1
|
Yoo D, Jung SY, Go D, Park JY, You DG, Jung WK, Li Y, Ding J, Park JH, Um W. Functionalized extracellular vesicles of mesenchymal stem cells for regenerative medicine. J Nanobiotechnology 2025; 23:219. [PMID: 40102934 PMCID: PMC11921732 DOI: 10.1186/s12951-025-03300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Stem cell-derived extracellular vesicles (EVs) have emerged as a safe and potent alternative to regenerative medicine in recent decades. Furthermore, the adjustment of EV functions has been recently enabled by certain stem cell preconditioning methods, providing an exceptional opportunity to enhance the therapeutic potential or confer additional functions of stem cell-derived EVs. In this review, we discuss the recent progress of functionalized EVs, based on stem cell preconditioning, for treating various organ systems, such as the musculoskeletal system, nervous system, integumentary system, cardiovascular system, renal system, and respiratory system. Additionally, we summarize the expected outcomes of preconditioning methods for stem cells and their EVs. With recent progress, we suggest considerations and future directions for developing personalized medicine based on preconditioned stem cell-derived EVs.
Collapse
Affiliation(s)
- Donghyeon Yoo
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Se Young Jung
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dabin Go
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Ji Yeong Park
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dong Gil You
- Department of Chemical Engineering & Biotechnology, Tech University of Korea, Siheung, 15073, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Yuce Li
- College of Life Science and Health, Wuhan University of Science and Technology (WUST), Wuhan, 430065, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Wooram Um
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Kim DH, Park SH, Kwon MY, Lim CY, Park SH, Jang DW, Hwang SH, Kim SW. The Development of a Human Respiratory Mucosa-on-a-Chip Using Human Turbinate-Derived Mesenchymal Stem Cells. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1741. [PMID: 39596928 PMCID: PMC11596171 DOI: 10.3390/medicina60111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: This study aimed to investigate the influence of a respiratory mucosa-on-a-chip on the respiratory epithelial differentiation potential of human nasal inferior turbinate-derived stem cells (hNTSCs). Materials and Methods: After isolating hNTSCs from five patients, we divided the samples from the patients into the study group with a mucosa-on-a-chip and the control group with conventional differentiation (using conventional differentiation methods). The respiratory epithelial differentiation potential of hNTSCs was analyzed by histology and gene expression. Results: In the quantitative analysis, PCR showed that the hNTSCs expressed the cytokeratin genes (KRT13, 14), transformation-related protein P63 (TP63), and vimentin of basal cells in the airway epithelium at higher levels, but cytokeratin genes (KRT6) at lower levels, in the mucosa-on-a-chip than in conventional differentiation. In the cytokine analysis (GM-CSF, IFNr, IL-1a, IL-1b, IL-4, IL-5, IL-10, IL-12(p70), IL-13, IL-17A, IL-17E/IL-25, RANTES, TNFa, IL-6, and IL-8), the expressions of IFNr, IL-13, RANTES, TNFa, IL-6, and IL-8 were significantly upregulated in the mucosa-on-a-chip than in conventional differentiation. Conclusions: We conclude that the human respiratory mucosa-on-a-chip using human turbinate-derived mesenchymal stem cells allows the respiratory differentiation of hNTSCs and shows the difference in gene and cytokine expression, which could serve as an alternative to conventional differentiation for the production of functionally competent hNTSCs for future clinical applications.
Collapse
Affiliation(s)
- Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sang Hi Park
- Institute of Clinical Medicine Research, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Mi-Yeon Kwon
- Institute of Clinical Medicine Research, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chae-Yoon Lim
- Institute of Clinical Medicine Research, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sun Hwa Park
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - David W. Jang
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Se Hwan Hwang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Zhu F, Wang T, Wang G, Yan C, He B, Qiao B. The Exosome-Mediated Bone Regeneration: An Advanced Horizon Toward the Isolation, Engineering, Carrying Modalities, and Mechanisms. Adv Healthc Mater 2024; 13:e2400293. [PMID: 38426417 DOI: 10.1002/adhm.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Exosomes, nanoparticles secreted by various cells, composed of a bilayer lipid membrane, and containing bioactive substances such as proteins, nucleic acids, metabolites, etc., have been intensively investigated in tissue engineering owing to their high biocompatibility and versatile biofunction. However, there is still a lack of a high-quality review on bone defect regeneration potentiated by exosomes. In this review, the biogenesis and isolation methods of exosomes are first introduced. More importantly, the engineered exosomes of the current state of knowledge are discussed intensively in this review. Afterward, the biomaterial carriers of exosomes and the mechanisms of bone repair elucidated by compelling evidence are presented. Thus, future perspectives and concerns are revealed to help devise advanced modalities based on exosomes to overcome the challenges of bone regeneration. It is totally believed this review will attract special attention from clinicians and provide promising ideas for their future works.
Collapse
Affiliation(s)
- Fukang Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Taiyou Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Guangjian Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Department of Orthopaedics, The People's Hospital of Rongchang District, Chongqing, 402460, P. R. China
| | - Caiping Yan
- Department of Orthopaedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, P. R. China
| | - Bin He
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Bo Qiao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
4
|
Ma M. Role of Hypoxia in Mesenchymal Stem Cells from Dental Pulp: Influence, Mechanism and Application. Cell Biochem Biophys 2024; 82:535-547. [PMID: 38713403 PMCID: PMC11344735 DOI: 10.1007/s12013-024-01274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Mesenchymal stem cells (MSCs) from dental pulp (DP-MSCs), which include dental pulp stem cells (DPSCs) isolated from permanent teeth and stem cells from human exfoliated deciduous teeth (SHED), have emerged as highly promising cell sources for tissue regeneration, due to their high proliferative rate, multi-lineage differentiation capability and non-invasive accessibility. DP-MSCs also exert extensive paracrine effects through the release of extracellular vesicles (EVs) and multiple trophic factors. To be noted, the microenvironment, commonly referred to as the stem cell niche, plays a crucial role in shaping the functionality and therapeutic effects of DP-MSCs, within which hypoxia has garnered considerable attention. Extensive research has demonstrated that hypoxic conditions profoundly impact DP-MSCs. Specifically, hypoxia promotes DP-MSC proliferation, survival, stemness, migration, and pro-angiogenic potential while modulating their multi-lineage differentiation capacity. Furthermore, hypoxia stimulates the paracrine activities of DP-MSCs, leading to an increased production of EVs and soluble factors. Considering these findings, hypoxia preconditioning has emerged as a promising approach to enhance the therapeutic potential of DP-MSCs. In this comprehensive review, we provide a systematic overview of the influence of hypoxia on DP-MSCs, shedding light on the underlying mechanisms involved. Moreover, we also discuss the potential applications of hypoxia-preconditioned DP-MSCs or their secretome in tissue regeneration. Additionally, we delve into the methodologies employed to simulate hypoxic environments. This review aims to promote a comprehensive and systematic understanding of the hypoxia-induced effects on DP-MSCs and facilitate the refinement of regenerative therapeutic strategies based on DP-MSCs.
Collapse
Affiliation(s)
- Muyuan Ma
- School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
5
|
Rasouli M, Fattahi R, Nuoroozi G, Zarei-Behjani Z, Yaghoobi M, Hajmohammadi Z, Hosseinzadeh S. The role of oxygen tension in cell fate and regenerative medicine: implications of hypoxia/hyperoxia and free radicals. Cell Tissue Bank 2024; 25:195-215. [PMID: 37365484 DOI: 10.1007/s10561-023-10099-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Oxygen pressure plays an integral role in regulating various aspects of cellular biology. Cell metabolism, proliferation, morphology, senescence, metastasis, and angiogenesis are some instances that are affected by different tensions of oxygen. Hyperoxia or high oxygen concentration, enforces the production of reactive oxygen species (ROS) that disturbs physiological homeostasis, and consequently, in the absence of antioxidants, cells and tissues are directed to an undesired fate. On the other side, hypoxia or low oxygen concentration, impacts cell metabolism and fate strongly through inducing changes in the expression level of specific genes. Thus, understanding the precise mechanism and the extent of the implication of oxygen tension and ROS in biological events is crucial to maintaining the desired cell and tissue function for application in regenerative medicine strategies. Herein, a comprehensive literature review has been performed to find out the impacts of oxygen tensions on the various behaviors of cells or tissues.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Student Research Committee, Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Fattahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Ghader Nuoroozi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Zeinab Zarei-Behjani
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maliheh Yaghoobi
- Engineering Department, Faculty of Chemical Engineering, Zanjan University, Zanjan, Iran
| | - Zeinab Hajmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran.
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Wu J, Huang QM, Liu Y, Zhou J, Tang WR, Wang XY, Wang LF, Zhang ZH, Tan HL, Guan XH, Deng KY, Xin HB. Long-term hypoxic hUCMSCs-derived extracellular vesicles alleviates allergic rhinitis through triggering immunotolerance of their VEGF-mediated inhibition of dendritic cells maturation. Int Immunopharmacol 2023; 124:110875. [PMID: 37742368 DOI: 10.1016/j.intimp.2023.110875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Extensions of mesenchymal stem cells (MSCs) in vitro may lead to the loss of their biological functions. However, hypoxic culturation has been shown to enhance the proliferation, survival, and immunomodulatory capacity of MSCs. OBJECTIVE We aimed to investigate the effects of long-term hypoxic cultivation on the properties of human umbilical cord-derived MSCs (hUCMSCs) and the therapeutic effects of their extracellular vesicles (EVs) in allergic rhinitis (AR). METHODS Proliferation, senescence, telomerase activity and multipotent properties of hUCMSCs were analyzed under long-term culturation of hypoxia (1%) or normoxia (21%), and the therapeutic effects of their conditional medium (CM) and EVs were evaluated in OVA-induced AR mice. Effects of hypoxia-EVs (Hy-EVs) or normoxia-EVs (No-EVs) on human monocyte-derived dendritic cells (DCs) were investigated, and the possible mechanisms of Hy-EVs in induction of immunotolerance were further explored. RESULTS Long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs. Hy-CM and Hy-EVs showed better therapeutic effects in AR mice compared to No-EVs, seen as improvement of AR-related behaviors such as rubbing and sneezing, and attenuation of inflammation in nasal tissues. In addition, Hy-EVs significantly reduced the expressions of HLA-DR, CD80, CD40, and CD83 induced by OVA plus LPS in DCs, inhibiting the maturation of DCs. Furthermore, we observed that VEGF was remarkably enriched in Hy-EVs, but not in No-EVs, and the inhibition of DCs maturation was markedly neutralized by VEGF antibodies, suggesting that VEGF derived from Hy-EVs was responsible for the inhibition of DCs maturation. CONCLUSION Our results demonstrated that long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs, and hypoxia treated hUCMSCs-derived EVs enhanced their therapeutic effects in AR mice through VEGF-mediated inhibition of DCs maturation.
Collapse
Affiliation(s)
- Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yu Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Juan Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Wen-Rong Tang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Lin-Fang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhou-Hang Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China.
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
7
|
Kim DH, Kim SH, Park SH, Kwon MY, Lim CY, Park SH, Gwon K, Hwang SH, Kim SW. Characteristics of Human Nasal Turbinate Stem Cells under Hypoxic Conditions. Cells 2023; 12:2360. [PMID: 37830573 PMCID: PMC10571865 DOI: 10.3390/cells12192360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
This study investigated the influence of hypoxic culture conditions on human nasal inferior turbinate-derived stem cells (hNTSCs), a subtype of mesenchymal stem cells (MSCs). It aimed to discern how hypoxia affected hNTSC characteristics, proliferation, and differentiation potential compared to hNTSCs cultured under normal oxygen levels. After obtaining hNTSCs from five patients, the samples were divided into hypoxic and normoxic groups. The investigation utilized fluorescence-activated cell sorting (FACS) for surface marker analysis, cell counting kit-8 assays for proliferation assessment, and multiplex immunoassays for cytokine secretion study. Differentiation potential-osteogenic, chondrogenic, and adipogenic-was evaluated via histological examination and gene expression analysis. Results indicated that hNTSCs under hypoxic conditions preserved their characteristic MSC phenotype, as confirmed by FACS analysis demonstrating the absence of hematopoietic markers and presence of MSC markers. Proliferation of hNTSCs remained unaffected by hypoxia. Cytokine expression showed similarity between hypoxic and normoxic groups throughout cultivation. Nevertheless, hypoxic conditions reduced the osteogenic and promoted adipogenic differentiation potential, while chondrogenic differentiation was relatively unchanged. These insights contribute to understanding hNTSC behavior in hypoxic environments, advancing the development of protocols for stem cell therapies and tissue engineering.
