1
|
Zhao L, Ma G. Chromatography media and purification processes for complex and super-large biomolecules: A review. J Chromatogr A 2025; 1744:465721. [PMID: 39893916 DOI: 10.1016/j.chroma.2025.465721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The biopharmaceutical industry has been one of the most dynamic industries in the world. New biopharmaceuticals are constantly developed, especially for complex and super-large biomolecules including antibodies, virus-like particles (VLPs), viral vectors, DNA, mRNA, and are very promising in drugs, vaccines, cell and gene therapy. Due to complex and unstable structures, as well as low concentration, it is very difficult to purify these complex and super-large biomolecules. Chromatography is the most widely used purification technique in bioseparation, and chromatography media is the key material. This review gives a comprehensive analysis of chromatography media and purification processes for complex and super-large biomolecules. A detailed summary of tailor-made chromatography media is first provided, including particle size and its uniformity, pore structure, spacer arm and polymer grafting, and new ligands and special separation mechanisms. Then the current choices and trends of purification processes for vaccines, VLPs, DNA, mRNA, antibodies and modified therapeutic proteins are reviewed. Finally, a brief overview of continuous biochromatography and computer-assisted chromatographic method development is provided. We hope this review will provide some useful guidance for design of chromatography media and purification of complex biopharmaceuticals.
Collapse
Affiliation(s)
- Lan Zhao
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Ma
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Kitamura R, Enghauser L, Miyamoto R, Ichikawa T, Aiso T, Masuda Y, Kajihara D, Kakihara H, Nonaka K. Mechanistic model of minute virus of mice elution behavior in anion exchange chromatography purification. Biotechnol Prog 2025; 41:e3516. [PMID: 39443823 DOI: 10.1002/btpr.3516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/20/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
This study aimed to propose a methodology for developing a mechanistic model for viral clearance of the minute virus of mice (MVM) on flow-through anion exchange (AEX) chromatography. Protein surface analysis was applied to investigate the possibility of molecular interaction between the recombinant biotherapeutic and MVM. The protein product-free Tris buffers were spiked with MVM, and the MVM elution profile from AEX chromatography was quantitatively analyzed using quantitative polymerase chain reaction (qPCR) for pooled fractions. GoSilico™ Chromatography Modeling Software was applied to develop the mechanistic models for MVM species. For evaluating the visual fit of the developed model, the R2 of intact MVM virions and uncoated capsids between the simulated and measured amount in each fraction are 0.880 and 0.948, respectively. Response surface plots of logarithmic reduction values (LRV) against pH and conductivity in loaded sample were generated to show the range for suitable loaded sample conditions for achieving a good LRV. To evaluate the applicability of the developed MVM elution model to a recombinant biotherapeutic, two demonstrations of AEX chromatography purification were performed with a loaded sample of a model monoclonal antibody. The peaks of the MVM species in the elution step of both runs were accurately simulated by the developed model. In addition, to assess the possibility of molecular interaction between the virus and the target protein significantly affecting the MVM elution behavior, the antibody's surface was evaluated in terms of hydrophobicity/hydrophilicity using surface analysis.
Collapse
Affiliation(s)
- Ryunosuke Kitamura
- Biologics Technology Research Laboratories I, Biologics Division, Daiichi Sankyo Co., Ltd., Akaiwa, Gunma, Japan
| | - Lena Enghauser
- Cytiva, Global Life Sciences Solutions Germany GmbH, Karlsruhe, Germany
| | - Riku Miyamoto
- Biologics Technology Research Laboratories I, Biologics Division, Daiichi Sankyo Co., Ltd., Akaiwa, Gunma, Japan
| | - Takahiro Ichikawa
- Biologics Technology Research Laboratories I, Biologics Division, Daiichi Sankyo Co., Ltd., Akaiwa, Gunma, Japan
| | - Takaki Aiso
- Biologics Technology Research Laboratories I, Biologics Division, Daiichi Sankyo Co., Ltd., Akaiwa, Gunma, Japan
| | - Yumiko Masuda
- Biologics Technology Research Laboratories I, Biologics Division, Daiichi Sankyo Co., Ltd., Akaiwa, Gunma, Japan
| | - Daisuke Kajihara
- Biologics Technology Research Laboratories I, Biologics Division, Daiichi Sankyo Co., Ltd., Akaiwa, Gunma, Japan
| | - Hirofumi Kakihara
- Biologics Technology Research Laboratories I, Biologics Division, Daiichi Sankyo Co., Ltd., Akaiwa, Gunma, Japan
| | - Koichi Nonaka
- Biologics Technology Research Laboratories I, Biologics Division, Daiichi Sankyo Co., Ltd., Akaiwa, Gunma, Japan
| |
Collapse
|
3
|
Billups M, Minervini M, Holstein M, Feroz H, Ranjan S, Hung J, Zydney AL. The role of intermolecular interactions on monoclonal antibody filtration through virus removal membranes. Biotechnol J 2023; 18:e2300265. [PMID: 37641433 DOI: 10.1002/biot.202300265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
The removal of viruses by filtration is a critical unit operation to ensure the overall safety of monoclonal antibody (mAb) products. Many mAbs show very low filtrate flux during virus removal filtration, although there are still significant uncertainties regarding both the mechanisms and antibody properties that determine the filtration behavior. Experiments were performed with three highly purified mAbs through three different commercial virus filters (Viresolve Pro, Viresolve NFP, and Pegasus SV4) with different pore structures and chemistries. The flux decline observed during mAb filtration was largely reversible, even under conditions where the filtrate flux with the mAb was more than 100-fold smaller than the corresponding buffer flux. The extent of flux decline was highly correlated with the hydrodynamic diameter of the mAb as determined by dynamic light scattering (DLS). The mAb with the lowest filtrate flux for all three membranes showed the largest attractive intermolecular interactions and the greatest hydrophobicity, with the latter determined by binding to a butyl resin in an analytical hydrophobic interaction chromatography (HIC) column. These results strongly suggest that the flux behavior is dominated by reversible self-association of the mAbs, providing important insights into the design of more effective virus filtration processes and in the early identification of problematic mAbs/solution conditions.
Collapse
Affiliation(s)
- Matthew Billups
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mirko Minervini
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Melissa Holstein
- Bristol Myers Squibb, Biologics Process Development, Global Product Development and Supply, Devens, Massachusetts, USA
| | - Hasin Feroz
- Bristol Myers Squibb, Biologics Process Development, Global Product Development and Supply, Devens, Massachusetts, USA
| | - Swarnim Ranjan
- Bristol Myers Squibb, Biologics Process Development, Global Product Development and Supply, Devens, Massachusetts, USA
| | - Jessica Hung
- Bristol Myers Squibb, Biologics Process Development, Global Product Development and Supply, Devens, Massachusetts, USA
| | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Yang S, Braczkowski R, Chen SH, Busse R, Li Y, Fabri L, Bekard IB. Scalability of Sartobind ® Rapid A Membrane for High Productivity Monoclonal Antibody Capture. MEMBRANES 2023; 13:815. [PMID: 37887987 PMCID: PMC10608304 DOI: 10.3390/membranes13100815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Improved upstream titres in therapeutic monoclonal antibody (mAb) production have shifted capacity constraints to the downstream process. The consideration of membrane-based chromatographic devices as a debottlenecking option is gaining increasing attention with the recent introduction of high-capacity bind and elute membranes. We have evaluated the performance and scalability of the Sartobind® Rapid A affinity membrane (1 mL) for high-productivity mAb capture. For scalability assessment, a 75 mL prototype device was used to process 100 L of clarified cell culture harvest (CH) on a novel multi-use rapid cycling chromatography system (MU-RCC). MabSelect™ PrismA (4.7 mL) was used as a benchmark comparator for Protein A (ProtA) resin studies. Results show that in addition to a productivity gain of >10×, process and product quality attributes were either improved or comparable to the benchmark. Concentrations of eluate pools were 7.5× less than that of the benchmark, with the comparatively higher bulk volume likely to cause handling challenges at process scale. The MU-RCC system is capable of membrane operation at pilot scale with comparable product quality profile to the 1 mL device. The Sartobind® Rapid A membrane is a scalable alternative to conventional ProtA resin chromatography for the isolation and purification of mAbs from harvested cell culture media.
