon source at 1 g/L, which is 12-fold higher in protein productivity compared to using L21. ASIA as a versatile and robust tool for enhancing overexpression of stress proteins in E. coli is expected to address more difficult proteins in the future.
Collapse
Affiliation(s)
- Chuan-Chieh Hsiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Essential factors, advanced strategies, challenges, and approaches involved for efficient expression of recombinant proteins in Escherichia coli. Arch Microbiol 2024; 206:152. [PMID: 38472371 DOI: 10.1007/s00203-024-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
10
|
Xu J, Sun Y, Wu J, Yang S, Yang L. Chromosome recombination and modification by LoxP-mediated evolution in Vibrio natriegens using CRISPR-associated transposases. Biotechnol Bioeng 2024; 121:1163-1172. [PMID: 38131162 DOI: 10.1002/bit.28639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Chromosome rearrangement by LoxP-mediated evolution has emerged as a powerful approach to studying how chromosome architecture impacts phenotypes. However, it relies on the in vitro synthesis of artificial chromosomes. The recently reported CRISPR-associated transposases (CASTs) held great promise for the efficient insertion of abundant LoxP sites directly onto the genome of wild-type strains. In this study, with the fastest-growing bacterium Vibrio natrigens (V. natriegens) as an object, a multiplex genome integration tool derived from CASTs was employed to achieve the insertion of cargo genes at eight specific genomic loci within 2 days. Next, we introduced 30 LoxP sites onto chromosome 2 (Chr2) of V. natriegens. Rigorously induced Cre recombinase was used to demonstrate Chromosome Rearrangement and Modification by LoxP-mediated Evolution (CRaMbLE). Growth characterization and genome sequencing showed that the ~358 kb fragment on Chr2 was accountable for the rapid growth of V. natriegens. The enabling tools we developed can help identify genomic regions that influence the rapid growth of V. natriegens without a prior understanding of genome mechanisms. This groundbreaking demonstration may also be extended to other organisms such as Escherichia coli, Pseudomonas putida, Bacillus subtilis, and so on.
Collapse
Affiliation(s)
- Jiaqi Xu
- Institute for Intelligent Bio/Chem Manufacturing, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yijie Sun
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jianping Wu
- Institute for Intelligent Bio/Chem Manufacturing, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lirong Yang
- Institute for Intelligent Bio/Chem Manufacturing, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Piorino F, Patterson AT, Han Y, Styczynski MP. Plasmid Crosstalk in Cell-Free Expression Systems. ACS Synth Biol 2023; 12:2843-2856. [PMID: 37756020 PMCID: PMC10594874 DOI: 10.1021/acssynbio.3c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 09/28/2023]
Abstract
Although cell-free protein expression has been widely used for the synthesis of single proteins, cell-free synthetic biology has rapidly expanded to new, more complex applications. One such application is the prototyping or implementation of complex genetic networks involving the expression of multiple proteins at precise ratios, often from different plasmids. However, expression of multiple proteins from multiple plasmids may inadvertently result in unexpected, off-target changes to the levels of the proteins being expressed, a phenomenon termed plasmid crosstalk. Here, we show that the effects of plasmid crosstalk─even at the qualitative level of increases vs decreases in protein expression─depend on the concentration of plasmids in the reaction and the type of transcriptional machinery involved in the expression. This crosstalk can have a significant impact on genetic circuitry function and even interpretation of simple experimental results and thus should be taken into consideration during the development of cell-free applications.