Collapse
Affiliation(s)
- Do Hyun Kim
- Department of Otolaryngology—Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.K.); (S.H.K.)
| | - Sun Hong Kim
- Department of Otolaryngology—Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.K.); (S.H.K.)
| | - Sang Hi Park
- Institute of Clinical Medicine Research, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea; (S.H.P.); (M.Y.K.); (C.-Y.L.)
| | - Mi Yeon Kwon
- Institute of Clinical Medicine Research, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea; (S.H.P.); (M.Y.K.); (C.-Y.L.)
| | - Chae-Yoon Lim
- Institute of Clinical Medicine Research, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea; (S.H.P.); (M.Y.K.); (C.-Y.L.)
| | - Sun Hwa Park
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Kihak Gwon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA;
| | - Se Hwan Hwang
- Department of Otolaryngology—Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.K.); (S.H.K.)
| | - Sung Won Kim
- Department of Otolaryngology—Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.K.); (S.H.K.)
| |
Collapse
|
8
|
Mieville V, Griffioen AW, Benamran D, Nowak-Sliwinska P. Advanced in vitro models for renal cell carcinoma therapy design. Biochim Biophys Acta Rev Cancer 2023; 1878:188942. [PMID: 37343729 DOI: 10.1016/j.bbcan.2023.188942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Renal cell carcinoma (RCC) and its principal subtype, clear cell RCC, are the most diagnosed kidney cancer. Despite substantial improvement over the last decades, current pharmacological intervention still fails to achieve long-term therapeutic success. RCC is characterized by a high intra- and inter-tumoral heterogeneity and is heavily influenced by the crosstalk of the cells composing the tumor microenvironment, such as cancer-associated fibroblasts, endothelial cells and immune cells. Moreover, multiple physicochemical properties such as pH, interstitial pressure or oxygenation may also play an important role. These elements are often poorly recapitulated in in vitro models used for drug development. This inadequate recapitulation of the tumor is partially responsible for the current lack of an effective and curative treatment. Therefore, there are needs for more complex in vitro or ex vivo drug screening models. In this review, we discuss the current state-of-the-art of RCC models and suggest strategies for their further development.
Collapse
Affiliation(s)
- Valentin Mieville
- School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; Translational Research Center in Oncohaematology, Geneva, Switzerland
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Daniel Benamran
- Division of Urology, Geneva University Hospitals, Geneva, Switzerland
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; Translational Research Center in Oncohaematology, Geneva, Switzerland.
| |
Collapse
|
9
|
Hammad M, Veyssiere A, Leclercq S, Patron V, Baugé C, Boumédiene K. Hypoxia Differentially Affects Chondrogenic Differentiation of Progenitor Cells from Different Origins. Int J Stem Cells 2023; 16:304-314. [PMID: 37105555 PMCID: PMC10465331 DOI: 10.15283/ijsc21242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 04/29/2023] Open
Abstract
Background and Objectives Ear cartilage malformations are commonly encountered problems in reconstructive surgery, since cartilage has low self-regenerating capacity. Malformations that impose psychological and social burden on one's life are currently treated using ear prosthesis, synthetic implants or autologous flaps from rib cartilage. These approaches are challenging because not only they request high surgical expertise, but also they lack flexibility and induce severe donor-site morbidity. Through the last decade, tissue engineering gained attention where it aims at regenerating human tissues or organs in order to restore normal functions. This technique consists of three main elements, cells, growth factors, and above all, a scaffold that supports cells and guides their behavior. Several studies have investigated different scaffolds prepared from both synthetic or natural materials and their effects on cellular differentiation and behavior. Methods and Results In this study, we investigated a natural scaffold (alginate) as tridimensional hydrogel seeded with progenitors from different origins such as bone marrow, perichondrium and dental pulp. In contact with the scaffold, these cells remained viable and were able to differentiate into chondrocytes when cultured in vitro. Quantitative and qualitative results show the presence of different chondrogenic markers as well as elastic ones for the purpose of ear cartilage, upon different culture conditions. Conclusions We confirmed that auricular perichondrial cells outperform other cells to produce chondrogenic tissue in normal oxygen levels and we report for the first time the effect of hypoxia on these cells. Our results provide updates for cartilage engineering for future clinical applications.
Collapse
Affiliation(s)
- Mira Hammad
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, France
| | - Alexis Veyssiere
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, France
- Service de chirurgie Maxillo-faciale, CHU de Caen, Caen, France
| | - Sylvain Leclercq
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Clinique Saint Martin, Service de Chirurgie Orthopédique, Caen, France
| | - Vincent Patron
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Service ORL et chirurgie cervico-faciale, CHU de Caen, Caen, France
| | - Catherine Baugé
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, France
| | - Karim Boumédiene
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, France
| |
Collapse
|
10
|
Choppa VSR, Kim WK. A Review on Pathophysiology, and Molecular Mechanisms of Bacterial Chondronecrosis and Osteomyelitis in Commercial Broilers. Biomolecules 2023; 13:1032. [PMID: 37509068 PMCID: PMC10377700 DOI: 10.3390/biom13071032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Modern day broilers have a great genetic potential to gain heavy bodyweights with a huge metabolic demand prior to their fully mature ages. Moreover, this made the broilers prone to opportunistic pathogens which may enter the locomotory organs under stress causing bacterial chondronecrosis and osteomyelitis (BCO). Such pathogenic colonization is further accelerated by microfractures and clefts that are formed in the bones due to rapid growth rate of the broilers along with ischemia of blood vessels. Furthermore, there are several pathways which alter bone homeostasis like acute phase response, and intrinsic and extrinsic cell death pathways. In contrast, all the affected birds may not exhibit clinical lameness even with the presence of lameness associated factors causing infection. Although Staphylococcus, E. coli, and Enterococcus are considered as common bacterial pathogens involved in BCO, but there exist several other non-culturable bacteria. Any deviation from maintaining a homeostatic environment in the gut might lead to bacterial translocation through blood followed by proliferation of pathogenic bacteria in respective organs including bones. It is important to alleviate dysbiosis of the blood which is analogous to dysbiosis in the gut. This can be achieved by supplementing pro, pre, and synbiotics which helps in providing a eubiotic environment abating the bacterial translocation that was studied to the incidence of BCO. This review focused on potential and novel biomarkers, pathophysiological mechanism, the economic significance of BCO, immune mechanisms, and miscellaneous factors causing BCO. In addition, the role of gut microbiomes along with their diversity and cell culture models from compact bones of chicken in better understanding of BCO were explored.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Man K, Brunet MY, Lees R, Peacock B, Cox SC. Epigenetic Reprogramming via Synergistic Hypomethylation and Hypoxia Enhances the Therapeutic Efficacy of Mesenchymal Stem Cell Extracellular Vesicles for Bone Repair. Int J Mol Sci 2023; 24:ijms24087564. [PMID: 37108726 PMCID: PMC10142722 DOI: 10.3390/ijms24087564] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising cell population for regenerative medicine applications, where paracrine signalling through the extracellular vesicles (EVs) regulates bone tissue homeostasis and development. MSCs are known to reside in low oxygen tension, which promotes osteogenic differentiation via hypoxia-inducible factor-1α activation. Epigenetic reprogramming has emerged as a promising bioengineering strategy to enhance MSC differentiation. Particularly, the process of hypomethylation may enhance osteogenesis through gene activation. Therefore, this study aimed to investigate the synergistic effects of inducing hypomethylation and hypoxia on improving the therapeutic efficacy of EVs derived from human bone marrow MSCs (hBMSCs). The effects of the hypoxia mimetic agent deferoxamine (DFO) and the DNA methyltransferase inhibitor 5-azacytidine (AZT) on hBMSC viability was assessed by quantifying the DNA content. The epigenetic functionality was evaluated by assessing histone acetylation and histone methylation. hBMSC mineralisation was determined by quantifying alkaline phosphate activity, collagen production and calcium deposition. EVs were procured from AZT, DFO or AZT/DFO-treated hBMSCs over a two-week period, with EV size and concentration defined using transmission electron microscopy, nanoflow cytometry and dynamic light scattering. The effects of AZT-EVs, DFO-EVs or AZT/DFO-EVs on the epigenetic functionality and mineralisation of hBMSCs were evaluated. Moreover, the effects of hBMSC-EVs on human umbilical cord vein endothelial cells (HUVECs) angiogenesis was assessed by quantifying pro-angiogenic cytokine release. DFO and AZT caused a time-dose dependent reduction in hBMSC viability. Pre-treatment with AZT, DFO or AZT/DFO augmented the epigenetic functionality of the MSCs through increases in histone acetylation and hypomethylation. AZT, DFO and AZT/DFO pre-treatment significantly enhanced extracellular matrix collagen production and mineralisation in hBMSCs. EVs derived from AZT/DFO-preconditioned hBMSCs (AZT/DFO-EVs) enhanced the hBMSC proliferation, histone acetylation and hypomethylation when compared to EVs derived from AZT-treated, DFO-treated and untreated hBMSCs. Importantly, AZT/DFO-EVs significantly increased osteogenic differentiation and mineralisation of a secondary hBMSC population. Furthermore, AZT/DFO-EVs enhanced the pro-angiogenic cytokine release of HUVECs. Taken together, our findings demonstrate the considerable utility of synergistically inducing hypomethylation and hypoxia to improve the therapeutic efficacy of the MSC-EVs as a cell-free approach for bone regeneration.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Mathieu Y Brunet
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
13
|
Safitri E, Purnobasuki H, Purnama MTE, Chhetri S. Role of apoptotic inhibitors, viability, and differentiation in low oxygen tension of mesenchymal stem cells cultured in a rat model of ovarian failure. F1000Res 2023; 12:24. [PMID: 38644927 PMCID: PMC11031646 DOI: 10.12688/f1000research.124919.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 04/23/2024] Open
Abstract
Background: Stem cell therapy shows applications potential for malnutrition-induced ovarian failure in rat models. However, it is ineffective because of the lack of viability and differentiation of transplanted stem cells, resulting in low adaptation and survival rates. We aimed to determine whether stem cells cultured under low oxygen (O 2) tension improves the adaptability and viability of stem cells, as well as ovarian failure. Methods: After four days of culturing mesenchymal stem cells (MSCs) in 21% oxygen (normoxia) as the T2 group and 1% oxygen (low O 2 or hypoxia) as the T1 group, 200 million bone marrow-derived MSCs per rat were transplanted into female rats with ovarian failure (15 rats per treatment group). A total of 15 fertile and 15 infertile rats were categorized as the C+ and C- groups, respectively. Results: The slight increase in cells expressing HSP70 (C+, T2, T1, and C- groups were 0.5 a±0.53, 1.7 a±0.82, 6.2 b±1.5, and 9.6 c±1.3, respectively), decrease in cells expressing caspase-3 as an apoptotic inhibitor (C+, T2, T1, and C- groups were 0.2 a±0.42, 0.6 a±0.52, 4.8 b±1.03, and 7.3 c±1.42, respectively), and increase in cells expressing VEGF-1 (C+, T2, T1, and C- groups were 10.8 c±1.55, 8.7 b±0.48, 0.4 a±0.52, and 0.2 a±0.42, respectively) and GDF-9 (C+, T2, T1, and C- groups were 5.8 c±1.47, 4.6 b±0.97, 0.5 a±0.53, and 0.3 a±0.48, respectively) were used as markers for viability and differentiation in ovarian tissue, indicating that MSCs cultured under low O 2 tension were more effective than those cultured under normoxic conditions as a treatment for female rats with ovarian failure. Furthermore, infertile female rats treated with MSCs cultivated under low O 2 tension had an enhanced ovarian tissue shape, as indicated by the increasing Graafian follicle count (C+, T2, T1, and C- groups were 8.9 c±0.74, 4.5 b±0.71, 0.5 a±0.53, and 0.4 a±0.52, respectively). Conclusions: MSCs cultured under low O 2 tension are an effective treatment for malnourished rats with ovarian failure.