Collapse
Affiliation(s)
- Sabrina Yang
- CSL Innovation Pty Ltd., 655 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Ryszard Braczkowski
- CSL Innovation Pty Ltd., 655 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Shih-Hsun Chen
- CSL Innovation Pty Ltd., 655 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Ricarda Busse
- Sartorius Stedim Biotech GmbH, August-Spindler-Strasse 11, 37079 Goettingen, Germany
| | - Yudhi Li
- Sartorius Stedim Singapore Pte Ltd., 30 Pasir Panjang Rd., #06-31A/32, Singapore 117440, Singapore
| | - Louis Fabri
- CSL Innovation Pty Ltd., 655 Elizabeth Street, Melbourne, VIC 3000, Australia
| | | |
Collapse
|
5
|
Huang H, Dong X, Sun Y, Shi Q. Biomimetic affinity chromatography for antibody purification: Host cell protein binding and impurity removal. J Chromatogr A 2023; 1707:464305. [PMID: 37607431 DOI: 10.1016/j.chroma.2023.464305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Peptide affinity chromatography has received increasing attention as an alternative to protein A chromatography in antibody purification. However, its lower selectivity than protein A chromatography has impeded its success in practical applications. In particular, efficient removal of contaminants, including host cell proteins (HCPs) and DNA, is a great challenge for peptide affinity chromatography in monoclonal antibody (mAb) manufacturing. In this work, a biomimetic peptide ligand (bPL), FYWHCLDE, was coupled onto Sepharose 6 Fast Flow (SepFF) to synthesize a peptide affinity gel, SepFF-bPL, for the investigation of the binding mechanism of HCP as well as the feasibility of antibody capture. The results showed that the SepFF-bPL column exhibited effective removal of mAb aggregates as well as mAb capture from feedstocks of various origins, whereas poor removal of HCP and DNA was found. Mechanistic studies of HCP binding indicated that electrostatic interactions dominated HCP binding on the SepFF-bPL gel and that ionic conductivity had a significant influence on HCP binding at low salt concentrations. Thus, combined chromatin extraction and anion exchange adsorption were introduced prior to SepFF-bPL chromatography for initial contaminant removal to reduce mAb aggregation induced by HCP and the loading burden of contaminants in SepFF-bPL chromatography. A proof-of-concept study of the purification train demonstrated a high recovery of mAb (68.7%) and low levels of HCP (23 ppm) and DNA (below the limit of detection) in the final product, which were acceptable for the mandatory requirements in clinical applications. This research provided a deep understanding of HCP binding on the peptide affinity column and led to the development of an effective purification train.
Collapse
Affiliation(s)
- Haotian Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
6
|
Alonso Villela SM, Kraïem-Ghezal H, Bouhaouala-Zahar B, Bideaux C, Aceves Lara CA, Fillaudeau L. Production of recombinant scorpion antivenoms in E. coli: current state and perspectives. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12578-1. [PMID: 37199752 DOI: 10.1007/s00253-023-12578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Scorpion envenomation is a serious health problem in tropical and subtropical zones. The access to scorpion antivenom is sometimes limited in availability and specificity. The classical production process is cumbersome, from the hyper-immunization of the horses to the IgG digestion and purification of the F(ab)'2 antibody fragments. The production of recombinant antibody fragments in Escherichia coli is a popular trend due to the ability of this microbial host to produce correctly folded proteins. Small recombinant antibody fragments, such as single-chain variable fragments (scFv) and nanobodies (VHH), have been constructed to recognize and neutralize the neurotoxins responsible for the envenomation symptoms in humans. They are the focus of interest of the most recent studies and are proposed as potentially new generation of pharmaceuticals for their use in immunotherapy against scorpion stings of the Buthidae family. This literature review comprises the current status on the scorpion antivenom market and the analyses of cross-reactivity of commercial scorpion anti-serum against non-specific scorpion venoms. Recent studies on the production of new recombinant scFv and nanobodies will be presented, with a focus on the Androctonus and Centruroides scorpion species. Protein engineering-based technology could be the key to obtaining the next generation of therapeutics capable of neutralizing and cross-reacting against several types of scorpion venoms. KEY POINTS: • Commercial antivenoms consist of predominantly purified equine F(ab)'2fragments. • Nanobody-based antivenom can neutralize Androctonus venoms and have a low immunogenicity. • Affinity maturation and directed evolution are used to obtain potent scFv families against Centruroides scorpions.
Collapse
Affiliation(s)
| | - Hazar Kraïem-Ghezal
- Laboratoire Des Venins Et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, 1002, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratoire Des Venins Et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, 1002, Tunis, Tunisia.
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis, Tunisia.
| | - Carine Bideaux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Luc Fillaudeau
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
7
|
Li Z, Chen J, Martinez-Fonts K, Rauscher M, Rivera S, Welsh J, Kandula S. Cationic polymer precipitation for enhanced impurity removal in downstream processing. Biotechnol Bioeng 2023. [PMID: 37148495 DOI: 10.1002/bit.28416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Precipitation can be used for the removal of impurities early in the downstream purification process of biologics, with the soluble product remaining in the filtrate through microfiltration. The objective of this study was to examine the use of polyallylamine (PAA) precipitation to increase the purity of product via higher host cell protein removal to enhance polysorbate excipient stability to enable a longer shelf life. Experiments were performed using three monoclonal antibodies (mAbs) with different properties of isoelectric point and IgG subclass. High throughput workflows were established to quickly screen precipitation conditions as a function of pH, conductivity and PAA concentrations. Process analytical tools (PATs) were used to evaluate the size distribution of particles and inform the optimal precipitation condition. Minimal pressure increase was observed during depth filtration of the precipitates. The precipitation was scaled up to 20L size and the extensive characterization of precipitated samples after protein A chromatography showed >75% reduction of host cell protein (HCP) concentrations (by ELISA), >90% reduction of number of HCP species (by mass spectrometry), and >99.8% reduction of DNA. The stability of polysorbate containing formulation buffers for all three mAbs in the protein A purified intermediates was improved at least 25% after PAA precipitation. Mass spectrometry was used to obtain additional understanding of the interaction between PAA and HCPs with different properties. Minimal impact on product quality and <5% yield loss after precipitation were observed while the residual PAA was <9 ppm. These results expand the toolbox in downstream purification to solve HCP clearance issues for programs with purification challenges, while also providing important insights into the integration of precipitation-depth filtration and the current platform process for the purification of biologics.