Collapse
Affiliation(s)
- Fernanda Piorino
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Alexandra T. Patterson
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Yue Han
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Mark P. Styczynski
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
12
|
Shishparenok AN, Gladilina YA, Zhdanov DD. Engineering and Expression Strategies for Optimization of L-Asparaginase Development and Production. Int J Mol Sci 2023; 24:15220. [PMID: 37894901 PMCID: PMC10607044 DOI: 10.3390/ijms242015220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Genetic engineering for heterologous expression has advanced in recent years. Model systems such as Escherichia coli, Bacillus subtilis and Pichia pastoris are often used as host microorganisms for the enzymatic production of L-asparaginase, an enzyme widely used in the clinic for the treatment of leukemia and in bakeries for the reduction of acrylamide. Newly developed recombinant L-asparaginase (L-ASNase) may have a low affinity for asparagine, reduced catalytic activity, low stability, and increased glutaminase activity or immunogenicity. Some successful commercial preparations of L-ASNase are now available. Therefore, obtaining novel L-ASNases with improved properties suitable for food or clinical applications remains a challenge. The combination of rational design and/or directed evolution and heterologous expression has been used to create enzymes with desired characteristics. Computer design, combined with other methods, could make it possible to generate mutant libraries of novel L-ASNases without costly and time-consuming efforts. In this review, we summarize the strategies and approaches for obtaining and developing L-ASNase with improved properties.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
13
|
Sun Y, Xu J, Zhou H, Zhang H, Wu J, Yang L. Recombinant Protein Expression Chassis Library of Vibrio natriegens by Fine-Tuning the Expression of T7 RNA Polymerase. ACS Synth Biol 2023; 12:555-564. [PMID: 36719178 DOI: 10.1021/acssynbio.2c00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Vibrio natriegens is the fastest-growing bacteria, and its doubling time is less than 10 min. At present, the T7 expression system has been introduced into V. natriegens for heterologous protein expression, including the commercial strain Vmax1 and the variant VnDX,2 which is a backup expression chassis of Escherichia coli BL21(DE3). However, the strength of the existing T7 expression system is not optimal for every recombinant protein. The different expression strengths of T7 RNA polymerase (T7 RNAP) can be obtained by changing the promoter and ribosome binding site (RBS) sequences of T7 RNAP at different transcription and translation levels. In this work, we obtained a robust VnDX variant library with the fine-tuning T7 RNAP using the industrially used enzyme glucose dehydrogenase (GDH) as the reporter protein. Among this library, the variant VnDX-tet, whose promoter of T7 RNAP was changed from PlacUV5 to Ptet, showed that the reporter enzyme GDH activity was increased by 109% by the T7 expression system. Similarly, variants with different T7 RNAP translation levels were obtained by changing RBS sequences upstream of T7 RNAP, and the results showed that the variant VnDX-RBS12/pGDH had the highest GDH activity, which increased by 12.6%. The VnDX variant library constructed in this study with different T7 expression strengths provides a choice for expressing various recombinant proteins, greatly expanding the application of V. natriegens.
Collapse
Affiliation(s)
- Yijie Sun
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Haisheng Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Hongyu Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| |
Collapse
|
14
|
Ting WW, Ng IS. Effective 5-aminolevulinic acid production via T7 RNA polymerase and RuBisCO equipped Escherichia coli W3110. Biotechnol Bioeng 2023; 120:583-592. [PMID: 36302745 DOI: 10.1002/bit.28273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 01/13/2023]
Abstract
Chromosome-based engineering is a superior approach for gene integration generating a stable and robust chassis. Therefore, an effective amplifier, T7 RNA polymerase (T7RNAP) from bacteriophage, has been incorporated into Escherichia coli W3110 by site-specific integration. Herein, we performed the 5-aminolevulinic acid (5-ALA) production in four T7RNAP-equipped W3110 strains using recombinant 5-aminolevulinic synthase and further explored the metabolic difference in best strain. The fastest glucose consumption resulted in the highest biomass and the 5-ALA production reached to 5.5 g/L; thus, the least by-product of acetate was shown in RH strain in which T7RNAP was inserted at HK022 phage attack site. Overexpression of phosphoenolpyruvate (PEP) carboxylase would pull PEP to oxaloacetic acid in tricarboxylic acid cycle, leading to energy conservation and even no acetate production, thus, 6.53 g/L of 5-ALA was achieved. Amino acid utilization in RH deciphered the major metabolic flux in α-ketoglutaric acid dominating 5-ALA production. Finally, the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and phosphoribulokinase were expressed for carbon dioxide recycling; a robust and efficient chassis toward low-carbon assimilation and high-level of 5-ALA production up to 11.2 g/L in fed-batch fermentation was established.
