1
|
Sinegubova MV, Kolesov DE, Vorobiev II, Orlova NA. Increased glycoprotein hormone yield in stably transfected CHO cells using human serum albumin signal peptide for beta-chains. PeerJ 2025; 13:e18908. [PMID: 39963195 PMCID: PMC11831970 DOI: 10.7717/peerj.18908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Heterologous signal peptides enable increasing titers of recombinant proteins in mammalian cell culture. Four human heterodimeric glycoprotein hormones (follicle-stimulating hormone, FSH; luteinizing hormone, LH; chorionic gonadotropin, CG; and thyroid-stimulating hormone, TSH) were expressed in stably transfected CHO cells when varying signal peptides of their β-subunits. The signal peptide of human serum albumin proved to be the most effective for the glycoprotein hormone family. The cell specific productivity was increased for LH (2.5 pg/cell, 4-fold increase), TSH (1.6 pg/cell, 13-fold increase), and CG (1.0 pg/cell, 60%-increase). According to the Western blotting and quantitative PCR data, the productivity increase is associated with an increase in the efficiency of translation and translocation of β-subunits of hormones in the endoplasmic reticulum due to their coupling with the heterologous signal peptides.
Collapse
Affiliation(s)
- Maria V. Sinegubova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Denis E. Kolesov
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan I. Vorobiev
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda A. Orlova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
O’Neill P, Mistry RK, Brown AJ, James DC. Protein-Specific Signal Peptides for Mammalian Vector Engineering. ACS Synth Biol 2023; 12:2339-2352. [PMID: 37487508 PMCID: PMC10443038 DOI: 10.1021/acssynbio.3c00157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 07/26/2023]
Abstract
Expression of recombinant proteins in mammalian cell factories relies on synthetic assemblies of genetic parts to optimally control flux through the product biosynthetic pathway. In comparison to other genetic part-types, there is a relative paucity of characterized signal peptide components, particularly for mammalian cell contexts. In this study, we describe a toolkit of signal peptide elements, created using bioinformatics-led and synthetic design approaches, that can be utilized to enhance production of biopharmaceutical proteins in Chinese hamster ovary cell factories. We demonstrate, for the first time in a mammalian cell context, that machine learning can be used to predict how discrete signal peptide elements will perform when utilized to drive endoplasmic reticulum (ER) translocation of specific single chain protein products. For more complex molecular formats, such as multichain monoclonal antibodies, we describe how a combination of in silico and targeted design rule-based in vitro testing can be employed to rapidly identify product-specific signal peptide solutions from minimal screening spaces. The utility of this technology is validated by deriving vector designs that increase product titers ≥1.8×, compared to standard industry systems, for a range of products, including a difficult-to-express monoclonal antibody. The availability of a vastly expanded toolbox of characterized signal peptide parts, combined with streamlined in silico/in vitro testing processes, will permit efficient expression vector re-design to maximize titers of both simple and complex protein products.
Collapse
Affiliation(s)
- Pamela O’Neill
- Department
of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Rajesh K. Mistry
- AstraZeneca, BioPharmaceutical Development, Cell Culture and Fermentation
Sciences, Aaron Klugg Building, Granta
Park, Cambridge CB21 6GH, U.K.
| | - Adam J. Brown
- Department
of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
- SynGenSys
Limited, Freeths LLP, Norfolk Street, Sheffield S1 2JE, U.K.
| | - David C. James
- Department
of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
- SynGenSys
Limited, Freeths LLP, Norfolk Street, Sheffield S1 2JE, U.K.