Collapse
Affiliation(s)
- Erma Safitri
- Division of Veterinary Reproduction, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Muhammad Thohawi Elziyad Purnama
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Shekhar Chhetri
- Department of Animal Science, College of Natural Resources, Royal University of Bhutan, Lobesa, Punakha, 13001, Bhutan
| |
Collapse
|
14
|
Elhossaini H, Hamad M, Irhimeh MR, Nakhla S, Rajarathnam GP, Abbas A. Combined hypoxia hypercapnia delays apoptosis and maintains CD34 cell surface antigen. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Khanna A, Ayan B, Undieh AA, Yang YP, Huang NF. Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration. J Mol Cell Cardiol 2022; 169:13-27. [PMID: 35569213 PMCID: PMC9385403 DOI: 10.1016/j.yjmcc.2022.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Three-dimensional (3D) bioprinting of cellular or biological components are an emerging field to develop tissue structures that mimic the spatial, mechanochemical and temporal characteristics of cardiovascular tissues. 3D multi-cellular and multi-domain organotypic biological constructs can better recapitulate in vivo physiology and can be utilized in a variety of applications. Such applications include in vitro cellular studies, high-throughput drug screening, disease modeling, biocompatibility analysis, drug testing and regenerative medicine. A major challenge of 3D bioprinting strategies is the inability of matrix molecules to reconstitute the complexity of the extracellular matrix and the intrinsic cellular morphologies and functions. An important factor is the inclusion of a vascular network to facilitate oxygen and nutrient perfusion in scalable and patterned 3D bioprinted tissues to promote cell viability and functionality. In this review, we summarize the new generation of 3D bioprinting techniques, the kinds of bioinks and printing materials employed for 3D bioprinting, along with the current state-of-the-art in engineered cardiovascular tissue models. We also highlight the translational applications of 3D bioprinting in engineering the myocardium cardiac valves, and vascular grafts. Finally, we discuss current challenges and perspectives of designing effective 3D bioprinted constructs with native vasculature, architecture and functionality for clinical translation and cardiovascular regeneration.
Collapse
|
16
|
Tan MI, Alfarafisa NM, Septiani P, Barlian A, Firmansyah M, Faizal A, Melani L, Nugrahapraja H. Potential Cell-Based and Cell-Free Therapy for Patients with COVID-19. Cells 2022; 11:2319. [PMID: 35954162 PMCID: PMC9367488 DOI: 10.3390/cells11152319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Since it was first reported, the novel coronavirus disease 2019 (COVID-19) remains an unresolved puzzle for biomedical researchers in different fields. Various treatments, drugs, and interventions were explored as treatments for COVID. Nevertheless, there are no standard and effective therapeutic measures. Meanwhile, mesenchymal stem cell (MSC) therapy offers a new approach with minimal side effects. MSCs and MSC-based products possess several biological properties that potentially alleviate COVID-19 symptoms. Generally, there are three classifications of stem cell therapy: cell-based therapy, tissue engineering, and cell-free therapy. This review discusses the MSC-based and cell-free therapies for patients with COVID-19, their potential mechanisms of action, and clinical trials related to these therapies. Cell-based therapies involve the direct use and injection of MSCs into the target tissue or organ. On the other hand, cell-free therapy uses secreted products from cells as the primary material. Cell-free therapy materials can comprise cell secretomes and extracellular vesicles. Each therapeutic approach possesses different benefits and various risks. A better understanding of MSC-based and cell-free therapies is essential for supporting the development of safe and effective COVID-19 therapy.
Collapse
Affiliation(s)
- Marselina Irasonia Tan
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Nayla Majeda Alfarafisa
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Popi Septiani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Anggraini Barlian
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Mochamad Firmansyah
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Ahmad Faizal
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Lili Melani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Husna Nugrahapraja
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| |
Collapse
|
17
|
Taurino G, Deshmukh R, Villar VH, Chiu M, Shaw R, Hedley A, Shokry E, Sumpton D, Dander E, D'Amico G, Bussolati O, Tardito S. Mesenchymal stromal cells cultured in physiological conditions sustain citrate secretion with glutamate anaplerosis. Mol Metab 2022; 63:101532. [PMID: 35752287 PMCID: PMC9254159 DOI: 10.1016/j.molmet.2022.101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (MSCs) have immunomodulatory and regenerative potential. However, culture conditions govern their metabolic processes and therapeutic efficacy. Here we show that culturing donor-derived MSCs in Plasmax™, a physiological medium with the concentrations of nutrients found in human plasma, supports their proliferation and stemness, and prevents the nutritional stress induced by the conventional medium DMEM. The quantification of the exchange rates of metabolites between cells and medium, untargeted metabolomics, stable isotope tracing and transcriptomic analysis, performed at physiologically relevant oxygen concentrations (1%O2), reveal that MSCs rely on high rate of glucose to lactate conversion, coupled with parallel anaplerotic fluxes from glutamine and glutamate to support citrate synthesis and secretion. These distinctive traits of MSCs shape the metabolic microenvironment of bone marrow niche and can influence nutrient cross-talks under physiological and pathological conditions.
Collapse
Affiliation(s)
- Giuseppe Taurino
- Laboratory of General Pathology, Dept. of Medicine and Surgery, University of Parma, 43125, Parma, Italy; MRH - Microbiome Research Hub, Parco Area delle Scienze 11/A, University of Parma, 43124 Parma, Italy
| | - Ruhi Deshmukh
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Victor H Villar
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Martina Chiu
- Laboratory of General Pathology, Dept. of Medicine and Surgery, University of Parma, 43125, Parma, Italy
| | - Robin Shaw
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Engy Shokry
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Erica Dander
- Centro Ricerca Tettamanti, Pediatric Dept., University of Milano-Bicocca, Fondazione MBBM, Monza, 20900, Italy
| | - Giovanna D'Amico
- Centro Ricerca Tettamanti, Pediatric Dept., University of Milano-Bicocca, Fondazione MBBM, Monza, 20900, Italy
| | - Ovidio Bussolati
- Laboratory of General Pathology, Dept. of Medicine and Surgery, University of Parma, 43125, Parma, Italy; MRH - Microbiome Research Hub, Parco Area delle Scienze 11/A, University of Parma, 43124 Parma, Italy.
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
18
|
Schumacher A, Roumans N, Rademakers T, Joris V, Eischen-Loges MJ, van Griensven M, LaPointe VL. Enhanced Microvasculature Formation and Patterning in iPSC–Derived Kidney Organoids Cultured in Physiological Hypoxia. Front Bioeng Biotechnol 2022; 10:860138. [PMID: 35782512 PMCID: PMC9240933 DOI: 10.3389/fbioe.2022.860138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Stem cell–derived kidney organoids have been shown to self-organize from induced pluripotent stem cells into most important renal structures. However, the structures remain immature in culture and contain endothelial networks with low connectivity and limited organoid invasion. Furthermore, the nephrons lose their phenotype after approximately 25 days. To become applicable for future transplantation, further maturation in vitro is essential. Since kidneys in vivo develop in hypoxia, we studied the modulation of oxygen availability in culture. We hypothesized that introducing long-term culture at physiological hypoxia, rather than the normally applied non-physiological, hyperoxic 21% O2, could initiate angiogenesis, lead to enhanced growth factor expression and improve the endothelial patterning. We therefore cultured the kidney organoids at 7% O2 instead of 21% O2 for up to 25 days and evaluated nephrogenesis, growth factor expression such as VEGF-A and vascularization. Whole mount imaging revealed a homogenous morphology of the endothelial network with enhanced sprouting and interconnectivity when the kidney organoids were cultured in hypoxia. Three-dimensional vessel quantification confirmed that the hypoxic culture led to an increased average vessel length, likely due to the observed upregulation of VEGFA-189 and VEGFA-121, and downregulation of the antiangiogenic protein VEGF-A165b measured in hypoxia. This research indicates the importance of optimization of oxygen availability in organoid systems and the potential of hypoxic culture conditions in improving the vascularization of organoids.
Collapse
Affiliation(s)
- Anika Schumacher
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Nadia Roumans
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Timo Rademakers
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Virginie Joris
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Maria José Eischen-Loges
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Martijn van Griensven
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Vanessa L.S. LaPointe
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- *Correspondence: Vanessa L.S. LaPointe,
| |
Collapse
|
19
|
Dogan F, Aljumaily RMK, Kitchen M, Forsyth NR. Physoxia Influences Global and Gene-Specific Methylation in Pluripotent Stem Cells. Int J Mol Sci 2022; 23:5854. [PMID: 35628663 PMCID: PMC9148100 DOI: 10.3390/ijms23105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Pluripotent stem cells (PSC) possess unlimited proliferation, self-renewal, and a differentiation capacity spanning all germ layers. Appropriate culture conditions are important for the maintenance of self-renewal, pluripotency, proliferation, differentiation, and epigenetic states. Oxygen concentrations vary across different human tissues depending on precise cell location and proximity to vascularisation. The bulk of PSC culture-based research is performed in a physiologically hyperoxic, air oxygen (21% O2) environment, with numerous reports now detailing the impact of a physiologic normoxia (physoxia), low oxygen culture in the maintenance of stemness, survival, morphology, proliferation, differentiation potential, and epigenetic profiles. Epigenetic mechanisms affect multiple cellular characteristics including gene expression during development and cell-fate determination in differentiated cells. We hypothesized that epigenetic marks are responsive to a reduced oxygen microenvironment in PSCs and their differentiation progeny. Here, we evaluated the role of physoxia in PSC culture, the regulation of DNA methylation (5mC (5-methylcytosine) and 5hmC (5-hydroxymethylcytosine)), and the expression of regulatory enzyme DNMTs and TETs. Physoxia enhanced the functional profile of PSC including proliferation, metabolic activity, and stemness attributes. PSCs cultured in physoxia revealed the significant downregulation of DNMT3B, DNMT3L, TET1, and TET3 vs. air oxygen, accompanied by significantly reduced 5mC and 5hmC levels. The downregulation of DNMT3B was associated with an increase in its promoter methylation. Coupled with the above, we also noted decreased HIF1A but increased HIF2A expression in physoxia-cultured PSCs versus air oxygen. In conclusion, PSCs display oxygen-sensitive methylation patterns that correlate with the transcriptional and translational regulation of the de novo methylase DNMT3B.