Collapse
Affiliation(s)
- Wan-Wen Ting
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Plasmids for Controlled and Tunable High-Level Expression in E. coli. Appl Environ Microbiol 2022; 88:e0093922. [PMID: 36342148 PMCID: PMC9680613 DOI: 10.1128/aem.00939-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genetic systems for protein overexpression are required tools in microbiological and biochemical research. Ideally, these systems include standardized genetic parts with predictable behavior, enabling the construction of stable expression systems in the host organism.
Collapse
|
16
|
Wang LR, Zhang ZX, Nong FT, Li J, Huang PW, Ma W, Zhao QY, Sun XM. Engineering the xylose metabolism in Schizochytrium sp. to improve the utilization of lignocellulose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:114. [PMID: 36289497 PMCID: PMC9609267 DOI: 10.1186/s13068-022-02215-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Schizochytrium sp. is a heterotrophic, oil-producing microorganism that can efficiently produce lipids. However, the industrial production of bulk chemicals using Schizochytrium sp. is still not economically viable due to high-cost culture medium. Replacing glucose with cheap and renewable lignocellulose is a highly promising approach to reduce production costs, but Schizochytrium sp. cannot efficiently metabolize xylose, a major pentose in lignocellulosic biomass. RESULTS In order to improve the utilization of lignocellulose by Schizochytrium sp., we cloned and functionally characterized the genes encoding enzymes involved in the xylose metabolism. The results showed that the endogenous xylose reductase and xylulose kinase genes possess corresponding functional activities. Additionally, attempts were made to construct a strain of Schizochytrium sp. that can effectively use xylose by using genetic engineering techniques to introduce exogenous xylitol dehydrogenase/xylose isomerase; however, the introduction of heterologous xylitol dehydrogenase did not produce a xylose-utilizing engineered strain, whereas the introduction of xylose isomerase did. The results showed that the engineered strain 308-XI with an exogenous xylose isomerase could consume 8.2 g/L xylose over 60 h of cultivation. Xylose consumption was further elevated to 11.1 g/L when heterologous xylose isomerase and xylulose kinase were overexpressed simultaneously. Furthermore, cultivation of 308-XI-XK(S) using lignocellulosic hydrolysates, which contained glucose and xylose, yielded a 22.4 g/L of dry cell weight and 5.3 g/L of total lipid titer, respectively, representing 42.7 and 30.4% increases compared to the wild type. CONCLUSION This study shows that engineering of Schizochytrium sp. to efficiently utilize xylose is conducive to improve its utilization of lignocellulose, which can reduce the costs of industrial lipid production.
Collapse
Affiliation(s)
- Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Fang-Tong Nong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China
| | - Quan-Yu Zhao
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, Jiangsu, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Zhang ZX, Nong FT, Wang YZ, Yan CX, Gu Y, Song P, Sun XM. Strategies for efficient production of recombinant proteins in Escherichia coli: alleviating the host burden and enhancing protein activity. Microb Cell Fact 2022; 21:191. [PMID: 36109777 PMCID: PMC9479345 DOI: 10.1186/s12934-022-01917-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli, one of the most efficient expression hosts for recombinant proteins (RPs), is widely used in chemical, medical, food and other industries. However, conventional expression strains are unable to effectively express proteins with complex structures or toxicity. The key to solving this problem is to alleviate the host burden associated with protein overproduction and to enhance the ability to accurately fold and modify RPs at high expression levels. Here, we summarize the recently developed optimization strategies for the high-level production of RPs from the two aspects of host burden and protein activity. The aim is to maximize the ability of researchers to quickly select an appropriate optimization strategy for improving the production of RPs.