Collapse
Affiliation(s)
- Zhao Li
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Justin Chen
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Kirby Martinez-Fonts
- Biologics Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Michael Rauscher
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Shannon Rivera
- Analytical Research and Development Mass Spectrometry, Merck & Co., Inc., Rahway, New Jersey, USA
| | - John Welsh
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Sunitha Kandula
- Biologics Process Development, Biologics Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
8
|
Agrawal P, Wilkstein K, Guinn E, Mason M, Serrano Martinez CI, Saylae J. A Review of Tangential Flow Filtration: Process Development and Applications in the Pharmaceutical Industry. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Linke JA, Rayat A, Ward JM. Production of indigo by recombinant bacteria. BIORESOUR BIOPROCESS 2023; 10:20. [PMID: 36936720 PMCID: PMC10011309 DOI: 10.1186/s40643-023-00626-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 03/15/2023] Open
Abstract
Indigo is an economically important dye, especially for the textile industry and the dyeing of denim fabrics for jeans and garments. Around 80,000 tonnes of indigo are chemically produced each year with the use of non-renewable petrochemicals and the use and generation of toxic compounds. As many microorganisms and their enzymes are able to synthesise indigo after the expression of specific oxygenases and hydroxylases, microbial fermentation could offer a more sustainable and environmentally friendly manufacturing platform. Although multiple small-scale studies have been performed, several existing research gaps still hinder the effective translation of these biochemical approaches. No article has evaluated the feasibility and relevance of the current understanding and development of indigo biocatalysis for real-life industrial applications. There is no record of either established or practically tested large-scale bioprocess for the biosynthesis of indigo. To address this, upstream and downstream processing considerations were carried out for indigo biosynthesis. 5 classes of potential biocatalysts were identified, and 2 possible bioprocess flowsheets were designed that facilitate generating either a pre-reduced dye solution or a dry powder product. Furthermore, considering the publicly available data on the development of relevant technology and common bioprocess facilities, possible platform and process values were estimated, including titre, DSP yield, potential plant capacities, fermenter size and batch schedule. This allowed us to project the realistic annual output of a potential indigo biosynthesis platform as 540 tonnes. This was interpreted as an industrially relevant quantity, sufficient to provide an annual dye supply to a single industrial-size denim dyeing plant. The conducted sensitivity analysis showed that this anticipated output is most sensitive to changes in the reaction titer, which can bring a 27.8% increase or a 94.4% drop. Thus, although such a biological platform would require careful consideration, fine-tuning and optimization before real-life implementation, the recombinant indigo biosynthesis was found as already attractive for business exploitation for both, luxury segment customers and mass-producers of denim garments. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1186/s40643-023-00626-7.
Collapse
Affiliation(s)
- Julia A. Linke
- grid.83440.3b0000000121901201Chemical Engineering Department, University College London (UCL), Torrington Place, London, WC1E 7JE UK
- grid.83440.3b0000000121901201Division of Medicine, University College London (UCL), 5 University Street, London, WC1E 6JF UK
| | - Andrea Rayat
- grid.83440.3b0000000121901201Biochemical Engineering Department, University College London (UCL), Gower St., London, WC1E 6BT UK
| | - John M. Ward
- grid.83440.3b0000000121901201Biochemical Engineering Department, University College London (UCL), Gower St., London, WC1E 6BT UK
| |
Collapse
|
10
|
Kaiser J, Babi DK, Pinelo M, Krühne U. Early-Stage In Silico Flowsheet Analysis for a Monoclonal Antibody Platform. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Leong HY, Fu XQ, Show PL, Yao SJ, Lin DQ. Downstream processing of virus-like particles with aqueous two-phase systems: applications and challenges. J Sep Sci 2022; 45:2064-2076. [PMID: 35191590 DOI: 10.1002/jssc.202100947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/06/2022]
Abstract
The advancement of recombinant virus-like particle-based vaccines has attracted global attention owing to substantially safety and high efficacy in provoking a protective immunity against various chronic and infectious diseases in humans and animals. A robust, low-cost and scalability separation and purification technology is of utmost importance in the downstream processing of recombinant virus-like particles to produce affordable and safe vaccines. Being a relatively simple, environmentally friendly and efficient biomolecules recovery approach, aqueous two-phase systems have received great attention from researchers worldwide. This review aims to highlight the challenges and outlook in addition to the current applications of aqueous two-phase systems in downstream processing of virus-like particles. The efforts will confidently reinforce scholars' knowledge and fill in the valuable research gap in the aspect of concerning recombinant virus-like particle-based vaccines development, particularly related to the virus-like particles downstream production processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui Yi Leong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiao-Qian Fu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Broga Road, Selangor Darul Ehsan, 43500 Semenyih, Malaysia
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
12
|
Selection of CHO host and recombinant cell pools by inhibition of the proteasome results in enhanced product yields and cell specific productivity. J Biotechnol 2021; 337:35-45. [PMID: 34171439 DOI: 10.1016/j.jbiotec.2021.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/14/2021] [Accepted: 06/19/2021] [Indexed: 11/23/2022]
Abstract
Chinese hamster ovary (CHO) cells are the leading mammalian cell expression platform for biotherapeutic recombinant molecules yet some proteins remain difficult to express (DTE) in this, and other, systems. In recombinant cell lines expressing DTE proteins, cellular processes to restore proteostasis can be triggered when the folding and modification capabilities are exceeded, including the unfolded protein response and ER-associated degradation (ERAD) and proteasomal degradation. We therefore investigated whether the proteasome activity of CHO cells was linked to their ability to produce recombinant proteins. We found cell lines with diverse monoclonal antibody (mAb) productivity show different susceptibilities to inhibitors of proteasome activity. Subsequently, we applied selective pressure using proteasome inhibitors on mAb producing cells to determine the impact on cell growth and recombinant protein production, and to apply proteasome selective pressure above that of a metabolic selection marker during recombinant cell pool construction. The presence of proteasome inhibitors during cell pool construction expressing two different model molecules, including a DTE Fc-fusion protein, resulted in the generation of cell pools with enhanced productivity. The increased productivities, and ability to select for higher producing cells, has potential to improve clonal selection during upstream processes of DTE proteins.
Collapse
|
13
|
Budge JD, Young RJ, Smales CM. Engineering of Chinese Hamster Ovary Cells With NDPK-A to Enhance DNA Nuclear Delivery Combined With EBNA1 Plasmid Maintenance Gives Improved Exogenous Transient Reporter, mAb and SARS-CoV-2 Spike Protein Expression. Front Bioeng Biotechnol 2021; 9:679448. [PMID: 34150735 PMCID: PMC8212061 DOI: 10.3389/fbioe.2021.679448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Transient gene expression (TGE) in mammalian cells is a method of rapidly generating recombinant protein material for initial characterisation studies that does not require time-consuming processes associated with stable cell line construction. High TGE yields are heavily dependent on efficient delivery of plasmid DNA across both the plasma and nuclear membranes. Here, we harness the protein nucleoside diphosphate kinase (NDPK-A) that contains a nuclear localisation signal (NLS) to enhance DNA delivery into the nucleus of CHO cells. We show that co-expression of NDPK-A during transient expression results in improved transfection efficiency in CHO cells, presumably due to enhanced transportation of plasmid DNA into the nucleus via the nuclear pore complex. Furthermore, introduction of the Epstein Barr Nuclear Antigen-1 (EBNA-1), a protein that is capable of inducing extrachromosomal maintenance, when coupled with complementary oriP elements on a transient plasmid, was utilised to reduce the effect of plasmid dilution. Whilst there was attenuated growth upon introduction of the EBNA-1 system into CHO cells, when both NDPK-A nuclear import and EBNA-1 mediated technologies were employed together this resulted in enhanced transient recombinant protein yields superior to those generated using either approach independently, including when expressing the complex SARS-CoV-2 spike (S) glycoprotein.