| |
Collapse
|
3
|
Frigerio R, Marusic C, Villani ME, Lico C, Capodicasa C, Andreano E, Paciello I, Rappuoli R, Salzano AM, Scaloni A, Baschieri S, Donini M. Production of two SARS-CoV-2 neutralizing antibodies with different potencies in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:956741. [PMID: 36131799 PMCID: PMC9484322 DOI: 10.3389/fpls.2022.956741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 05/31/2023]
Abstract
Monoclonal antibodies are considered to be highly effective therapeutic tools for the treatment of mild to moderate COVID-19 patients. In the present work, we describe the production of two SARS-CoV-2 human IgG1 monoclonal antibodies recognizing the spike protein receptor-binding domain (RBD) and endowed with neutralizing activity (nAbs) in plants. The first one, mAbJ08-MUT, was previously isolated from a COVID-19 convalescent patient and Fc-engineered to prolong the half-life and reduce the risk of antibody-dependent enhancement. This nAb produced in mammalian cells, delivered in a single intramuscular administration during a Phase I clinical study, was shown to (i) be safe and effectively protect against major variants of concern, and (ii) have some neutralizing activity against the recently emerged omicron variant in a cytopathic-effect-based microneutralization assay (100% inhibitory concentration, IC100 of 15 μg/mL). The second antibody, mAb675, previously isolated from a vaccinated individual, showed an intermediate neutralization activity against SARS-CoV-2 variants. Different accumulation levels of mAbJ08-MUT and mAb675 were observed after transient agroinfiltration in Nicotiana benthamiana plants knocked-out for xylosil and fucosil transferases, leading to yields of ~35 and 150 mg/kg of fresh leaf mass, respectively. After purification, as a result of the proteolytic events affecting the hinge-CH2 region, a higher degradation of mAb675 was observed, compared to mAbJ08-MUT (~18% vs. ~1%, respectively). Both nAbs showed a human-like glycosylation profile, and were able to specifically bind to RBD and compete with angiotensin-converting enzyme 2 binding in vitro. SARS-CoV-2 neutralization assay against the original virus isolated in Wuhan demonstrated the high neutralization potency of the plant-produced mAbJ08-MUT, with levels (IC100 < 17 ng/mL) comparable to those of the cognate antibody produced in a Chinese hamster ovary cell line; conversely, mAb675 exhibited a medium neutralization potency (IC100 ~ 200 ng/mL). All these data confirm that plant expression platforms may represent a convenient and rapid production system of potent nAbs to be used both in therapy and diagnostics in pandemic emergencies.
Collapse
Affiliation(s)
- Rachele Frigerio
- Laboratory of Biotechnology, ENEA Research Center Casaccia, Rome, Italy
| | - Carla Marusic
- Laboratory of Biotechnology, ENEA Research Center Casaccia, Rome, Italy
| | | | - Chiara Lico
- Laboratory of Biotechnology, ENEA Research Center Casaccia, Rome, Italy
| | | | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Anna Maria Salzano
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Selene Baschieri
- Laboratory of Biotechnology, ENEA Research Center Casaccia, Rome, Italy
| | - Marcello Donini
- Laboratory of Biotechnology, ENEA Research Center Casaccia, Rome, Italy
| |
Collapse
|
4
|
Li ZM, Fan ZL, Wang XY, Wang TY. Factors Affecting the Expression of Recombinant Protein and Improvement Strategies in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2022; 10:880155. [PMID: 35860329 PMCID: PMC9289362 DOI: 10.3389/fbioe.2022.880155] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 01/20/2023] Open
Abstract
Recombinant therapeutic proteins (RTPs) are important parts of biopharmaceuticals. Chinese hamster ovary cells (CHO) have become the main cell hosts for the production of most RTPs approved for marketing because of their high-density suspension growth characteristics, and similar human post-translational modification patterns et al. In recent years, many studies have been performed on CHO cell expression systems, and the yields and quality of recombinant protein expression have been greatly improved. However, the expression levels of some proteins are still low or even difficult-to express in CHO cells. It is urgent further to increase the yields and to express successfully the “difficult-to express” protein in CHO cells. The process of recombinant protein expression of is a complex, involving multiple steps such as transcription, translation, folding processing and secretion. In addition, the inherent characteristics of molecular will also affect the production of protein. Here, we reviewed the factors affecting the expression of recombinant protein and improvement strategies in CHO cells.