Collapse
Affiliation(s)
- Fatma Dogan
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK; (F.D.); (M.K.)
| | - Rakad M. Kh Aljumaily
- Department of Biology, College of Science, University of Baghdad, Baghdad 17635, Iraq;
| | - Mark Kitchen
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK; (F.D.); (M.K.)
| | - Nicholas R. Forsyth
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK; (F.D.); (M.K.)
| |
Collapse
|
20
|
Pajčin I, Knežić T, Savic Azoulay I, Vlajkov V, Djisalov M, Janjušević L, Grahovac J, Gadjanski I. Bioengineering Outlook on Cultivated Meat Production. MICROMACHINES 2022; 13:402. [PMID: 35334693 PMCID: PMC8950996 DOI: 10.3390/mi13030402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Cultured meat (also referred to as cultivated meat or cell-based meat)-CM-is fabricated through the process of cellular agriculture (CA), which entails application of bioengineering, i.e., tissue engineering (TE) principles to the production of food. The main TE principles include usage of cells, grown in a controlled environment provided by bioreactors and cultivation media supplemented with growth factors and other needed nutrients and signaling molecules, and seeded onto the immobilization elements-microcarriers and scaffolds that provide the adhesion surfaces necessary for anchor-dependent cells and offer 3D organization for multiple cell types. Theoretically, many solutions from regenerative medicine and biomedical engineering can be applied in CM-TE, i.e., CA. However, in practice, there are a number of specificities regarding fabrication of a CM product that needs to fulfill not only the majority of functional criteria of muscle and fat TE, but also has to possess the sensory and nutritional qualities of a traditional food component, i.e., the meat it aims to replace. This is the reason that bioengineering aimed at CM production needs to be regarded as a specific scientific discipline of a multidisciplinary nature, integrating principles from biomedical engineering as well as from food manufacturing, design and development, i.e., food engineering. An important requirement is also the need to use as little as possible of animal-derived components in the whole CM bioprocess. In this review, we aim to present the current knowledge on different bioengineering aspects, pertinent to different current scientific disciplines but all relevant for CM engineering, relevant for muscle TE, including different cell sources, bioreactor types, media requirements, bioprocess monitoring and kinetics and their modifications for use in CA, all in view of their potential for efficient CM bioprocess scale-up. We believe such a review will offer a good overview of different bioengineering strategies for CM production and will be useful to a range of interested stakeholders, from students just entering the CA field to experienced researchers looking for the latest innovations in the field.
Collapse
Affiliation(s)
- Ivana Pajčin
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ivana Savic Azoulay
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Vanja Vlajkov
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Jovana Grahovac
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| |
Collapse
|
21
|
Alagesan S, Brady J, Byrnes D, Fandiño J, Masterson C, McCarthy S, Laffey J, O’Toole D. Enhancement strategies for mesenchymal stem cells and related therapies. Stem Cell Res Ther 2022; 13:75. [PMID: 35189962 PMCID: PMC8860135 DOI: 10.1186/s13287-022-02747-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/05/2022] [Indexed: 12/14/2022] Open
Abstract
Cell therapy, particularly mesenchymal stem/stromal (MSC) therapy, has been investigated for a wide variety of disease indications, particularly those with inflammatory pathologies. However, recently it has become evident that the MSC is far from a panacea. In this review we will look at current and future strategies that might overcome limitations in efficacy. Many of these take their inspiration from stem cell niche and the mechanism of MSC action in response to the injury microenvironment, or from previous gene therapy work which can now benefit from the added longevity and targeting ability of a live cell vector. We will also explore the nascent field of extracellular vesicle therapy and how we are already seeing enhancement protocols for this exciting new drug. These enhanced MSCs will lead the way in more difficult to treat diseases and restore potency where donors or manufacturing practicalities lead to diminished MSC effect.
Collapse
|
22
|
Hamid HA, Sarmadi VH, Prasad V, Ramasamy R, Miskon A. Electromagnetic field exposure as a plausible approach to enhance the proliferation and differentiation of mesenchymal stem cells in clinically relevant scenarios. J Zhejiang Univ Sci B 2022; 23:42-57. [PMID: 35029087 PMCID: PMC8758935 DOI: 10.1631/jzus.b2100443] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has been regarded as one of the most revolutionary breakthroughs in the history of modern medicine owing to its myriad of immunoregulatory and regenerative properties. With the rapid progress in the fields of osteo- and musculoskeletal therapies, the demand for MSC-based treatment modalities is becoming increasingly prominent. In this endeavor, researchers around the world have devised new and innovative techniques to support the proliferation of MSCs while minimizing the loss of hallmark features of stem cells. One such example is electromagnetic field (EMF) exposure, which is an alternative approach with promising potential. In this review, we present a critical discourse on the efficiency, practicability, and limitations of some of the relevant methods, with insurmountable evidence backing the implementation of EMF as a feasible strategy for the clinically relevant expansion of MSCs.
Collapse
Affiliation(s)
- Haslinda Abdul Hamid
- Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran 144961 4535, Iran.,Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran 199671 4353, Iran
| | - Vivek Prasad
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia
| | - Rajesh Ramasamy
- Stem Cell and Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia
| | - Azizi Miskon
- Bio-artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
23
|
Ye Y, Zhao X, Xu Y, Yu J. Hypoxia-Inducible Non-coding RNAs in Mesenchymal Stem Cell Fate and Regeneration. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.799716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into multiple cell lines, which makes them an important source of cells for tissue engineering applications. They are defined by the capability to renew themselves and maintain pluripotency. This ability is modulated by the balance between complex cues from cellular microenvironment. Self-renewal and differentiation abilities are regulated by particular microenvironmental signals. Oxygen is considered to be an important part of cell microenvironment, which not only acts as a metabolic substrate but also a signal molecule. It has been proved that MSCs are hypoxic in the physiological environment. Signals from MSCs' microenvironment or niche which means the anatomical location of the MSCs, maintain the final properties of MSCs. Physiological conditions like oxygen tension are deemed to be a significant part of the mesenchymal stem cell niche, and have been proved to be involved in modulating embryonic and adult MSCs. Non-coding RNAs (ncRNAs), which play a key role in cell signal transduction, transcription and translation of genes, have been widely concerned as epigenetic regulators in a great deal of tissues. With the rapid development of bioinformatics analysis tools and high-throughput RNA sequencing technology, more and more evidences show that ncRNAs play a key role in tissue regeneration. It shows potential as a biomarker of MSC differentiation. In this paper, we reviewed the physiological correlation of hypoxia as a unique environmental parameter which is conducive to MSC expansion and maintenance, discussed the correlation of tissue engineering, and summarized the influence of hypoxia related ncRNAs on MSCs' fate and regeneration. This review will provide reference for future research of MSCs' regeneration.
Collapse
|
24
|
Epigenetic features in regulation of telomeres and telomerase in stem cells. Emerg Top Life Sci 2021; 5:497-505. [PMID: 34486664 DOI: 10.1042/etls20200344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 01/12/2023]
Abstract
The epigenetic nature of telomeres is still controversial and different human cell lines might show diverse histone marks at telomeres. Epigenetic modifications regulate telomere length and telomerase activity that influence telomere structure and maintenance. Telomerase is responsible for telomere elongation and maintenance and is minimally composed of the catalytic protein component, telomerase reverse transcriptase (TERT) and template forming RNA component, telomerase RNA (TERC). TERT promoter mutations may underpin some telomerase activation but regulation of the gene is not completely understood due to the complex interplay of epigenetic, transcriptional, and posttranscriptional modifications. Pluripotent stem cells (PSCs) can maintain an indefinite, immortal, proliferation potential through their endogenous telomerase activity, maintenance of telomere length, and a bypass of replicative senescence in vitro. Differentiation of PSCs results in silencing of the TERT gene and an overall reversion to a mortal, somatic cell phenotype. The precise mechanisms for this controlled transcriptional silencing are complex. Promoter methylation has been suggested to be associated with epigenetic control of telomerase regulation which presents an important prospect for understanding cancer and stem cell biology. Control of down-regulation of telomerase during differentiation of PSCs provides a convenient model for the study of its endogenous regulation. Telomerase reactivation has the potential to reverse tissue degeneration, drive repair, and form a component of future tissue engineering strategies. Taken together it becomes clear that PSCs provide a unique system to understand telomerase regulation fully and drive this knowledge forward into aging and therapeutic application.
Collapse
|
25
|
Balaian E, Wobus M, Bornhäuser M, Chavakis T, Sockel K. Myelodysplastic Syndromes and Metabolism. Int J Mol Sci 2021; 22:ijms222011250. [PMID: 34681910 PMCID: PMC8541058 DOI: 10.3390/ijms222011250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/01/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are acquired clonal stem cell disorders exhibiting ineffective hematopoiesis, dysplastic cell morphology in the bone marrow, and peripheral cytopenia at early stages; while advanced stages carry a high risk for transformation into acute myeloid leukemia (AML). Genetic alterations are integral to the pathogenesis of MDS. However, it remains unclear how these genetic changes in hematopoietic stem and progenitor cells (HSPCs) occur, and how they confer an expansion advantage to the clones carrying them. Recently, inflammatory processes and changes in cellular metabolism of HSPCs and the surrounding bone marrow microenvironment have been associated with an age-related dysfunction of HSPCs and the emergence of genetic aberrations related to clonal hematopoiesis of indeterminate potential (CHIP). The present review highlights the involvement of metabolic and inflammatory pathways in the regulation of HSPC and niche cell function in MDS in comparison to healthy state and discusses how such pathways may be amenable to therapeutic interventions.
Collapse
Affiliation(s)
- Ekaterina Balaian
- Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.W.); (M.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: (E.B.); (K.S.)
| | - Manja Wobus
- Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.W.); (M.B.)
| | - Martin Bornhäuser
- Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.W.); (M.B.)
- National Center for Tumor Diseases, Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Triantafyllos Chavakis
- National Center for Tumor Diseases, Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Katja Sockel
- Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.W.); (M.B.)
- Correspondence: (E.B.); (K.S.)
| |
Collapse
|
26
|
Sikora B, Skubis-Sikora A, Prusek A, Gola J. Paracrine activity of adipose derived stem cells on limbal epithelial stem cells. Sci Rep 2021; 11:19956. [PMID: 34620960 PMCID: PMC8497478 DOI: 10.1038/s41598-021-99435-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cells deficiency (LSCD) is an eye disease caused by the loss of stem cells in the corneal limbus as a succession of an injury due physical, biological, or chemical agents. Current therapies of LSCD are focused on the transplantation of donor corneas or tissue equivalents produced from autologous limbal stem cells. Every year there are waiting millions of patients for the cornea transplantation all over the world and the list is growing due to the relatively low number of cornea donors. On the other hand, the transplantation of tissue or cells into the recipient’s body is associated with the higher risk of possible side effects. The possibility of the application of an indirect treatment using the properties of the paracrine activity of stem cells, would be beneficial for the patients with transplant failures. This study was to evaluate the paracrine effect of mesenchymal stem cells derived from adipose tissue (ADSC) on the viability of limbal epithelial stem cells (LESC). The paracrine effect was assessed by treating LESC with conditioned medium collected from ADSC culture. Cell viability, cytotoxicity, apoptosis and proliferation were evaluated using in vitro assays in standard conditions and induced inflammation. After the exposure to the examined conditions, the expression of genes related to pro- and anti- inflammatory factors was evaluated and compared to the secretion of selected cytokines by ELISA test. Moreover, the changes in LESC phenotype were assessed using of phenotype microarrays. Our findings suggest that paracrine activity of ADSC on LESC promotes its proliferation and has a potential role in mitigation of the adverse impact of inflammation induced by lipopolysaccharide.