Collapse
Affiliation(s)
- James D Budge
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Robert J Young
- R&D Cell Engineering Group, Lonza Biologics, Chesterford Research Park, Saffron Walden, United Kingdom
| | - Christopher Mark Smales
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
14
|
Brechmann NA, Schwarz H, Eriksson PO, Eriksson K, Shokri A, Chotteau V. Antibody capture process based on magnetic beads from very high cell density suspension. Biotechnol Bioeng 2021; 118:3499-3510. [PMID: 33811659 DOI: 10.1002/bit.27776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022]
Abstract
Cell clarification represents a major challenge for the intensification through very high cell density in the production of biopharmaceuticals such as monoclonal antibodies (mAbs). The present report proposes a solution to this challenge in a streamlined process where cell clarification and mAb capture are performed in a single step using magnetic beads coupled with protein A. Capture of mAb from non-clarified CHO cell suspension showed promising results; however, it has not been demonstrated that it can handle the challenge of very high cell density as observed in intensified fed-batch cultures. The performances of magnetic bead-based mAb capture on non-clarified cell suspension from intensified fed-batch culture were studied. Capture from a culture at density larger than 100 × 106 cells/ml provided an adsorption efficiency of 99% and an overall yield of 93% with a logarithmic host cell protein (HCP) clearance of ≈2-3 and a resulting HCP concentration ≤≈5 ppm. These results show that direct capture from very high cell density cell suspension is possible without prior processing. This technology, which brings significant benefits in terms of operational cost reduction and performance improvements such as low HCP, can be a powerful tool alleviating the challenge of process intensification.
Collapse
Affiliation(s)
- Nils A Brechmann
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hubert Schwarz
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Kristofer Eriksson
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,R&D, MAGic Bioprocessing, Uppsala, Sweden
| | - Atefeh Shokri
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Véronique Chotteau
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, Stockholm, Sweden.,Cell Technology Group (CETEG), Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
15
|
Cardillo AG, Castellanos MM, Desailly B, Dessoy S, Mariti M, Portela RMC, Scutella B, von Stosch M, Tomba E, Varsakelis C. Towards in silico Process Modeling for Vaccines. Trends Biotechnol 2021; 39:1120-1130. [PMID: 33707043 DOI: 10.1016/j.tibtech.2021.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/23/2023]
Abstract
Chemical, manufacturing, and control development timelines occupy a significant part of vaccine end-to-end development. In the on-going race for accelerating timelines, in silico process development constitutes a viable strategy that can be achieved through an artificial intelligence (AI)-driven or a mechanistically oriented approach. In this opinion, we focus on the mechanistic option and report on the modeling competencies required to achieve it. By inspecting the most frequent vaccine process units, we identify fluid mechanics, thermodynamics and transport phenomena, intracellular modeling, hybrid modeling and data science, and model-based design of experiments as the pillars for vaccine development. In addition, we craft a generic pathway for accommodating the modeling competencies into an in silico process development strategy.
Collapse
Affiliation(s)
| | | | - Benoit Desailly
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium
| | - Sandrine Dessoy
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium
| | - Marco Mariti
- Technical Research and Development, GSK, 1 Via Fiorentina, 53100 Siena, SI, Italy
| | - Rui M C Portela
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium
| | - Bernadette Scutella
- Technical Research and Development, GSK, 14200 Shady Grove Rd, Rockville, MD 20850, USA
| | - Moritz von Stosch
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium; Current affiliation: Data How AG, Zürichstrasse 137, 8600 Dübendorf, Switzerland
| | - Emanuele Tomba
- Technical Research and Development, GSK, 1 Via Fiorentina, 53100 Siena, SI, Italy
| | - Christos Varsakelis
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium.
| |
Collapse
|
16
|
Schick AJ, Yi L, Lam P, Pallante P, Swanson N, Tyler JY. Understanding Loss of Soluble High Molecular Weight Species during Filtration of Low Concentration Therapeutic Monoclonal Antibodies. J Pharm Sci 2021; 110:1997-2004. [PMID: 33610564 DOI: 10.1016/j.xphs.2021.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Sterile filtration is an integral step in the manufacturing process of biological therapeutics. Protein adsorption to the surface of the filter is an unfortunate, common occurrence that can result in manufacturing difficulties, such as filter fouling or product loss. Although many filters have surface modifications to minimize adsorption, under certain conditions binding can still occur. We observed the loss of high molecular weight species (HMWS) during sterile filtration of eight different therapeutic monoclonal antibodies formulated at low protein concentrations across a commonly used hydrophilic polyvinylidene fluoride or polyvinylidene difluoride (PVDF) filter membrane. The protein absorption was specific to HMWS, and each antibody exhibited different degrees of filter adsorption. Debye screening length parameters of the solution (e.g. ionic strength) were adjusted, and influenced the amount of HMWS lost during filtration. Additionally, HMWS of a representative antibody (mAb1) were observed to be more positively charged than other size variants by ion-exchange chromatography. From these results, it is concluded that this HMWS loss is due to electrostatic interactions between HMWS and the filter surface. This adsorption can be reduced by increasing the ionic strength of the buffer matrix, demonstrating the influence of the Debye screening length in the filtration of low concentration proteins.
Collapse
Affiliation(s)
- Arthur J Schick
- Genentech Inc, Protein Analytical Chemistry, South San Francisco, CA, USA
| | - Li Yi
- AbbVie Inc, Pharmaceutical Development, Redwood City, CA, USA
| | | | - Preston Pallante
- Genentech Inc, Purification Development, South San Francisco, CA, USA
| | | | - Jacqueline Y Tyler
- Genentech Inc, Pharmaceutical Development, South San Francisco, CA, USA.
| |
Collapse
|
17
|
Lavoie RA, Chu W, Lavoie JH, Hetzler Z, Williams TI, Carbonell R, Menegatti S. Removal of host cell proteins from cell culture fluids by weak partitioning chromatography using peptide-based adsorbents. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Abstract
Protein Biotechnology is an exciting and fast- growing area of research, with numerous industrial applications. The growing demand for developing efficient and rapid protein purification methods is driving research and growth in this area. Advances and progress in the techniques and methods of protein purification have been such that one can reasonably expect that any protein of a given order of stability may be purified to currently acceptable standards of homogeneity. However, protein manufacturing cost remains extremely high, with downstream processing constituting a substantial proportion of the overall cost. Understanding of the methods and optimization of the experimental conditions have become critical to the manufacturing industry in order to minimize production costs while satisfying the quality as well as all regulatory requirements. New purification processes exploiting specific, effective and robust methods and chromatographic materials are expected to guide the future of the protein purification market.