Collapse
Affiliation(s)
- Zheng-Mei Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tian-Yun Wang,
| |
Collapse
|
5
|
Bauer J, Mathias S, Kube S, Otte K, Garidel P, Gamer M, Blech M, Fischer S, Karow-Zwick AR. Rational optimization of a monoclonal antibody improves the aggregation propensity and enhances the CMC properties along the entire pharmaceutical process chain. MAbs 2021; 12:1787121. [PMID: 32658605 PMCID: PMC7531517 DOI: 10.1080/19420862.2020.1787121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The discovery of therapeutic monoclonal antibodies (mAbs) primarily focuses on their biological activity favoring the selection of highly potent drug candidates. These candidates, however, may have physical or chemical attributes that lead to unfavorable chemistry, manufacturing, and control (CMC) properties, such as low product titers, conformational and colloidal instabilities, or poor solubility, which can hamper or even prevent development and manufacturing. Hence, there is an urgent need to consider the developability of mAb candidates during lead identification and optimization. This work provides a comprehensive proof of concept study for the significantly improved developability of a mAb variant that was optimized with the help of sophisticated in silico tools relative to its difficult-to-develop parental counterpart. Interestingly, a single amino acid substitution in the variable domain of the light chain resulted in a three-fold increased product titer after stable expression in Chinese hamster ovary cells. Microscopic investigations revealed that wild type mAb-producing cells displayed potential antibody inclusions, while the in silico optimized variant-producing cells showed a rescued phenotype. Notably, the drug substance of the in silico optimized variant contained substantially reduced levels of aggregates and fragments after downstream process purification. Finally, formulation studies unraveled a significantly enhanced colloidal stability of the in silico optimized variant while its folding stability and potency were maintained. This study emphasizes that implementation of bioinformatics early in lead generation and optimization of biotherapeutics reduces failures during subsequent development activities and supports the reduction of project timelines and resources.
Collapse
Affiliation(s)
- Joschka Bauer
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Sven Mathias
- Institute of Applied Biotechnology, University of Applied Sciences Biberach , Biberach/Riss, Germany.,Early Stage Bioprocess Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Sebastian Kube
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach , Biberach/Riss, Germany
| | - Patrick Garidel
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Martin Gamer
- Early Stage Bioprocess Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Michaela Blech
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| | - Anne R Karow-Zwick
- Early Stage Pharmaceutical Development, Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG , Biberach/Riss, Germany
| |
Collapse
|
6
|
Chi B, De Oliveira G, Gallagher T, Mitchell L, Knightley L, Gonzalez CC, Russell S, Germaschewski V, Pearce C, Sellick CA. Pragmatic mAb lead molecule engineering from a developability perspective. Biotechnol Bioeng 2021; 118:3733-3743. [PMID: 33913507 DOI: 10.1002/bit.27802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 01/08/2023]
Abstract
As the number of antibody drugs being approved and marketed increases, our knowledge of what makes potential drug candidates a successful product has increased tremendously. One of the critical parameters that have become clear in the field is the importance of mAb "developability." Efforts are being increasingly focused on simultaneously selecting molecules that exhibit both desirable biological potencies and manufacturability attributes. In the current study mutations to improve the developability profile of a problematic antibody that inconsistently precipitates in a batch scale-dependent fashion using a standard platform purification process are described. Initial bioinformatic analysis showed the molecule has no obvious sequence or structural liabilities that might lead it to precipitate. Subsequent analysis of the molecule revealed the presence of two unusual positively charged mutations on the light chain at the interface of VH and VL domains, which were hypothesized to be the primary contributor to molecule precipitation during process development. To investigate this hypothesis, straightforward reversion to the germline of these residues was carried out. The resulting mutants have improved expression titers and recovered stability within a forced precipitation assay, without any change to biological activity. Given the time pressures of drug development in industry, process optimization of the lead molecule was carried out in parallel to the "retrospective" mutagenesis approach. Bespoke process optimization for large-scale manufacturing was successful. However, we propose that such context-dependent sequence liabilities should be included in the arsenal of in silico developability screening early in development; particularly since this specific issue can be efficiently mitigated without the requirement for extensive screening of lead molecule variants.