Collapse
Affiliation(s)
- Bartosz Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, ul. Medyków 18, C2/103, 40-752, Katowice, Poland.
| | - Aleksandra Skubis-Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, ul. Medyków 18, C2/103, 40-752, Katowice, Poland
| | - Agnieszka Prusek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, ul. Medyków 18, C2/103, 40-752, Katowice, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
27
|
Characterization of Scleraxis and SRY-Box 9 from Adipose-Derived Stem Cells Culture Seeded with Enthesis Scaffold in Hypoxic Condition. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2021. [DOI: 10.4028/www.scientific.net/jbbbe.52.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of mesenchymal stem cells can add local improvements potential to enthesis tissue regeneration based on tropical activity through secretions of growth factors, cytokines, and vesicles (e.g. exosomes), collectively known as secretomes. This study aims to analyze secretomes characterization from adipose-derived mesenchymal stem cells seeded with enthesis tissue scaffold in hypoxic conditions and to analyze the influence of hypoxic environment to the characterization of secretomes. This is an in-vitro study using a Randomized Control Group Post-Test Only design. This study using Adipose Stem Cells (ASCs) were cultured in hypoxia (Oxygen 5%) and Normoxia (21%) condition. The scaffolds are fresh-frozen enthesis tissue and was seeded in the treatment group and compared to control. The evaluation of Scleraxis (Scx) and SRY-box (Sox9) was measured using ELISA on the 2nd, 4th, and 6th days. Comparison of Scx levels between each evaluation time showed a positive trend in a group with scaffold in hypoxia condition although it has no significant differences (p=0.085), with the highest level on day 6, that is 13,568 ng/ml. Conversely, the comparison of Sox9 showed significant differences (p=0.02) in a group with scaffold in hypoxia condition, with the highest level on day 4, that is 28,250 ng/ml. The use of enthesis scaffold seeded in adipose-derived mesenchymal stem cells in hypoxic conditions shows a positive trend as regenerative effort of injured enthesis tissue through Scleraxis and Sox9 secretomes induction.
Collapse
|
28
|
Zayed M, Iohara K, Watanabe H, Ishikawa M, Tominaga M, Nakashima M. Characterization of stable hypoxia-preconditioned dental pulp stem cells compared with mobilized dental pulp stem cells for application for pulp regenerative therapy. Stem Cell Res Ther 2021; 12:302. [PMID: 34051821 PMCID: PMC8164249 DOI: 10.1186/s13287-021-02240-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Dental pulp stem cells (DPSCs) have been developed as a potential source of mesenchymal stem cells (MSCs) for regeneration of dental pulp and other tissues. However, further strategies to isolate highly functional DPSCs beyond the colony-forming methods are required. We have demonstrated the safety and efficacy of DPSCs isolated by G-CSF-induced mobilization and cultured under normoxia (mobilized DPSCs, MDPSCs) for pulp regeneration. The device for isolation of MDPSCs, however, is not cost-effective and requires a prolonged cell culture period. It is well known that MSCs cultured under hypoxic-preconditions improved MSC proliferation activity and stemness. Therefore, in this investigation, we attempted to improve the clinical utility of DPSCs by hypoxia-preconditioned DPSCs (hpDPSCs) compared with MDPSCs to improve the potential clinical utility for pulp regeneration in endodontic dentistry. Methods Colony-forming DPSCs were isolated and preconditioned with hypoxia in a stable closed cultured system and compared with MDPSCs isolated from the individual dog teeth. We examined the proliferation rate, migration potential, anti-apoptotic activity, and gene expression of the stem cell markers and angiogenic/neurotrophic factors. Trophic effects of the conditioned medium (CM) were also evaluated. In addition, the expression of immunomodulatory molecules upon stimulation with IFN-γ was investigated. The pulp regenerative potential and transplantation safety of hpDPSCs were further assessed in pulpectomized teeth in dogs by histological and immunohistochemical analyses and by chemistry of the blood and urine tests. Results hpDPSCs demonstrated higher proliferation rate and expression of a major regulator of oxygen homeostasis, HIF-1α, and a stem cell marker, CXCR-4. The direct migratory activity of hpDPSCs in response to G-CSF was significantly higher than MDPSCs. The CM of hpDPSCs stimulated neurite extension. However, there were no changes in angiogenic, migration, and anti-apoptotic activities compared with the CM of MDPSCs. The expression of immunomodulatory gene, PTGE was significantly upregulated by IFN gamma in hpDPSCs compared with MDPSCs. However, no difference in nitric oxide was observed. The regenerated pulp tissue was quantitatively and qualitatively similar in hpDPSC transplants compared with MDPSC transplants in dog teeth. There was no evidence of toxicity or adverse events of the hpDPSC transplantation. Conclusions These results demonstrated that the efficacy of hpDPSCs for pulp regeneration was identical, although hpDPSCs improved stem cell properties compared to MDPSCs, suggesting their potential clinical utility for pulp regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02240-w.
Collapse
Affiliation(s)
- Mohammed Zayed
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan.,Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Koichiro Iohara
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Mami Ishikawa
- Air Water Group, Aeras Bio Inc., Kobe, Hyogo, 650-047, Japan
| | - Michiyo Tominaga
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Misako Nakashima
- Research Institute, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan. .,Air Water Group, Aeras Bio Inc., Kobe, Hyogo, 650-047, Japan.
| |
Collapse
|
29
|
Lineweaver CH, Bussey KJ, Blackburn AC, Davies PCW. Cancer progression as a sequence of atavistic reversions. Bioessays 2021; 43:e2000305. [PMID: 33984158 DOI: 10.1002/bies.202000305] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/27/2022]
Abstract
It has long been recognized that cancer onset and progression represent a type of reversion to an ancestral quasi-unicellular phenotype. This general concept has been refined into the atavistic model of cancer that attempts to provide a quantitative analysis and testable predictions based on genomic data. Over the past decade, support for the multicellular-to-unicellular reversion predicted by the atavism model has come from phylostratigraphy. Here, we propose that cancer onset and progression involve more than a one-off multicellular-to-unicellular reversion, and are better described as a series of reversionary transitions. We make new predictions based on the chronology of the unicellular-eukaryote-to-multicellular-eukaryote transition. We also make new predictions based on three other evolutionary transitions that occurred in our lineage: eukaryogenesis, oxidative phosphorylation and the transition to adaptive immunity. We propose several modifications to current phylostratigraphy to improve age resolution to test these predictions. Also see the video abstract here: https://youtu.be/3unEu5JYJrQ.
Collapse
Affiliation(s)
- Charles H Lineweaver
- Planetary Science Institute, Research School of Astronomy and Astrophysics & Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia.,Mt Stromlo Observatory, Canberra, ACT, Australia
| | - Kimberly J Bussey
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA.,Precision Medicine, Midwestern University, Glendale, Arizona, USA
| | - Anneke C Blackburn
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Paul C W Davies
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
30
|
Wang JP, Liao YT, Wu SH, Huang HK, Chou PH, Chiang ER. Adipose Derived Mesenchymal Stem Cells from a Hypoxic Culture Reduce Cartilage Damage. Stem Cell Rev Rep 2021; 17:1796-1809. [PMID: 33893621 DOI: 10.1007/s12015-021-10169-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/26/2022]
Abstract
The method to benifit tissue engineering of adipose-derived stem cells (ADSCs) to cartilage has been an objective of intense research in treating increasing cartilage-related disease. In this study, whether hypoxic expansion would enhance the proliferation and in vitro chondrogenic differentiation of ADSCs was studied, and then hypoxic expansion was applied to reduce cartilage damage in a rat model in vivo. Hypoxic expansion increased the proliferation and decreased the expression of aging-related genes, including p16, p21, and p53, of human ADSCs in comparison with normoxic expansion. In addition, the γH2AX expression was reduced in the hypoxic ADSCs. The chondrogenic markers were enhanced in the hypoxic ADSC differentiated chondrogenic pellets, including SOX9 on day 7 and gene expressions of COL 2 and COL 10 on day 21. To determine the in vitro chondrogenic differentiation potential of ADSCs, ADSC differentiated 21-day chondrogenic pellets were stained by Alcian blue staining and the immunostaining of COL 2 and COL 10, the results of which confirmed the enhancement of differentiation potential after the hypoxic expansion. Moreover, cartilage injury in a rat model was reduced by hypoxic ADSC treatment that was determined by histological and immunohistochemical staining detections. The effects of hypoxic expansion of ADSCs and bone marrow-derived stem cells (BMSCs) on chondrogenic differentiation potential were also compared. Smaller sizes were presented in the in vitro hypoxic BMSC differentiated chondrogenic pellets, whereas the chondrogenic marker expressions were significantly higher than those of the hypoxic ADSCs. However, there was no significant difference between the treatments of the hypoxic ADSCs and BMSCs in the cartilage injury in vivo. In conclusion, hypoxic expansion increases the chondrogenic differentiation potential of ADSCs and BMSCs in vitro and enhances them to reduce cartilage damage in vivo. Although the hypoxic BMSCs showed compact chondrogenic pellet formation and higher potential of chondrogenesis, the easy access and large resources of ADSCs still uplifted the application.
Collapse
Affiliation(s)
- Jung-Pan Wang
- School of Medicine, Department of Surgery, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Yu-Ting Liao
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Szu-Hsien Wu
- School of Medicine, Department of Surgery, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Surgery, Division of Plastic and Reconstructive Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Kuang Huang
- School of Medicine, Department of Surgery, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Orthopaedics, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan.,Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Po-Hsin Chou
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - En-Rung Chiang
- School of Medicine, Department of Surgery, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Kim H, Kwon S. Dual effects of hypoxia on proliferation and osteogenic differentiation of mouse clonal mesenchymal stem cells. Bioprocess Biosyst Eng 2021; 44:1831-1839. [PMID: 33821326 DOI: 10.1007/s00449-021-02563-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/28/2021] [Indexed: 11/30/2022]
Abstract
Mouse clonal mesenchymal stem cells (mc-MSCs) were cultured on a Cytodex 3 microcarrier in a spinner flask for a suspension culture under hypoxia condition to increase mass productivity. The hypoxia environment was established using 4.0 mM Na2SO3 with 10 μM or 100 µM CoCl2 for 24 h in a low glucose DMEM medium. As a result, the proliferation of mc-MSCs under hypoxic conditions was 1.56 times faster than the control group over 7 days. The gene expression of HIF-1a and VEGFA increased 4.62 fold and 2.07 fold, respectively. Furthermore, the gene expression of ALP, RUNX2, COL1A, and osteocalcin increased significantly by 9.55, 1.55, 2.29, and 2.53 times, respectively. In contrast, the expression of adipogenic differentiation markers, such as PPAR-γ and FABP4, decreased. These results show that the hypoxia environment produced by these chemicals in a suspension culture increases the proliferation of mc-MSCs and promotes the osteogenic differentiation of mc-MSCs.
Collapse
Affiliation(s)
- Hyoungki Kim
- Department of Biological Engineering, Inha University, Incheon, 22212, Korea.,Department of Biological Sciences and Biongineering, Inha University, Incheon, 22212, Korea
| | - Soonjo Kwon
- Department of Biological Engineering, Inha University, Incheon, 22212, Korea. .,Department of Biological Sciences and Biongineering, Inha University, Incheon, 22212, Korea.
| |
Collapse
|
32
|
Artemisinin protects DPSC from hypoxia and TNF-α mediated osteogenesis impairments through CA9 and Wnt signaling pathway. Life Sci 2021; 277:119471. [PMID: 33811898 DOI: 10.1016/j.lfs.2021.119471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/19/2021] [Accepted: 03/27/2021] [Indexed: 02/08/2023]
Abstract
Dental pulp stem cells (DPSCs) possess the ability of multi-lineage differentiation, and are excellent sources of tissue engineering and regenerative medicine. Oxygen concentration and inflammation are two critical environmental factors that affect the osteogenic differentiation of DPSCs. We aimed to study the role of the antimalarial drug artemisinin on the osteogenic differentiation of human DPSCs under the hypoxia and inflammation conditions. We demonstrated that hypoxia (5% O2) and inflammation (20 ng/mL TNF-α), alone or in combination, significantly diminished in vitro cell survival and increased apoptotic rates. Notably, hypoxia and TNF-α exerted accumulative effect in suppressing the osteogenic differentiation of DPSCs, as evidenced by reduced expression levels of osteogenesis-associated genes including ALP, RUNX2 and OCN in osteogenic condition, as well as reduced mineral nodules formation as indicated by alizarin red staining. Artemisinin at the dose of 40 μM markedly reversed the suppression in cell survival caused by hypoxia or inflammation, and reduced apoptotic rates and the expressions of pro-apoptotic proteins. Additionally, artemisinin restored osteogenic differentiation of DPSCs under the hypoxia or/and inflammation conditions. Moreover, the beneficial effect of artemisinin was dependent on upregulated expression of CA9 and CA9-mediated antioxidant responses, as CA9 knockdown abolished the protective role of artemisinin on DPSC osteogenesis. Furthermore, while hypoxia or/and inflammation significantly inactivated the Wnt/β-catenin signaling in DPSCs, additional exposure to artemisinin re-activated this pathway to promote osteogenic differentiation of DPSCs. Our results provide novel insight on the link between artemisinin and DPSC osteogenesis, and suggest promising artemisinin-based strategies for better dentin/pulp tissue engineering.