Collapse
|
19
|
Sanchez‐Reyes G, Graalfs H, Hafner M, Frech C. Mechanistic modeling of ligand density variations on anion exchange chromatography. J Sep Sci 2020; 44:805-821. [DOI: 10.1002/jssc.202001077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Mathias Hafner
- Institute of Molecular Biology and Cell Culture Technology University of Applied Sciences Mannheim Mannheim Germany
| | - Christian Frech
- Institute for Biochemistry University of Applied Sciences Mannheim Mannheim Germany
| |
Collapse
|
20
|
Chen CS, Yoshimoto N, Yamamoto S. Prediction of the Performance of Capture Chromatography Processes of Proteins and Its Application to the Repeated Cyclic Operation Optimization. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020. [DOI: 10.1252/jcej.20we116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chyi-Shin Chen
- Graduate School of Innovation and Science, Biomedical Engineering Center (YUBEC), Yamaguchi University
| | - Noriko Yoshimoto
- Graduate School of Innovation and Science, Biomedical Engineering Center (YUBEC), Yamaguchi University
| | - Shuichi Yamamoto
- Graduate School of Innovation and Science, Biomedical Engineering Center (YUBEC), Yamaguchi University
| |
Collapse
|
21
|
Khanal O, Kumar V, Lenhoff AM. Displacement to separate host-cell proteins and aggregates in cation-exchange chromatography of monoclonal antibodies. Biotechnol Bioeng 2020; 118:164-174. [PMID: 32910459 DOI: 10.1002/bit.27559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
An efficient and consistent method of monoclonal antibody (mAb) purification can improve process productivity and product consistency. Although protein A chromatography removes most host-cell proteins (HCPs), mAb aggregates and the remaining HCPs are challenging to remove in a typical bind-and-elute cation-exchange chromatography (CEX) polishing step. A variant of the bind-and-elute mode is the displacement mode, which allows strongly binding impurities to be preferentially retained and significantly improves resin utilization. Improved resin utilization renders displacement chromatography particularly suitable in continuous chromatography operations. In this study we demonstrate and exploit sample displacement between a mAb and impurities present at low prevalence (0.002%-1.4%) using different multicolumn designs and recycling. Aggregate displacement depends on the residence time, sample concentration, and solution environment, the latter by enhancing the differences between the binding affinities of the product and the impurities. Displacement among the mAb and low-prevalence HCPs resulted in an effectively bimodal-like distribution of HCPs along the length of a multi-column system, with the mAb separating the relatively more basic group of HCPs from those that are more acidic. Our findings demonstrate that displacement of low-prevalence impurities along multiple CEX columns allows for selective separation of mAb aggregates and HCPs that persist through protein A chromatography.
Collapse
Affiliation(s)
- Ohnmar Khanal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Vijesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
22
|
Leisi R, Wolfisberg R, Nowak T, Caliaro O, Hemmerle A, Roth NJ, Ros C. Impact of the isoelectric point of model parvoviruses on viral retention in anion-exchange chromatography. Biotechnol Bioeng 2020; 118:116-129. [PMID: 32886351 DOI: 10.1002/bit.27555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
Anion-exchange chromatography (AEX) is used in the downstream purification of monoclonal antibodies to remove impurities and potential viral contamination based on electrostatic interactions. Although the isoelectric point (pI) of viruses is considered a key factor predicting the virus adsorption to the resin, the precise molecular mechanisms involved remain unclear. To address this question, we compared structurally homologous parvoviruses that only differ in their surface charge distribution. A single charged amino acid substitution on the capsid surface of minute virus of mice (MVM) provoked an increased apparent pI (pIapp ) 6.2 compared to wild-type MVM (pIapp = 4.5), as determined by chromatofocusing. Despite their radically different pIapp , both viruses displayed the same interaction profile in Mono Q AEX at different pH conditions. In contrast, the closely related canine parvovirus (pIapp = 5.3) displayed a significantly different interaction at pH 5. The detailed structural analysis of the intricate three-dimensional structure of the capsids suggests that the charge distribution is critical, and more relevant than the pI, in controlling the interaction of a virus with the chromatographic resin. This study contributes to a better understanding of the molecular mechanisms governing virus clearance by AEX, which is crucial to enable robust process design and maximize safety.
Collapse
Affiliation(s)
- Remo Leisi
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Raphael Wolfisberg
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | | | - Oliver Caliaro
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Andreas Hemmerle
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | | | - Carlos Ros
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Hagemann F, Adametz P, Wessling M, Thom V. Modeling hindered diffusion of antibodies in agarose beads considering pore size reduction due to adsorption. J Chromatogr A 2020; 1626:461319. [DOI: 10.1016/j.chroma.2020.461319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
|
24
|
Garrido PF, Calvelo M, Blanco-González A, Veleiro U, Suárez F, Conde D, Cabezón A, Piñeiro Á, Garcia-Fandino R. The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. Int J Pharm 2020; 588:119689. [PMID: 32717282 PMCID: PMC7381410 DOI: 10.1016/j.ijpharm.2020.119689] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
A handful of singular structures and laws can be observed in nature. They are not always evident but, once discovered, it seems obvious how to take advantage of them. In chemistry, the discovery of reproducible patterns stimulates the imagination to develop new functional materials and technological or medical applications. Two clear examples are helical structures at different levels in biological polymers as well as ring and spherical structures of different size and composition. Rings are intuitively observed as holes able to thread elongated structures. A large number of real and fictional stories have rings as inanimate protagonists. The design, development or just discovering of a special ring has often been taken as a symbol of power or success. Several examples are the Piscatory Ring wore by the Pope of the Catholic Church, the NBA Championship ring and the One Ring created by the Dark Lord Sauron in the epic story The Lord of the Rings. In this work, we reveal the power of another extremely powerful kind of rings to fight against the pandemic which is currently affecting the whole world. These rings are as small as ~1 nm of diameter and so versatile that they are able to participate in the attack of viruses, and specifically SARS-CoV-2, in a large range of different ways. This includes the encapsulation and transport of specific drugs, as adjuvants to stabilize proteins, vaccines or other molecules involved in the infection, as cholesterol trappers to destabilize the virus envelope, as carriers for RNA therapies, as direct antiviral drugs and even to rescue blood coagulation upon heparin treatment. “One ring to rule them all. One ring to find them. One ring to bring them all and in the darkness bind them.” J. R. R. Tolkien.
Collapse
Affiliation(s)
- Pablo F Garrido
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Martín Calvelo
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Alexandre Blanco-González
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Uxía Veleiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Fabián Suárez
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Daniel Conde
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Alfonso Cabezón
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rebeca Garcia-Fandino
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
25
|
Hasegawa S, Chen CS, Yoshimoto N, Yamamoto S. Optimization of Flow-Through Chromatography of Proteins. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020. [DOI: 10.1252/jcej.20we003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sumiko Hasegawa
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| | - Chyi-Shin Chen
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| | - Noriko Yoshimoto
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| | - Shuichi Yamamoto
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| |
Collapse
|
26
|
Hasegawa S, Chen CS, Yoshimoto N, Yamamoto S. Accelerated Method for Designing Flow-Through Chromatography of Proteins. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020. [DOI: 10.1252/jcej.20we002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sumiko Hasegawa
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| | - Chyi-Shin Chen
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| | - Noriko Yoshimoto
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| | - Shuichi Yamamoto
- Graduate School of Medicine, Biomedical Engineering Center (YUBEC), Yamaguchi University
| |
Collapse
|
27
|
Yang Z, Sun A, Zhao X, Song M, Wei J, Wang J, Zhao T, Xie Y, Chen Z, Tian Z, Liu H, Huang Z, Song X, Feng Z. Preparation and application of a beta-d-glucan microsphere conjugated protein A/G. Int J Biol Macromol 2020; 151:878-884. [DOI: 10.1016/j.ijbiomac.2020.02.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 12/29/2022]
|
28
|
Design space and robustness analysis of batch and counter-current frontal chromatography processes for the removal of antibody aggregates. J Chromatogr A 2020; 1619:460943. [PMID: 32061360 DOI: 10.1016/j.chroma.2020.460943] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/11/2022]
Abstract
Increasing molecular diversity and market competition requires biopharmaceutical manufacturers to intensify their processes. In this respect, frontal chromatography on cation exchange resins has shown its potential to effectively remove aggregates. However, yield losses during the wash step need to be accepted in order to ensure robust product quality. In this work, we present a novel counter-current frontal chromatography process called Flow2, which uses inline dilution during an interconnected wash phase to allow high monomer recovery without contaminating the product pool with impurities. Its model-based design spaces under purity and yield constraints are compared with those corresponding to traditional batch processes in terms of size and process attributes yield and productivity. The Flow2 process shows the largest extent of feasible operating points independent of feed conditions. Thereby, it allows the implementation of higher ionic strength wash, thus widening the range of operating conditions resulting in yields above 95% compared to batch processes. Productivities of batch and counter-current processes are the same at short regeneration times and equal residence time. However, long regeneration times, while influencing the size of the Flow2 design space, are not detrimental for its productivity resulting in twice as high values as obtained for the batch process. Furthermore, process robustness is evaluated by the ability of the process to maintain the required product quality when subjected to process parameter perturbations. It is found that the Flow2 process is able to retain a larger design space associated also with higher yields showing its ability to improve process attributes without sacrificing robustness at the same time.