Collapse
|
18
|
Zhang ZX, Wang YZ, Nong FT, Xu Y, Ye C, Gu Y, Sun XM, Huang H. Developing a dynamic equilibrium system in Escherichia coli to improve the production of recombinant proteins. Appl Microbiol Biotechnol 2022; 106:6125-6137. [PMID: 36056198 DOI: 10.1007/s00253-022-12145-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
Abstract
The combination of Escherichia coli BL21 (DE3) and the pET expression system is used extensively for the expression of various recombinant proteins (RPs). However, RP overexpression often introduces a growth burden for the host, especially in the case of toxic proteins. The key to solving this problem is to reduce the host burden associated with protein overproduction, which is often achieved by regulating the expression or activity of T7 RNAP or growth-decoupled systems. However, these strategies mainly relieve or interrupt the robbing of host resources, and do not eliminate other types of host burdens in the production process. In this study, we constructed a production system based on a dynamic equilibrium to precisely relieve the host burden and increase the RP production. The system is composed of three modules, including the overexpression of basic growth-related genes (rRNA, RNAP core enzyme, sigma factors), prediction and overexpression of key proteins using the enzyme-constrained model ec_iECBD_1354, and dynamic regulation of growth-related and key protein expression intensity based on a burden-driven promoter. Using this system, the production of many high-burden proteins, including autolysis protein and E. coli membrane proteins, was increased to varying degrees. Among them, the cytosine transporter protein (CodB) was most significantly improved, with a 4.02-fold higher production compared to the wild strain. This system can effectively reduce the optimizing costs, and is suitable for developing various types of RP expression hosts rapidly. KEY POINTS: • The basic growth-related resources can relieve the host burden from recombinant protein. • The enzyme-constrained model can accurately predict key genes to improve yield. • The expression intensity can be dynamically adjusted with changes in burden.
Collapse
Affiliation(s)
- Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Fang-Tong Nong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yan Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Guo Q, Li YW, Yan F, Li K, Wang YT, Ye C, Shi TQ, Huang H. Dual cytoplasmic-peroxisomal engineering for high-yield production of sesquiterpene α-humulene in Yarrowia lipolytica. Biotechnol Bioeng 2022; 119:2819-2830. [PMID: 35798689 DOI: 10.1002/bit.28176] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022]
Abstract
The sesquiterpene α-humulene is an important plant natural product, which has been used in pharmaceutical industry due to the anti-inflammatory and anticancer activities. Although phytoextraction and chemical synthesis have previously been applied into α-humulene production, the low efficiency and high costs limit the development. In this study, Y. lipolytica was engineered as the robust cell factory for sustainable α-humulene production. First, a chassis with high α-humulene output in the cytoplasm was constructed by integrating α-humulene synthases with high catalytic activity, optimizing the flux of MVA and acetyl-CoA pathways. Subsequently, the strategy of dual cytoplasmic-peroxisomal engineering was adopted in Y. lipolytica, the best strain GQ3006 generated by introducing 31 copies of 12 different genes could produce 2280.3 ± 38.2 mg/L (98.7 ± 4.2 mg/g DCW) α-humulene, a 100-fold improvement relative to the baseline strain. In order to further improve the titer, a novel strategy for downregulation of squalene biosynthesis based on Cu2+ -repressible promoters was firstly established, which significantly improved the α-humulene titer by 54.2 % to 3516.6 ± 34.3 mg/L. Finally, the engineered strain could produce 21.7 g/L α-humulene in 5-L bioreactor, 6.8-fold higher than the highest α-humulene titer reported prior to this study. Overall, system metabolic engineering strategies used in this study provide a valuable reference for highly sustainable production of terpenoids in Y. lipolytica. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Fang Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China.,College of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| |
Collapse
|
20
|