Collapse
|
33
|
Jeske R, Yuan X, Fu Q, Bunnell BA, Logan TM, Li Y. In Vitro Culture Expansion Shifts the Immune Phenotype of Human Adipose-Derived Mesenchymal Stem Cells. Front Immunol 2021; 12:621744. [PMID: 33777002 PMCID: PMC7988085 DOI: 10.3389/fimmu.2021.621744] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem or stromal cells (hMSCs) are known for their potential in regenerative medicine due to their differentiation abilities, secretion of trophic factors, and regulation of immune responses in damaged tissues. Due to the limited quantity of hMSCs typically isolated from bone marrow, other tissue sources, such as adipose tissue-derived mesenchymal stem cells (hASCs), are considered a promising alternative. However, differences have been observed for hASCs in the context of metabolic characteristics and response to in vitro culture stress compared to bone marrow derived hMSCs (BM-hMSCs). In particular, the relationship between metabolic homeostasis and stem cell functions, especially the immune phenotype and immunomodulation of hASCs, remains unknown. This study thoroughly assessed the changes in metabolism, redox cycles, and immune phenotype of hASCs during in vitro expansion. In contrast to BM-hMSCs, hASCs did not respond to culture stress significantly during expansion as limited cellular senescence was observed. Notably, hASCs exhibited the increased secretion of pro-inflammatory cytokines and the decreased secretion of anti-inflammatory cytokines after extended culture expansion. The NAD+/NADH redox cycle and other metabolic characteristics associated with aging were relatively stable, indicating that hASC functional decline may be regulated through an alternative mechanism rather than NAD+/Sirtuin aging pathways as observed in BM-hMSCs. Furthermore, transcriptome analysis by mRNA-sequencing revealed the upregulation of genes for pro-inflammatory cytokines/chemokines and the downregulation of genes for anti-inflammatory cytokines for hASCs at high passage. Proteomics analysis indicated key pathways (e.g., tRNA charging, EIF2 signaling, protein ubiquitination pathway) that may be associated with the immune phenotype shift of hASCs. Together, this study advances our understanding of the metabolism and senescence of hASCs and may offer vital insights for the biomanufacturing of hASCs for clinical use.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | - Xuegang Yuan
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States.,The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, United States
| | - Qin Fu
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | - Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Timothy M Logan
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States
| | - Yan Li
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
34
|
Samal JRK, Rangasami VK, Samanta S, Varghese OP, Oommen OP. Discrepancies on the Role of Oxygen Gradient and Culture Condition on Mesenchymal Stem Cell Fate. Adv Healthc Mater 2021; 10:e2002058. [PMID: 33533187 PMCID: PMC11469238 DOI: 10.1002/adhm.202002058] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, mesenchymal stem (or stromal) cells (MSCs) have garnered enormous interest due to their therapeutic value especially for their multilineage differentiation potential leading to regenerative medicine applications. MSCs undergo physiological changes upon in vitro expansion resulting in expression of different receptors, thereby inducing high variabilities in therapeutic efficacy. Therefore, understanding the biochemical cues that influence the native local signals on differentiation or proliferation of these cells is very important. There have been several reports that in vitro culture of MSCs in low oxygen gradient (or hypoxic conditions) upregulates the stemness markers and promotes cell proliferation in an undifferentiated state, as hypoxia mimics the conditions the progenitor cells experience within the tissue. However, different studies report different oxygen gradients and culture conditions causing ambiguity in their interpretation of the results. In this progress report, it is aimed to summarize recent studies in the field with specific focus on conflicting results reported during the application of hypoxic conditions for improving the proliferation or differentiation of MSCs. Further, it is tried to decipher the factors that can affect characteristics of MSC under hypoxia and suggest a few techniques that could be combined with hypoxic cell culture to better recapitulate the MSC tissue niche.
Collapse
Affiliation(s)
- Jay R. K. Samal
- Department of Instructive Biomaterial EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Vignesh K. Rangasami
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| | - Sumanta Samanta
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| | - Oommen P. Varghese
- Translational Chemical Biology LaboratoryDepartment of Chemistry, Polymer ChemistryÅngström LaboratoryUppsala UniversityUppsala751 21Sweden
| | - Oommen P. Oommen
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| |
Collapse
|
35
|
Fu L, Zhang L, Zhang X, Chen L, Cai Q, Yang X. Roles of oxygen level and hypoxia-inducible factor signaling pathway in cartilage, bone and osteochondral tissue engineering. Biomed Mater 2021; 16:022006. [PMID: 33440367 DOI: 10.1088/1748-605x/abdb73] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The repair and treatment of articular cartilage injury is a huge challenge of orthopedics. Currently, most of the clinical methods applied in treating cartilage injuries are mainly to relieve pains rather than to cure them, while the strategy of tissue engineering is highly expected to achieve the successful repair of osteochondral defects. Clear understandings of the physiological structures and mechanical properties of cartilage, bone and osteochondral tissues have been established, but the understanding of their physiological heterogeneity still needs further investigation. Apart from the gradients in the micromorphology and composition of cartilage-to-bone extracellular matrixes, an oxygen gradient also exists in natural osteochondral tissue. The response of hypoxia-inducible factor (HIF)-mediated cells to oxygen would affect the differentiation of stem cells and the maturation of osteochondral tissue. This article reviews the roles of oxygen level and HIF signaling pathway in the development of articular cartilage tissue, and their prospective applications in bone and cartilage tissue engineering. The strategies for regulating HIF signaling pathway and how these strategies finding their potential applications in the regeneration of integrated osteochondral tissue are also discussed.
Collapse
Affiliation(s)
- Lei Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Dong L, Wang Y, Zheng T, Pu Y, Ma Y, Qi X, Zhang W, Xue F, Shan Z, Liu J, Wang X, Mao C. Hypoxic hUCMSC-derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice. Stem Cell Res Ther 2021; 12:4. [PMID: 33407872 PMCID: PMC7789736 DOI: 10.1186/s13287-020-02072-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND As one of the main functional forms of mesenchymal stem cells (MSCs), MSC-derived extracellular vesicles (MSC-EVs) have shown an alternative therapeutic option in experimental models of allergic asthma. Oxygen concentration plays an important role in the self-renewal, proliferation, and EV release of MSCs and a recent study found that the anti-asthma effect of MSCs was enhanced by culture in hypoxic conditions. However, the potential of hypoxic MSC-derived EVs (Hypo-EVs) in asthma is still unknown. METHODS BALB/c female mice were sensitized and challenged with ovalbumin (OVA), and each group received PBS, normoxic human umbilical cord MSC-EVs (Nor-EVs), or Hypo-EVs weekly. After treatment, the animals were euthanized, and their lungs and bronchoalveolar lavage fluid (BALF) were collected. With the use of hematoxylin and eosin (HE), periodic acid-Schiff (PAS) and Masson's trichrome staining, enzyme-linked immune sorbent assay (ELISA), Western blot analysis, and real-time PCR, the inflammation and collagen fiber content of airways and lung parenchyma were investigated. RESULTS Hypoxic environment can promote human umbilical cord MSCs (hUCMSCs) to release more EVs. In OVA animals, the administration of Nor-EVs or Hypo-EVs significantly ameliorated the BALF total cells, eosinophils, and pro-inflammatory mediators (IL-4 and IL-13) in asthmatic mice. Moreover, Hypo-EVs were generally more potent than Nor-EVs in suppressing airway inflammation in asthmatic mice. Compared with Nor-EVs, Hypo-EVs further prevented mouse chronic allergic airway remodeling, concomitant with the decreased expression of pro-fibrogenic markers α-smooth muscle actin (α-SMA), collagen-1, and TGF-β1-p-smad2/3 signaling pathway. In vitro, Hypo-EVs decreased the expression of p-smad2/3, α-SMA, and collagen-1 in HLF-1 cells (human lung fibroblasts) stimulated by TGF-β1. In addition, we showed that miR-146a-5p was enriched in Hypo-EVs compared with that in Nor-EVs, and Hypo-EV administration unregulated the miR-146a-5p expression both in asthma mice lung tissues and in TGF-β1-treated HLF-1. More importantly, decreased miR-146a-5p expression in Hypo-EVs impaired Hypo-EV-mediated lung protection in OVA mice. CONCLUSION Our findings provided the first evidence that hypoxic hUCMSC-derived EVs attenuated allergic airway inflammation and airway remodeling in chronic asthma mice, potentially creating new avenues for the treatment of asthma.
Collapse
Affiliation(s)
- Liyang Dong
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| | - Ying Wang
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, 223002, People's Republic of China
| | - Tingting Zheng
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Yanan Pu
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yongbin Ma
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.,Department of Neurology Laboratory, The Affiliated Jintan Hospital of Jiangsu University, Jintan, Jiangsu, 213200, People's Republic of China
| | - Xin Qi
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Wenzhe Zhang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Fei Xue
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Zirui Shan
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Jiameng Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Xuefeng Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China. .,Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| |
Collapse
|
37
|
Differentiation Potential of Early- and Late-Passage Adipose-Derived Mesenchymal Stem Cells Cultured under Hypoxia and Normoxia. Stem Cells Int 2020; 2020:8898221. [PMID: 33014073 PMCID: PMC7519987 DOI: 10.1155/2020/8898221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
With an increasing focus on the large-scale expansion of mesenchymal stem cells (MSCs) required for clinical applications for the treatment of joint and bone diseases such as osteoarthritis, the optimisation of conditions for in vitro MSC expansion requires careful consideration to maintain native MSC characteristics. Physiological parameters such as oxygen concentration, media constituents, and passage numbers influence the properties of MSCs and may have major impact on their therapeutic potential. Cells grown under hypoxic conditions have been widely documented in clinical use. Culturing MSCs on large scale requires bioreactor culture; however, it is challenging to maintain low oxygen and other physiological parameters over several passages in large bioreactor vessels. The necessity to scale up the production of cells in vitro under normoxia may affect important attributes of MSCs. For these reasons, our study investigated the effects of normoxic and hypoxic culture condition on early- and late-passage adipose-derived MSCs. We examined effect of each condition on the expression of key stem cell marker genes POU5F1, NANOG, and KLF4, as well as differentiation genes RUNX2, COL1A1, SOX9, COL2A1, and PPARG. We found that expression levels of stem cell marker genes and osteogenic and chondrogenic genes were higher in normoxia compared to hypoxia. Furthermore, expression of these genes reduced with passage number, with the exception of PPARG, an adipose differentiation marker, possibly due to the adipose origin of the MSCs. We confirmed by flow cytometry the presence of cell surface markers CD105, CD73, and CD90 and lack of expression of CD45, CD34, CD14, and CD19 across all conditions. Furthermore, in vitro differentiation confirmed that both early- and late-passage adipose-derived MSCs grown in hypoxia or normoxia could differentiate into chondrogenic and osteogenic cell types. Our results demonstrate that the minimal standard criteria to define MSCs as suitable for laboratory-based and preclinical studies can be maintained in early- or late-passage MSCs cultured in hypoxia or normoxia. Therefore, any of these culture conditions could be used when scaling up MSCs in bioreactors for allogeneic clinical applications or tissue engineering for the treatment of joint and bone diseases such as osteoarthritis.