Collapse
|
29
|
Wang L, Trang HK, Desai J, Dunn ZD, Richardson DD, Marcus RK. Fiber-based HIC capture loop for coupling of protein A and size exclusion chromatography in a two-dimensional separation of monoclonal antibodies. Anal Chim Acta 2020; 1098:190-200. [DOI: 10.1016/j.aca.2019.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022]
|
30
|
Kahrs C, Schwellenbach J. Membrane formation via non-solvent induced phase separation using sustainable solvents: A comparative study. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122071] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Das TK, Narhi LO, Sreedhara A, Menzen T, Grapentin C, Chou DK, Antochshuk V, Filipe V. Stress Factors in mAb Drug Substance Production Processes: Critical Assessment of Impact on Product Quality and Control Strategy. J Pharm Sci 2020; 109:116-133. [DOI: 10.1016/j.xphs.2019.09.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
|
32
|
Budge JD, Knight TJ, Povey J, Roobol J, Brown IR, Singh G, Dean A, Turner S, Jaques CM, Young RJ, Racher AJ, Smales CM. Engineering of Chinese hamster ovary cell lipid metabolism results in an expanded ER and enhanced recombinant biotherapeutic protein production. Metab Eng 2020; 57:203-216. [PMID: 31805379 PMCID: PMC6975165 DOI: 10.1016/j.ymben.2019.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/18/2019] [Accepted: 11/23/2019] [Indexed: 01/02/2023]
Abstract
Chinese hamster ovary (CHO) cell expression systems have been exquisitely developed for the production of recombinant biotherapeutics (e.g. standard monoclonal antibodies, mAbs) and are able to generate efficacious, multi-domain proteins with human-like post translational modifications at high concentration with appropriate product quality attributes. However, there remains a need for development of new CHO cell expression systems able to produce more challenging secretory recombinant biotherapeutics at higher yield with improved product quality attributes. Amazingly, the engineering of lipid metabolism to enhance such properties has not been investigated even though the biosynthesis of recombinant proteins is at least partially controlled by cellular processes that are highly dependent on lipid metabolism. Here we show that the global transcriptional activator of genes involved in lipid biosynthesis, sterol regulatory element binding factor 1 (SREBF1), and stearoyl CoA desaturase 1 (SCD1), an enzyme which catalyzes the conversion of saturated fatty acids into monounsaturated fatty acids, can be overexpressed in CHO cells to different degrees. The amount of overexpression obtained of each of these lipid metabolism modifying (LMM) genes was related to the subsequent phenotypes observed. Expression of a number of model secretory biopharmaceuticals was enhanced between 1.5-9 fold in either SREBF1 or SCD1 engineered CHO host cells as assessed under batch and fed-batch culture. The SCD1 overexpressing polyclonal pool consistently showed increased concentration of a range of products. For the SREBF1 engineered cells, the level of SREBF1 expression that gave the greatest enhancement in yield was dependent upon the model protein tested. Overexpression of both SCD1 and SREBF1 modified the lipid profile of CHO cells and the cellular structure. Mechanistically, overexpression of SCD1 and SREBF1 resulted in an expanded endoplasmic reticulum (ER) that was dependent upon the level of LMM overexpression. We conclude that manipulation of lipid metabolism in CHO cells via genetic engineering is an exciting new approach to enhance the ability of CHO cells to produce a range of different types of secretory recombinant protein products via modulation of the cellular lipid profile and expansion of the ER.
Collapse
Affiliation(s)
- James D Budge
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Tanya J Knight
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Jane Povey
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Joanne Roobol
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Ian R Brown
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Gurdeep Singh
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Andrew Dean
- Lonza Biologics, 228 Bath Road, Slough, SL1 4DX, UK
| | - Sarah Turner
- Lonza Biologics, 228 Bath Road, Slough, SL1 4DX, UK
| | | | - Robert J Young
- Cell Engineering Group, Lonza Biologics, Granta Park, Cambridge, CB21 6GS, UK
| | | | - C Mark Smales
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK.
| |
Collapse
|
33
|
Brämer C, Tünnermann L, Gonzalez Salcedo A, Reif OW, Solle D, Scheper T, Beutel S. Membrane Adsorber for the Fast Purification of a Monoclonal Antibody Using Protein A Chromatography. MEMBRANES 2019; 9:E159. [PMID: 31783640 PMCID: PMC6950724 DOI: 10.3390/membranes9120159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/20/2023]
Abstract
Monoclonal antibodies are conquering the biopharmaceutical market because they can be used to treat a variety of diseases. Therefore, it is very important to establish robust and optimized processes for their production. In this article, the first step of chromatography (Protein A chromatography) in monoclonal antibody purification was optimized with a focus on the critical elution step. Therefore, different buffers (citrate, glycine, acetate) were tested for chromatographic performance and product quality. Membrane chromatography was evaluated because it promises high throughputs and short cycle times. The membrane adsorber Sartobind® Protein A 2 mL was used to accelerate the purification procedure and was further used to perform a continuous chromatographic run with a four-membrane adsorber-periodic counter-current chromatography (4MA-PCCC) system. It was found that citrate buffer at pH 3.5 and 0.15 M NaCl enabled the highest recovery of >95% and lowest total aggregate content of 0.26%. In the continuous process, the capacity utilization of the membrane adsorber was increased by 20%.