Li ZJ, Zhang ZX, Xu Y, Shi TQ, Ye C, Sun XM, Huang H. CRISPR-Based Construction of a BL21 (DE3)-Derived Variant Strain Library to Rapidly Improve Recombinant Protein Production. ACS Synth Biol 2022; 11:343-352. [PMID: 34919397 DOI: 10.1021/acssynbio.1c00463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Escherichia coli BL21 (DE3) is the most widely used host for recombinant protein expression. However, not every protein can be highly expressed in BL21 (DE3), so individual optimization strategies are often required for different proteins, which is time-consuming and difficult to apply rapidly for industrial production. Constructing more hosts is a good choice to enrich protein expression selection. The expression level of T7 RNAP is the core control node of the pET expression system, so regulating its expression level is an effective way of improving the production of difficult-to-express proteins. Various BL21 (DE3)-derived variant hosts with different translation levels of T7 RNAP could be obtained by changing the ribosomal binding site (RBS) sequences of T7 RNAP in a genome. Here, a BL21 (DE3)-derived variant strain library with different RBS sequences of T7 RNAP was constructed using a base editor and CRISPR-Cas9. Notably, the CRISPR-Cas9 system combined with degenerate primers enabled the construction of an RBS library with 87.5% of the theoretical coverage in single editing, which is more convenient and efficient than the use of a base editor. The expression level of a target gene in the variant strain library ranged from 28 to 220% of the parental strain. Furthermore, a high-throughput host-screening platform for recombinant protein production was constructed, which enabled us to obtain the best expression host for certain target proteins in only 3 days. As a proof of concept, the production of all eight difficult-to-express proteins was greatly improved, including autolytic protein, membrane proteins, antimicrobial peptides, and hardly soluble proteins. Among them, the expression of glucose dehydrogenase in the best host exhibited a 298-fold increase compared to the parental strain. This strategy is simple and effective, requires no advanced equipment, and can be carried out in any laboratory.
Collapse
Affiliation(s)
- Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Yan Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
21
|
Du F, Liu YQ, Xu YS, Li ZJ, Wang YZ, Zhang ZX, Sun XM. Regulating the T7 RNA polymerase expression in E. coli BL21 (DE3) to provide more host options for recombinant protein production. Microb Cell Fact 2021; 20:189. [PMID: 34565359 PMCID: PMC8474846 DOI: 10.1186/s12934-021-01680-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
Escherichia coli is the most widely used bacterium in prokaryotic expression system for the production of recombinant proteins. In BL21 (DE3), the gene encoding the T7 RNA polymerase (T7 RNAP) is under control of the strong lacUV5 promoter (PlacUV5), which is leakier and more active than wild-type lac promoter (PlacWT) under certain growth conditions. These characteristics are not advantageous for the production of those recombinant proteins with toxic or growth-burdened. On the one hand, leakage expression of T7 RNAP leads to rapid production of target proteins under non-inducing period, which sucks resources away from cellular growth. Moreover, in non-inducing or inducing period, high expression of T7 RNAP production leads to the high-production of hard-to-express proteins, which may all lead to loss of the expression plasmid or the occurrence of mutations in the expressed gene. Therefore, more BL21 (DE3)-derived variant strains with rigorous expression and different expression level of T7 RNAP should be developed. Hence, we replaced PlacUV5 with other inducible promoters respectively, including arabinose promoter (ParaBAD), rhamnose promoter (PrhaBAD), tetracycline promoter (Ptet), in order to optimize the production of recombinant protein by regulating the transcription level and the leakage level of T7 RNAP. Compared with BL21 (DE3), the constructed engineered strains had higher sensitivity to inducers, among which rhamnose and tetracycline promoters had the lowest leakage ability. In the production of glucose dehydrogenase (GDH), a protein that causes host autolysis, the engineered strain BL21 (DE3::ara) exhibited higher biomass, cell survival rate and foreign protein expression level than that of BL21 (DE3). In addition, these engineered strains had been successfully applied to improve the production of membrane proteins, including E. coli cytosine transporter protein (CodB), the E. coli membrane protein insertase/foldase (YidC), and the E. coli F-ATPase subunit b (Ecb). The engineered strains constructed in this paper provided more host choices for the production of recombinant proteins.