Collapse
|
38
|
Naito K, Kanki K. Glycolytic inhibition by resveratrol prevents myoblast cell death caused by glucose deprivation and hypoxia; a possible application to the three-dimensional tissue construction. J Biosci Bioeng 2020; 131:90-97. [PMID: 32950383 DOI: 10.1016/j.jbiosc.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 11/28/2022]
Abstract
Decreased cell viability resulting from a severe condition of nutrients deprivation and hypoxia has been the major obstacle in three-dimensional (3D) tissue construction. Therefore, technical improvement which prevents cell death caused by starvation and low oxygen is desired for the development of large, thick tissues. We focused on the anti-glycolytic effect of resveratrol (RSV), a naturally-occurring polyphenol known as a caloric restriction mimetic, and investigated its cytoprotective effect in two-dimensional (2D) and 3D-cell culture using H9c2 rat myoblast cells. Glucose deprivation by culturing with low glucose media caused time- and dose-dependent cell death in H9c2 cells. In contrast, RSV treatment at 100 μM significantly increased the cell viability by preventing cell death. RSV showed anti-glycolytic effect associated with a down-regulation of glycolytic genes (GLUT1, PKM2) and glucose uptake activity, and increased the activation of AMP-activated protein kinase (AMPK), an essential cellular energy sensor activated in the condition of energy deprivation. RSV treatment markedly improved the viability of myoblast cells cultured in a hypoxic, low glucose condition and attenuated the up-regulation of glycolytic genes by hypoxic response. In 3D-cultured model, spheroids constructed with RSV-treated cells showed improved cell viability and intact histological appearance compared with control. These results suggest that glycolytic inhibition by RSV decreases the glucose usage of myoblast cells, therefore, prevents cell death caused by nutrient deprivation and hypoxic condition. Our finding provides useful information to improve cell viability in a condition that nutrients and oxygen are low in supply, and be a possible application to the 3D-tissue construction.
Collapse
Affiliation(s)
- Kyoko Naito
- Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| | - Keita Kanki
- Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.
| |
Collapse
|
39
|
Jiang D, Scharffetter-Kochanek K. Mesenchymal Stem Cells Adaptively Respond to Environmental Cues Thereby Improving Granulation Tissue Formation and Wound Healing. Front Cell Dev Biol 2020; 8:697. [PMID: 32850818 PMCID: PMC7403200 DOI: 10.3389/fcell.2020.00697] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Granulation tissue formation constitutes a key step during wound healing of the skin and other organs. Granulation tissue concomitantly initiates regenerative M2 macrophages polarization, fibroblast proliferation, myofibroblast differentiation with subsequent contraction of the wound, new vessel formation, and matrix deposition. Impaired granulation tissue formation either leads to delayed wound healing or excessive scar formation, conditions with high morbidity and mortality. Accumulating evidence has demonstrated that mesenchymal stem cell (MSC)-based therapy is a promising strategy to ameliorate defects in granulation tissue formation and to successfully treat non-healing chronic wounds. In this review we give an updated overview of how therapeutically administered MSCs ensure a balanced granulation tissue formation, and furthermore discuss the cellular and molecular mechanisms underlying the adaptive responses of MSCs to cue in their direct neighborhood. Improved understanding of the interplay between the exogenous MSCs and their niche in granulation tissue will foster the development of MSC-based therapies tailored for difficult-to-treat non-healing wounds.
Collapse
Affiliation(s)
- Dongsheng Jiang
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
| | | |
Collapse
|
40
|
N-acetylcysteine differentially regulates the populations of bone marrow and circulating endothelial progenitor cells in mice with limb ischemia. Eur J Pharmacol 2020; 881:173233. [PMID: 32492379 DOI: 10.1016/j.ejphar.2020.173233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) are important to tissue repair and regeneration especially after ischemic injury, and very heterogeneous in phenotypes and biological features. Reactive oxygen species are involved in regulating EPC number and function. N-acetylcysteine (NAC) inhibits ischemia-induced reactive oxygen species formation and promotes ischemic limb recovery. This study was to evaluate the effect of NAC on EPC subpopulations in bone marrow (BM) and blood in mice with limb ischemia. Limb ischemia was induced by femoral artery ligation in male C57BL/6 mice with or without NAC treatment. EPC subpopulations, intracellular reactive oxygen species production, cell proliferation and apoptosis in BM and blood cells were analyzed at baseline, day 3 (acute ischemia) and 21 (chronic) after ligation. c-Kit+/CD31+, Sca-1+/Flk-1+, CD34+/CD133+, and CD34+/Flk-1+ were used to define EPC subpopulations. Limb blood flow, function, muscle structure, and capillary density were evaluated with laser Doppler perfusion imaging, treadmill test, and immunohistochemistry, respectively, at day 3, 7, 14 and 21 post ischemia. Reactive oxygen species production in circulating and BM mononuclear cells and EPCs populations were significantly increased in BM and blood in mice with acute and chronic ischemia. NAC treatment effectively blocked ischemia-induced reactive oxygen species production in circulating and BM mononuclear cells, and selectively increased EPC population in circulation, not BM, with preserved proliferation in mice with chronic ischemia, and enhanced limb blood flow and function recovery, while preventing acute ischemia-induced increase in BM and circulating EPCs. These data demonstrated that NAC selectively enhanced circulating EPC population in mice with chronic limb ischemia.
Collapse
|
41
|
Lee HY, Hong IS. Metabolic Regulation and Related Molecular Mechanisms in Various Stem Cell Functions. Curr Stem Cell Res Ther 2020; 15:531-546. [PMID: 32394844 DOI: 10.2174/1574888x15666200512105347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Recent studies on the mechanisms that link metabolic changes with stem cell fate have deepened our understanding of how specific metabolic pathways can regulate various stem cell functions during the development of an organism. Although it was originally thought to be merely a consequence of the specific cell state, metabolism is currently known to play a critical role in regulating the self-renewal capacity, differentiation potential, and quiescence of stem cells. Many studies in recent years have revealed that metabolic pathways regulate various stem cell behaviors (e.g., selfrenewal, migration, and differentiation) by modulating energy production through glycolysis or oxidative phosphorylation and by regulating the generation of metabolites, which can modulate multiple signaling pathways. Therefore, a more comprehensive understanding of stem cell metabolism could allow us to establish optimal culture conditions and differentiation methods that would increase stem cell expansion and function for cell-based therapies. However, little is known about how metabolic pathways regulate various stem cell functions. In this context, we review the current advances in metabolic research that have revealed functional roles for mitochondrial oxidative phosphorylation, anaerobic glycolysis, and oxidative stress during the self-renewal, differentiation and aging of various adult stem cell types. These approaches could provide novel strategies for the development of metabolic or pharmacological therapies to promote the regenerative potential of stem cells and subsequently promote their therapeutic utility.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367-700, Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
42
|
Hypoxic Wharton's Jelly Stem Cell Conditioned Medium Induces Immunogenic Cell Death in Lymphoma Cells. Stem Cells Int 2020; 2020:4670948. [PMID: 32377203 PMCID: PMC7189315 DOI: 10.1155/2020/4670948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells from Wharton's jelly of the human umbilical cord (hWJSCs), and the conditioned medium (hWJSC-CM) prepared from them, were shown to be tumoricidal on many cancers. However, these tumoricidal effects were observed in hWJSCs grown under normoxic conditions of 21% oxygen in the laboratory. Since oxygen concentrations in the stem cell niche or physiological microenvironment are hypoxic and help to maintain stemness properties, the objective of this work was to evaluate whether there were differences in the tumoricidal properties of hWJSC-CM grown in 21% O2 (normoxic) or 5% O2 (hypoxic) environments. The results showed that hWJSCs grown under normoxic or hypoxic conditions showed no distinct morphological differences in culture and remained positive in trilineage differentiation into adipocytes, osteocytes, and chondrocytes. Hypoxic hWJSCs expressed the mesenchymal stem cell surface markers CD105, CD90, CD73, CD146, and CD108 similar to normoxic hWJSCs but were negative for the hematopoietic markers CD14, CD19, CD34, CD45, CD117, and HLA-DR. Hypoxic hWJSC-CM produced a significantly greater reduction in cell viability and a significantly greater increase in apoptosis, oxidative stress, and lipid peroxidation in human lymphoma cells compared to normoxic hWJSC-CM. Hypoxic hWJSC-CM also produced significantly greater expression of immunogenic cell death (ICD) hallmarks such as surface-bound calreticulin, HSP70, HSP90, and high mobility group binding 1 proteins and significantly decreased expression of the defense molecules CD47 and PD-L1. This study showed that the tumoricidal effect of hypoxic hWJSC-CM was superior to normoxic hWJSC-CM and should be the preferred choice of preparing hWJSC-CM for the induction of ICD on lymphoma cells.
Collapse
|
43
|
Mokhames Z, Rezaie Z, Ardeshirylajimi A, Basiri A, Taheri M, Omrani MD. VEGF-incorporated PVDF/collagen nanofibrous scaffold for bladder wall regeneration and angiogenesis. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zakiye Mokhames
- Department of Molecular Diagnostic, Emam Ali Educational and Therapeutic Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Rezaie
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Mesenchymal Stromal Cells from Patients with Cyanotic Congenital Heart Disease are Optimal Candidate for Cardiac Tissue Engineering. Biomaterials 2020; 230:119574. [DOI: 10.1016/j.biomaterials.2019.119574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/12/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022]
|
45
|
Alijani N, Johari B, Moradi M, Kadivar M. A review on transcriptional regulation responses to hypoxia in mesenchymal stem cells. Cell Biol Int 2020; 44:14-26. [PMID: 31393053 DOI: 10.1002/cbin.11211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/03/2019] [Indexed: 01/24/2023]
Abstract
Mesenchymal stem cells (MSCs), which are known for having therapeutic applications, reside in stem cell niches where the oxygen concentration is low. At the molecular level, the master regulator of the cellular reaction to hypoxia is hypoxia-inducible transcription factor (HIF). The transcriptional response of a cell to hypoxia is affected by two major components; first, the structure of hypoxia-response elements (HREs), which primarily define how much of the HIF signal is integrated into the transcriptional output of individual genes. Second, the availability of other transcriptional factors cooperating with HIF in the context of HRE. In MSCs, the expression of a single gene by hypoxia depends on elements such as factors influencing the HIF activity, metabolic pathways, the real oxygen concentration in the cellular microenvironment, and duration of culture. In addition, specific growth factors and pro-infection cytokines, hormones, oncogenic signaling, as well as ultrasound are potent regulators of HIF in MSCs. Altogether, the response of MSCs to hypoxia is complex and mediated by several genes and molecular agents. Regarding the influence of hypoxia on MSCs, oxygen concentration must be taken into consideration based on the cell type and the aim of culture before a particular MSCs culture.