Collapse
Affiliation(s)
- Chantal Brämer
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Lisa Tünnermann
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Alina Gonzalez Salcedo
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Oscar-Werner Reif
- Sartorius Stedim Biotech, August-Spindler-Straße 11, 37079 Göttingen, Germany;
| | - Dörte Solle
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Thomas Scheper
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Sascha Beutel
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| |
Collapse
|
34
|
Meingast C, Heldt CL. Arginine‐enveloped virus inactivation and potential mechanisms. Biotechnol Prog 2019; 36:e2931. [DOI: 10.1002/btpr.2931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Christa Meingast
- Department of Civil and Environmental Engineering Michigan Technological University Houghton Michigan
| | - Caryn L. Heldt
- Department of Chemical Engineering Michigan Technological University Houghton Michigan
| |
Collapse
|
35
|
Stone MT, Cotoni KA, Stoner JL. Cation exchange frontal chromatography for the removal of monoclonal antibody aggregates. J Chromatogr A 2019; 1599:152-160. [DOI: 10.1016/j.chroma.2019.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
|
36
|
Cervera L, Gòdia F, Tarrés-Freixas F, Aguilar-Gurrieri C, Carrillo J, Blanco J, Gutiérrez-Granados S. Production of HIV-1-based virus-like particles for vaccination: achievements and limits. Appl Microbiol Biotechnol 2019; 103:7367-7384. [DOI: 10.1007/s00253-019-10038-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
|
37
|
Poly(N,N-dimethylaminopropyl acrylamide)-grafted Sepharose FF: A new anion exchanger of very high capacity and uptake rate for protein chromatography. J Chromatogr A 2019; 1597:187-195. [DOI: 10.1016/j.chroma.2019.03.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
|
38
|
Singh N, Herzer S. Downstream Processing Technologies/Capturing and Final Purification : Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:115-178. [PMID: 28795201 DOI: 10.1007/10_2017_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased pressure on upstream processes to maximize productivity has been crowned with great success, although at the cost of shifting the bottleneck to purification. As drivers were economical, focus is on now on debottlenecking downstream processes as the main drivers of high manufacturing cost. Devising a holistically efficient and economical process remains a key challenge. Traditional and emerging protein purification strategies with particular emphasis on methodologies implemented for the production of recombinant proteins of biopharmaceutical importance are reviewed. The breadth of innovation is addressed, as well as the challenges the industry faces today, with an eye to remaining impartial, fair, and balanced. In addition, the scope encompasses both chromatographic and non-chromatographic separations directed at the purification of proteins, with a strong emphasis on antibodies. Complete solutions such as integrated USP/DSP strategies (i.e., continuous processing) are discussed as well as gains in data quantity and quality arising from automation and high-throughput screening (HTS). Best practices and advantages through design of experiments (DOE) to access a complex design space such as multi-modal chromatography are reviewed with an outlook on potential future trends. A discussion of single-use technology, its impact and opportunities for further growth, and the exciting developments in modeling and simulation of DSP rounds out the overview. Lastly, emerging trends such as 3D printing and nanotechnology are covered. Graphical Abstract Workflow of high-throughput screening, design of experiments, and high-throughput analytics to understand design space and design space boundaries quickly. (Reproduced with permission from Gregory Barker, Process Development, Bristol-Myers Squibb).
Collapse
Affiliation(s)
- Nripen Singh
- Bristol-Myers Squibb, Global Manufacturing and Supply, Devens, MA, 01434, USA.
| | - Sibylle Herzer
- Bristol-Myers Squibb, Global Manufacturing and Supply, Hopewell, NJ, 01434, USA
| |
Collapse
|
39
|
Vogg S, Ulmer N, Souquet J, Broly H, Morbidelli M. Experimental Evaluation of the Impact of Intrinsic Process Parameters on the Performance of a Continuous Chromatographic Polishing Unit (MCSGP). Biotechnol J 2019; 14:e1800732. [PMID: 30927513 DOI: 10.1002/biot.201800732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/24/2019] [Indexed: 11/08/2022]
Abstract
The semicontinuous twin-column multicolumn countercurrent solvent gradient purification (MCSGP) process improves the trade-off between purity and yield encountered in traditional batch chromatography, while its complexity, in terms of hardware requirements and process design, is reduced in comparison to process variants using more columns. In this study, the MCSGP process is experimentally characterized, specifically with respect to its unique degrees of freedom, i.e., the four switching times, which alternate the columns between interconnected and batch states. By means of isolation of the main charge isoform of an antibody, it is shown that purity is determined by the selection of the product collection window with negligible influence from the recycle phases. In addition, the amount of weak and strong impurities can be specifically attributed to the start and end of the collection, respectively. Due to higher abundance of weakly adsorbing impurities, the start of product collection influences productivity and yield more than the other switching times. Furthermore, most of the encountered tendencies scale between different loadings. The found trends can be rationalized from the corresponding batch chromatogram and therefore used during process design to obtain desirable process performances without extensive trial-and-error experimentation or complete model development and calibration.
Collapse
Affiliation(s)
- Sebastian Vogg
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093, Zurich, Switzerland
| | - Nicole Ulmer
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093, Zurich, Switzerland
| | - Jonathan Souquet
- Biotech Process Sciences, Merck Biopharma, 1809, Corsier-sur-Vevey, Switzerland
| | - Hervé Broly
- Biotech Process Sciences, Merck Biopharma, 1809, Corsier-sur-Vevey, Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
40
|
Bieberbach M, Kosiol P, Seay A, Bennecke M, Hansmann B, Hepbildikler S, Thom V. Investigation of fouling mechanisms of virus filters during the filtration of protein solutions using a high throughput filtration screening device. Biotechnol Prog 2019; 35:e2776. [DOI: 10.1002/btpr.2776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/19/2018] [Indexed: 01/20/2023]
Affiliation(s)
| | - Peter Kosiol
- Sartorius Stedim Biotech GmbH, 37079 Göttingen Germany
| | | | | | | | | | - Volkmar Thom
- Sartorius Stedim Biotech GmbH, 37079 Göttingen Germany
| |
Collapse
|
41
|
Großhans S, Wang G, Hubbuch J. Water on hydrophobic surfaces: mechanistic modeling of polyethylene glycol-induced protein precipitation. Bioprocess Biosyst Eng 2019; 42:513-520. [PMID: 30535587 PMCID: PMC6430756 DOI: 10.1007/s00449-018-2054-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/30/2018] [Indexed: 11/26/2022]
Abstract
For the purification of biopharmaceutical proteins, liquid chromatography is still the gold standard. Especially with increasing product titers, drawbacks like slow volumetric throughput and high resin costs lead to an intensifying need for alternative technologies. Selective preparative protein precipitation is one promising alternative technique. Although the capability has been proven, there has been no precipitation process realized for large-scale monoclonal antibody (mAb) production yet. One reason might be that the mechanism behind protein phase behavior is not completely understood and the precipitation process development is still empirical. Mechanistic modeling can be a means for faster, material-saving process development and a better process understanding at the same time. In preparative chromatography, mechanistic modeling was successfully shown for a variety of applications. Lately, a new isotherm for hydrophobic interaction chromatography (HIC) under consideration of water molecules as participants was proposed, enabling an accurate description of HIC. In this work, based on similarities between protein precipitation and HIC, a new precipitation model was derived. In the proposed model, the formation of protein-protein interfaces is thought to be driven by hydrophobic effects, involving a reorganization of the well-ordered water structure on the hydrophobic surfaces of the protein-protein complex. To demonstrate model capability, high-throughput precipitation experiments with pure or prior to the experiments purified proteins lysozyme, myoglobin, bovine serum albumin, and one mAb were conducted at various pH values. Polyethylene glycol (PEG) 6000 was used as precipitant. The precipitant concentration as well as the initial protein concentration was varied systematically. For all investigated proteins, the initial protein concentrations were varied between 1.5 mg/mL and 12 mg/mL. The calibrated models were successfully validated with experimental data. This mechanistic description of protein precipitation process offers mathematical explanation of the precipitation behavior of proteins at PEG concentration, protein concentration, protein size, and pH.