Collapse
Affiliation(s)
- Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yun-Qi Liu
- Nanjing Foreign Language School, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| |
Collapse
|
22
|
Xu J, Yang J, Jiang Y, Wu M, Yang S, Yang L. A novel global transcriptional perturbation target identified by forward genetics reprograms Vibrio natriegens for improving recombinant protein production. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1124-1133. [PMID: 34169308 DOI: 10.1093/abbs/gmab089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
Vibrio natriegens is known to be the fastest-growing free-living bacterium with the potential to be a novel protein expression system other than Escherichia coli. Seven sampled genes of interest (GOIs) encoding biocatalyst enzymes, including Ochrobactrum anthropi-derived ω-transaminase (OATA), were strongly expressed in E. coli but weakly in V. natriegens using the pET expression system. In this study, we fused the C-terminal of OATA with green fluorescent protein (GFP) and obtained V. natriegens mutants that could increase both protein yield and enzyme activity of OATA as well as the other three GOIs by ultraviolet mutagenesis, fluorescence-activated cell sorting (FACS), and OATA colorimetric assay. Furthermore, next-generation sequencing and strain reconstruction revealed that the Y457 variants in the conserved site of endogenous RNA polymerase (RNAP) β' subunit rpoC are responsible for the increase in recombinant protein yield. We speculated that the mutation of rpoC Y457 may reprogram V. natriegens's innate gene transcription, thereby increasing the copy number of pET plasmids and soluble protein yield of certain GOIs. The increase in GOI expression may partly be attributed to the increase in copy number. In conclusion, GOI-GFP fusion combined with FACS is a powerful tool of forward genetics that can be used to obtain a superior expression chassis. If more high-expression-related targets are found for more GOIs, it would make the construction of next-generation protein expression chassis more time-saving.
Collapse
Affiliation(s)
- Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
- Shanghai Taoyusheng Biotechnology Co. Ltd, Shanghai 201201, China
| | - Mianbin Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China
| | - Sheng Yang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China
| |
Collapse
|
23
|
Li YJ, Zheng YC, Geng Q, Liu F, Zhang ZJ, Xu JH, Yu HL. Secretory expression of cyclohexanone monooxygenase by methylotrophic yeast for efficient omeprazole sulfide bio-oxidation. BIORESOUR BIOPROCESS 2021; 8:81. [PMID: 38650277 PMCID: PMC10992682 DOI: 10.1186/s40643-021-00430-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 11/10/2022] Open
Abstract
Prochiral pyrmetazole can be asymmetrically oxidized into (S)-omeprazole, a proton pump inhibitor that is used to treat gastroesophageal reflux, by an engineered cyclohexanone monooxygenase (CHMOAcineto-Mut) that has high stereoselectivity. CHMOAcineto-Mut is produced by heterologous expression in Escherichia coli, where it is expressed intracellularly. Thus, isolating this useful biocatalyst requires tedious cell disruption and subsequent purification, which hinders its use for industrial purposes. Here, we report the extracellular production of CHMOAcineto-Mut by a methylotrophic yeast, Pichia pastoris, for the first time. The recombinant CHMOAcineto-Mut expressed by P. pastoris showed a higher flavin occupation rate than that produced by E. coli, and this was accompanied by a 3.2-fold increase in catalytic efficiency. At a cell density of 150 g/L cell dry weight, we achieved a recombinant CHMOAcineto-Mut production rate of 1,700 U/L, representing approximately 85% of the total protein secreted into the fermentation broth. By directly employing the pH adjusted supernatant as a biocatalyst, we were able to almost completely transform 10 g/L of pyrmetazole into the corresponding (S)-sulfoxide, with > 99% enantiomeric excess.