Collapse
Affiliation(s)
- Najva Alijani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Moradi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
46
|
Bejoy J, Yuan X, Song L, Hua T, Jeske R, Sart S, Sang QXA, Li Y. Genomics Analysis of Metabolic Pathways of Human Stem Cell-Derived Microglia-Like Cells and the Integrated Cortical Spheroids. Stem Cells Int 2019; 2019:2382534. [PMID: 31827525 PMCID: PMC6885849 DOI: 10.1155/2019/2382534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022] Open
Abstract
Brain spheroids or organoids derived from human pluripotent stem cells (hiPSCs) are still not capable of completely recapitulating in vivo human brain tissue, and one of the limitations is lack of microglia. To add built-in immune function, coculture of the dorsal forebrain spheroids with isogenic microglia-like cells (D-MG) was performed in our study. The three-dimensional D-MG spheroids were analyzed for their transcriptome and compared with isogenic microglia-like cells (MG). Cortical spheroids containing microglia-like cells displayed different metabolic programming, which may affect the associated phenotype. The expression of genes related to glycolysis and hypoxia signaling was increased in cocultured D-MG spheroids, indicating the metabolic shift to aerobic glycolysis, which is in favor of M1 polarization of microglia-like cells. In addition, the metabolic pathways and the signaling pathways involved in cell proliferation, cell death, PIK3/AKT/mTOR signaling, eukaryotic initiation factor 2 pathway, and Wnt and Notch pathways were analyzed. The results demonstrate the activation of mTOR and p53 signaling, increased expression of Notch ligands, and the repression of NF-κB and canonical Wnt pathways, as well as the lower expression of cell cycle genes in the cocultured D-MG spheroids. This analysis indicates that physiological 3-D microenvironment may reshape the immunity of in vitro cortical spheroids and better recapitulate in vivo brain tissue function for disease modeling and drug screening.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Thien Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Sébastien Sart
- Hydrodynamics Laboratory (LadHyX)-Department of Mechanics, Ecole Polytechnique, CNRS-UMR7646, 91128 Palaiseau, France
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
47
|
Yang M, Liu H, Wang Y, Wu G, Qiu S, Liu C, Tan Z, Guo J, Zhu L. Hypoxia reduces the osteogenic differentiation of peripheral blood mesenchymal stem cells by upregulating Notch-1 expression. Connect Tissue Res 2019; 60:583-596. [PMID: 31035811 DOI: 10.1080/03008207.2019.1611792] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Mesenchymal stem cells (MSCs) seeded on biocompatible scaffolds have therapeutic potential for bone defect repair. However, MSCs can be affected by hypoxia and nutritional deficiency due to a lack of blood vessels in the scaffolds. Here, we explored the effects of hypoxia on MSC differentiation to clarify these mechanisms. Methods: Peripheral blood mesenchymal stem cells (PBMSCs) were cultured in small individual chambers with oxygen concentrations of 1%, 9%, and 21%. Cell proliferation was evaluated by Cell Counting Kit 8 assays, and cell survival was determined using live/dead assays. Scratch assays were performed to evaluate cell migration. Ca2+ deposition/mineralization experiments, reverse transcription quantitative real-time polymerase chain reaction, and Western blotting were performed to assess the osteogenic differentiation of cells. Notch1 expression was downregulated by lentivirus-transfected PBMSCs to observe the effects of Notch1 knockdown on osteogenic gene and protein expression. Results: PBMSCs exposed to hypoxia (1% O2) demonstrated accelerated proliferation, increased migration, and reduced survival in the absence of serum. Although 9% oxygen promoted osteogenic differentiation, the osteogenic differentiation of PBMSCs was significantly reduced by 1% O2, and this effect was associated with increased Notch1 expression. Reducing Notch1 expression using small interfering RNA significantly restored the osteogenic differentiation of PBMSCs. Conclusions: Hypoxia accelerated proliferation, increased migration, and reduced PBMSC differentiation into osteoblasts by increasing Notch1 expression. These findings may contribute to the development of appropriate cell culture or in vivo transplantation conditions to maintain the full osteogenic potential of PBMSCs.
Collapse
Affiliation(s)
- Minsheng Yang
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Haixin Liu
- People's Hospital of Deyang City , Sichuan , China
| | - Yihan Wang
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Guofeng Wu
- Department of Orthopedics, Jingzhou No. 1 People's Hospital and First Affiliated Hospital of Yangtze University , Jingzhou , China
| | - Sujun Qiu
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Chun Liu
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Zhiwen Tan
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Jiasong Guo
- Department of Histology and Embryology, Southern Medical University , Guangzhou , China.,Key Laboratory of Tissue Construction and Detection of Guangdong Province , Guangzhou , China.,Institute of Bone Biology, Academy of Orthopaedics , Guangdong Province , Guangzhou , China
| | - Lixin Zhu
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| |
Collapse
|
48
|
VeDepo MC, Buse EE, Paul A, Converse GL, Hopkins RA. Non-physiologic Bioreactor Processing Conditions for Heart Valve Tissue Engineering. Cardiovasc Eng Technol 2019; 10:628-637. [PMID: 31650518 DOI: 10.1007/s13239-019-00438-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Conventional methods of seeding decellularized heart valves for heart valve tissue engineering have led to inconsistent results in interstitial cellular repopulation, particularly of the distal valve leaflet, and notably distinct from documented re-endothelialization. The use of bioreactor conditioning mimicking physiologic parameters has been well explored but cellular infiltration remains challenging. Non-characteristic, non-physiologic conditioning parameters within a bioreactor, such as hypoxia and cyclic chamber pressure, may be used to increase the cellular infiltration leading to increased recellularization. METHODS To investigate the effects of novel and perhaps non-intuitive bioreactor conditioning parameters, ovine aortic heart valves were seeded with mesenchymal stem cells and cultured in one of four environments: hypoxia and high cyclic pressures (120 mmHg), normoxia and high cyclic pressures, hypoxia and negative cyclic pressures (- 20 mmHg), and normoxia and negative cyclic pressures. Analysis included measurements of cellular density, cell phenotype, and biochemical concentrations. RESULTS The results revealed that the bioreactor conditioning parameters influenced the degree of recellularization. Groups that implemented hypoxic conditioning exhibited increased cellular infiltration into the valve leaflet tissue compared to normoxic conditioning, while pressure conditioning did not have a significant effect of recellularization. Protein expression across all groups was similar, exhibiting a stem cell and valve interstitial cell phenotype. Biochemical analysis of the extracellular matrix was similar between all groups. CONCLUSION These results suggest the use of non-physiologic bioreactor conditioning parameters can increase in vitro recellularization of tissue engineered heart valve leaflets. Particularly, hypoxic culture was found to increase the cellular infiltration. Therefore, bioreactor conditioning of tissue engineered constructs need not always mimic physiologic conditions, and it is worth investigating novel or uncharacteristic culture conditions as they may benefit aspects of tissue culture.
Collapse
Affiliation(s)
- Mitchell C VeDepo
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA. .,Bioengineering Program, University of Kansas, 3135A Learned Hall, 1530 W. 15th St, Lawrence, KS, 66045, USA. .,Department of Bioengineering, University of Colorado Anschutz Medical Campus, 12705 E. Montview Blvd. Suite 100, Aurora, CO, 80045-7109, USA.
| | - Eric E Buse
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Arghya Paul
- Bioengineering Program, University of Kansas, 3135A Learned Hall, 1530 W. 15th St, Lawrence, KS, 66045, USA.,BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, 66045, USA
| | - Gabriel L Converse
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Richard A Hopkins
- Cardiac Regenerative Surgery Research Laboratories of The Ward Family Heart Center, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, 64108, USA
| |
Collapse
|
49
|
Rieker C, Migliavacca E, Vaucher A, Baud G, Marquis J, Charpagne A, Hegde N, Guignard L, McLachlan M, Pooler AM. Apolipoprotein E4 Expression Causes Gain of Toxic Function in Isogenic Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Arterioscler Thromb Vasc Biol 2019; 39:e195-e207. [PMID: 31315437 DOI: 10.1161/atvbaha.118.312261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The ApoE (apolipoprotein) allele epsilon 4 is a major genetic risk factor for Alzheimer disease, cardiovascular disorders, and stroke, indicating that it significantly impacts cerebral and vascular systems. However, very little is known about how APOE genotype affects brain endothelial cells, which form a network of tight junctions to regulate communication between the brain and circulating blood factors. Approach and Results: Here, we present a novel model of endothelial dysfunction using isogenic human induced pluripotent stem cell-derived cells harboring different alleles of the APOE gene, specifically ApoE 3/3, 3/4, and 4/4. We show for the first time that ApoE4 expression by endothelial cells is sufficient to cause a toxic gain of cellular dysfunction. Using RNAseq, we found significant effects of ApoE4 on signaling pathways involved in blood coagulation and barrier function. These changes were associated with altered cell function, including increased binding of platelets to ECs with the 3/4 or 4/4 genotype. ApoE4-positive cells exhibited a proinflammatory state and prothrombotic state, evidenced by higher secretion of Aβ (amyloid-β) 40 and 42, increased release of cytokines, and overexpression of the platelet-binding protein VWF (vonWillebrand factor). Immunohistochemistry of human brain Alzheimer disease brains also showed increased VWF expression with the ApoE4/4 genotype. Finally, pharmacological inhibition of inflammation in ECs by celastrol rescued overexpression of VWF in cells expressing ApoE4. CONCLUSIONS These cells provide novel insight into ApoE4-mediated endothelial dysfunction and provide a new platform to test potential therapies for vascular disorders.
Collapse
Affiliation(s)
- Claus Rieker
- From the Nestlé Institute of Health Sciences, Switzerland (C.R., E.M., A.V., G.B., J.M., A.C., N.H., L.G., A.M.P.)
| | - Eugenia Migliavacca
- From the Nestlé Institute of Health Sciences, Switzerland (C.R., E.M., A.V., G.B., J.M., A.C., N.H., L.G., A.M.P.)
| | - Angélique Vaucher
- From the Nestlé Institute of Health Sciences, Switzerland (C.R., E.M., A.V., G.B., J.M., A.C., N.H., L.G., A.M.P.)
| | - Gilles Baud
- From the Nestlé Institute of Health Sciences, Switzerland (C.R., E.M., A.V., G.B., J.M., A.C., N.H., L.G., A.M.P.)
| | - Julien Marquis
- From the Nestlé Institute of Health Sciences, Switzerland (C.R., E.M., A.V., G.B., J.M., A.C., N.H., L.G., A.M.P.)
| | - Aline Charpagne
- From the Nestlé Institute of Health Sciences, Switzerland (C.R., E.M., A.V., G.B., J.M., A.C., N.H., L.G., A.M.P.)
| | - Nagabhooshan Hegde
- From the Nestlé Institute of Health Sciences, Switzerland (C.R., E.M., A.V., G.B., J.M., A.C., N.H., L.G., A.M.P.)
| | - Laurence Guignard
- From the Nestlé Institute of Health Sciences, Switzerland (C.R., E.M., A.V., G.B., J.M., A.C., N.H., L.G., A.M.P.)
| | | | - Amy M Pooler
- From the Nestlé Institute of Health Sciences, Switzerland (C.R., E.M., A.V., G.B., J.M., A.C., N.H., L.G., A.M.P.)
| |
Collapse
|
50
|
Sheehy E, Kelly D, O'Brien F. Biomaterial-based endochondral bone regeneration: a shift from traditional tissue engineering paradigms to developmentally inspired strategies. Mater Today Bio 2019; 3:100009. [PMID: 32159148 PMCID: PMC7061547 DOI: 10.1016/j.mtbio.2019.100009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
There is an urgent, clinical need for an alternative to the use of autologous grafts for the ever increasing number of bone grafting procedures performed annually. Herein, we describe a developmentally inspired approach to bone tissue engineering, which focuses on leveraging biomaterials as platforms for recapitulating the process of endochondral ossification. To begin, we describe the traditional biomaterial-based approaches to tissue engineering that have been investigated as methods to promote in vivo bone regeneration, including the use of three-dimensional biomimetic scaffolds, the delivery of growth factors and recombinant proteins, and the in vitro engineering of mineralized bone-like tissue. Thereafter, we suggest that some of the hurdles encountered by these traditional tissue engineering approaches may be circumvented by modulating the endochondral route to bone repair and, to that end, we assess various biomaterials that can be used in combination with cells and signaling factors to engineer hypertrophic cartilaginous grafts capable of promoting endochondral bone formation. Finally, we examine the emerging trends in biomaterial-based approaches to endochondral bone regeneration, such as the engineering of anatomically shaped templates for bone and osteochondral tissue engineering, the fabrication of mechanically reinforced constructs using emerging three-dimensional bioprinting techniques, and the generation of gene-activated scaffolds, which may accelerate the field towards its ultimate goal of clinically successful bone organ regeneration.
Collapse
Affiliation(s)
- E.J. Sheehy
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - D.J. Kelly
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - F.J. O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|