Collapse
Affiliation(s)
- Steffen Großhans
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences Section IV: Biomolecular Separation Engineering, 76131, Karlsruhe, Germany
| | - Gang Wang
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences Section IV: Biomolecular Separation Engineering, 76131, Karlsruhe, Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences Section IV: Biomolecular Separation Engineering, 76131, Karlsruhe, Germany.
| |
Collapse
|
42
|
Kosiol P, Kahrs C, Thom V, Ulbricht M, Hansmann B. Investigation of virus retention by size exclusion membranes under different flow regimes. Biotechnol Prog 2018; 35:e2747. [PMID: 30431234 DOI: 10.1002/btpr.2747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 10/02/2018] [Accepted: 11/09/2018] [Indexed: 11/05/2022]
Abstract
Virus removal by filter membranes is regarded as a robust and efficient unit operation, which is frequently applied in the downstream processing of biopharmaceuticals. The retention of viruses by virus filtration membranes is predominantly based on size exclusion. However, recent results using model membranes and bacteriophage PP7 point to the fact that virus retention can also significantly be influenced by adsorptive interactions between virus, product molecules, and membranes. Furthermore, the impact of flow rate and flow interruptions on virus retention have been studied and responsible mechanisms discussed. The aim of this investigation was to gain a holistic understanding of the underlying mechanisms for virus retention in size exclusion membranes as a function of membrane structure and membrane surface properties, as well as flow and solution conditions. The results of this study contribute to the differentiation between size exclusion and adsorptive effects during virus filtration and broaden the current understanding of mechanisms related to virus breakthroughs after temporary flow interruptions. Within the frame of a Design of Experiments approach it was found that the level of retention of virus filtration membranes was mostly influenced by the membrane structure during typical process-related flow conditions. The retention performance after a flow interruption was also significantly influenced by membrane surface properties and solution conditions. While size exclusion was confirmed as main retention mechanism, the analysis of all results suggests that especially after a flow interruption virus retention can be influenced by adsorptive effects between the virus and the membrane surface. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2747, 2019.
Collapse
Affiliation(s)
- Peter Kosiol
- Sartorius Stedim Biotech GmbH, 37079, Göttingen, Germany.,Universität Duisburg-Essen, Technische Chemie II, 45141, Essen, Germany
| | | | - Volkmar Thom
- Sartorius Stedim Biotech GmbH, 37079, Göttingen, Germany
| | - Mathias Ulbricht
- Universität Duisburg-Essen, Technische Chemie II, 45141, Essen, Germany
| | - Björn Hansmann
- Sartorius Stedim Biotech GmbH, 37079, Göttingen, Germany
| |
Collapse
|
43
|
Challenges to industrial mAb bioprocessing—removal of host cell proteins in CHO cell bioprocesses. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
MacDonald ML, Hamaker NK, Lee KH. Bioinformatic analysis of Chinese hamster ovary host cell protein lipases. AIChE J 2018; 64:4247-4254. [PMID: 30911190 DOI: 10.1002/aic.16378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Complete, accurate genome assemblies are necessary to design targets for genetic engineering strategies. Successful gene knockdowns and knockouts in Chinese hamster ovary (CHO) cells may prevent the expression of difficult-to-remove host cell proteins (HCPs). HCPs, if not removed, can cause problems in stability, safety, and efficacy of the biotherapeutic. A significantly improved Chinese hamster (CH) reference genome was used to identify new knockout targets with similar predicted functions and characteristics as the difficult-to-remove host cell lipases, LPL, PLBL2, and LPLA2. The CHO-K1 gene and protein sequences of several of these lipases were corrected using the updated CH genome. Sequence alignments were then used to identify conserved regions that may serve as possible targets for multiple simultaneous gene knockouts. Finally, comparison of the CHO-K1 lipase protein sequences to their human orthologs provided insight into which lipases, if persistent in the drug product, could possibly cause immunogenic responses in patients.
Collapse
Affiliation(s)
- Madolyn L. MacDonald
- Delaware Biotechnology Institute University of Delaware Newark DE, 19711
- Center for Bioinformatics and Computational Biology University of Delaware Newark DE, 19711
- Dept. of Computer and Information Sciences University of Delaware Newark DE, 19716
| | - Nathaniel K. Hamaker
- Delaware Biotechnology Institute University of Delaware Newark DE, 19711
- Dept. of Chemical and Biomolecular Engineering University of Delaware Newark DE, 19716
| | - Kelvin H. Lee
- Delaware Biotechnology Institute University of Delaware Newark DE, 19711
- Dept. of Chemical and Biomolecular Engineering University of Delaware Newark DE, 19716
| |
Collapse
|
45
|
Applications of proteomic methods for CHO host cell protein characterization in biopharmaceutical manufacturing. Curr Opin Biotechnol 2018; 53:144-150. [DOI: 10.1016/j.copbio.2018.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022]
|
46
|
Wittkopp F, Peeck L, Hafner M, Frech C. Modeling and simulation of protein elution in linear pH and salt gradients on weak, strong and mixed cation exchange resins applying an extended Donnan ion exchange model. J Chromatogr A 2018. [DOI: 10.1016/j.chroma.2018.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Flocculation of CHO cells for primary separation of recombinant glycoproteins: Effect on glycosylation profiles. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Brinkmann A, Elouafiq S, Pieracci J, Westoby M. Leveraging single-pass tangential flow filtration to enable decoupling of upstream and downstream monoclonal antibody processing. Biotechnol Prog 2018; 34:405-411. [DOI: 10.1002/btpr.2601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/10/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Alex Brinkmann
- Biopharmaceutical Development, Biogen; Research Triangle Park NC 27709
| | - Sanaa Elouafiq
- Biopharmaceutical Development, Biogen; Research Triangle Park NC 27709
| | - John Pieracci
- Biopharmaceutical Development, Biogen; Cambridge MA 02142
| | - Matthew Westoby
- Biopharmaceutical Development, Biogen; Research Triangle Park NC 27709
| |
Collapse
|
49
|
Ichihara T, ITO T, Kurisu Y, Galipeau K, Gillespie C. Integrated flow-through purification for therapeutic monoclonal antibodies processing. MAbs 2018; 10:325-334. [PMID: 29271693 PMCID: PMC5825194 DOI: 10.1080/19420862.2017.1417717] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 11/08/2022] Open
Abstract
An integrated all flow-through technology platform for the purification of therapeutic monoclonal antibodies (mAb), consisting of activated carbon and flow-through cation and anion exchange chromatography steps, can replace a conventional chromatography platform. This new platform was observed to have excellent impurity clearance at high mAb loadings with overall mAb yield exceeding 80%. Robust removal of DNA and host cell protein was demonstrated by activated carbon and a new flow-through cation exchange resin exhibited excellent clearance of mAb aggregate with high monomer recoveries. A ten-fold improvement of mAb loading was achieved compared to a traditional cation exchange resin designed for bind and elute mode. High throughput 96-well plate screening was used for process optimization, focusing on mAb loading and solution conditions. Optimum operating windows for integrated flow-through purification are proposed based on performance characteristics. The combination of an all flow-through polishing process presents significant opportunities for improvements in facility utilization and process economics.
Collapse
Affiliation(s)
| | - Takao ITO
- Process solutions, Merck Ltd., DiverCity Tokyo Office Tower 15F, 1-1-20 Aomi, Koto-ku, Tokyo, Japan
| | - Yasuhiko Kurisu
- Process solutions, Merck Ltd., DiverCity Tokyo Office Tower 15F, 1-1-20 Aomi, Koto-ku, Tokyo, Japan
| | | | | |
Collapse
|
50
|
Neural Network to Understand Process Capability and Process Intermediates Acceptance Criteria in Monoclonal Antibody Production Process. J Pharm Innov 2017. [DOI: 10.1007/s12247-017-9301-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|