Collapse
Affiliation(s)
- Ya-Jing Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Qiang Geng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
24
|
Weber J, Li Z, Rinas U. Recombinant protein production provoked accumulation of ATP, fructose-1,6-bisphosphate and pyruvate in E. coli K12 strain TG1. Microb Cell Fact 2021; 20:169. [PMID: 34446023 PMCID: PMC8394631 DOI: 10.1186/s12934-021-01661-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Background Recently it was shown that production of recombinant proteins in E. coli BL21(DE3) using pET based expression vectors leads to metabolic stress comparable to a carbon overfeeding response. Opposite to original expectations generation of energy as well as catabolic provision of precursor metabolites were excluded as limiting factors for growth and protein production. On the contrary, accumulation of ATP and precursor metabolites revealed their ample formation but insufficient withdrawal as a result of protein production mediated constraints in anabolic pathways. Thus, not limitation but excess of energy and precursor metabolites were identified as being connected to the protein production associated metabolic burden. Results Here we show that the protein production associated accumulation of energy and catabolic precursor metabolites is not unique to E. coli BL21(DE3) but also occurs in E. coli K12. Most notably, it was demonstrated that the IPTG-induced production of hFGF-2 using a tac-promoter based expression vector in the E. coli K12 strain TG1 was leading to persistent accumulation of key regulatory molecules such as ATP, fructose-1,6-bisphosphate and pyruvate. Conclusions Excessive energy generation, respectively, accumulation of ATP during recombinant protein production is not unique to the BL21(DE3)/T7 promoter based expression system but also observed in the E. coli K12 strain TG1 using another promoter/vector combination. These findings confirm that energy is not a limiting factor for recombinant protein production. Moreover, the data also show that an accelerated glycolytic pathway flux aggravates the protein production associated “metabolic burden”. Under conditions of compromised anabolic capacities cells are not able to reorganize their metabolic enzyme repertoire as required for reduced carbon processing.
Collapse
Affiliation(s)
- Jan Weber
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Zhaopeng Li
- Technical Chemistry-Life Science, Leibniz University of Hannover, Hannover, Germany
| | - Ursula Rinas
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany. .,Technical Chemistry-Life Science, Leibniz University of Hannover, Hannover, Germany.
| |
Collapse
|
25
|
Xu J, Dong F, Wu M, Tao R, Yang J, Wu M, Jiang Y, Yang S, Yang L. Vibrio natriegens as a pET-Compatible Expression Host Complementary to Escherichia coli. Front Microbiol 2021; 12:627181. [PMID: 33679648 PMCID: PMC7933001 DOI: 10.3389/fmicb.2021.627181] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Efficient and novel recombinant protein expression systems can further reduce the production cost of enzymes. Vibrio natriegens is the fastest growing free-living bacterium with a doubling time of less than 10 min, which makes it highly attractive as a protein expression host. Here, 196 pET plasmids with different genes of interest (GOIs) were electroporated into the V. natriegens strain VnDX, which carries an integrated T7 RNA polymerase expression cassette. As a result, 65 and 75% of the tested GOIs obtained soluble expression in V. natriegens and Escherichia coli, respectively, 20 GOIs of which showed better expression in the former. Furthermore, we have adapted a consensus "what to try first" protocol for V. natriegens based on Terrific Broth medium. Six sampled GOIs encoding biocatalysts enzymes thus achieved 50-128% higher catalytic efficiency under the optimized expression conditions. Our study demonstrated V. natriegens as a pET-compatible expression host with a spectrum of highly expressed GOIs distinct from E. coli and an easy-to-use consensus protocol, solving the problem that some GOIs cannot be expressed well in E. coli.
Collapse
Affiliation(s)
- Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Feng Dong
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, China
| | - Meixian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rongsheng Tao
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, China.,Huzhou Yisheng Biotechnology Co., Ltd., Huzhou, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mianbin Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, China.,Shanghai Taoyusheng Biotechnology Co., Ltd., Shanghai, China
| | - Sheng Yang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, China.,Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|