Collapse
Affiliation(s)
| | | | - Tom Gallagher
- Kymab Ltd., Cambridge, UK.,F-star Therapeutics Ltd., Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Mathias S, Wippermann A, Raab N, Zeh N, Handrick R, Gorr I, Schulz P, Fischer S, Gamer M, Otte K. Unraveling what makes a monoclonal antibody difficult‐to‐express: From intracellular accumulation to incomplete folding and degradation via ERAD. Biotechnol Bioeng 2019; 117:5-16. [DOI: 10.1002/bit.27196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/13/2019] [Accepted: 10/15/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Sven Mathias
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| | - Anna Wippermann
- Cell Line Development, Bioprocess Development BiologicalsBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Nadja Raab
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| | - Nikolas Zeh
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| | - René Handrick
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| | - Ingo Gorr
- Early Stage Bioprocess Development, Bioprocess Development BiologicalsBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Patrick Schulz
- Cell Line Development, Bioprocess Development BiologicalsBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Simon Fischer
- Cell Line Development CMB, Bioprocess & Analytical DevelopmentBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Martin Gamer
- Cell Line Development, Bioprocess Development BiologicalsBoehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Kerstin Otte
- Institute of Applied BiotechnologyUniversity of Applied Sciences Biberach Biberach Germany
| |
Collapse
|
8
|
Germinality does not necessarily define mAb expression and thermal stability. Appl Microbiol Biotechnol 2019; 103:7505-7518. [PMID: 31350616 PMCID: PMC6719414 DOI: 10.1007/s00253-019-09998-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 01/09/2023]
Abstract
The production potential of recombinant monoclonal antibody (mAb) expressing cell lines depends, among other factors, on the intrinsic antibody structure determined by the amino acid sequence. In this study, we investigated the influence of somatic mutations in the V(D)J sequence of four individual, mature model mAbs on the expression potential. Therefore, we defined four couples, each consisting of one naturally occurring mAb (2G12, Ustekinumab, 4B3, and 2F5) and the corresponding germline-derived cognate mAb (353/11, 554/12, 136/63, and 236/14). For all eight mAb variants, recombinant Chinese hamster ovary (CHO) cell lines were developed with mAbs expressed from a defined chromosomal locus. The presented workflow investigates critical parameters including productivity, intra- and extracellular product profile, XBP1 splicing, thermal stability, and in silico hydrophobicity. Significant differences in productivity were even observed between the germline-derived mAbs which did not undergo somatic mutagenesis. Accordingly, back-to-germline mutations of mature mAbs are not necessarily reflecting improved expression and stability but indicate opportunities and limits of mAb engineering. From our studies, we conclude that germinalization represents a potential to improve mAb properties depending on the antibody’s germline family, highlighting the fact that mAbs should be treated individually.
Collapse
|
9
|
Kaneyoshi K, Kuroda K, Uchiyama K, Onitsuka M, Yamano-Adachi N, Koga Y, Omasa T. Secretion analysis of intracellular "difficult-to-express" immunoglobulin G (IgG) in Chinese hamster ovary (CHO) cells. Cytotechnology 2019; 71:305-316. [PMID: 30637508 DOI: 10.1007/s10616-018-0286-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
The Chinese hamster ovary (CHO) cell line is the most widely used host cell for therapeutic antibody production. Although its productivity has been improved by various strategies to satisfy the growing global demand, some difficult-to-express (DTE) antibodies remain at low secretion levels. To improve the production of various therapeutic antibodies, it is necessary to determine possible rate-limiting steps in DTE antibody secretion in comparison with other high IgG producers. Here, we analyzed the protein secretion process in CHO cells producing the DTE immunoglobulin G (IgG) infliximab. The results from chase assays using a translation inhibitor revealed that infliximab secretion could be nearly completed within 2 h, at which time the cells still retained about 40% of heavy chains and 65% of light chains. Using fluorescent microscopy, we observed that these IgG chains remained in the endoplasmic reticulum and Golgi apparatus. The cells inefficiently form fully assembled heterodimer IgG by making LC aggregates, which may be the most serious bottleneck in the production of DTE infliximab compared with other IgG high producers. Our study could contribute to establish the common strategy for constructing DTE high-producer cells on the basis of rate-limiting step analysis.
Collapse
Affiliation(s)
- Kohei Kaneyoshi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kouki Kuroda
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Keiji Uchiyama
- The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 7708503, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima, 7708513, Japan.,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan.,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan
| | - Yuichi Koga
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan. .,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan.
| |
Collapse
|
10
|
Hussain H, Fisher DI, Roth RG, Mark Abbott W, Carballo-Amador MA, Warwicker J, Dickson AJ. A protein chimera strategy supports production of a model "difficult-to-express" recombinant target. FEBS Lett 2018; 592:2499-2511. [PMID: 29933498 PMCID: PMC6174982 DOI: 10.1002/1873-3468.13170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 12/30/2022]
Abstract
Due in part to the needs of the biopharmaceutical industry, there has been an increased drive to generate high quality recombinant proteins in large amounts. However, achieving high yields can be a challenge as the novelty and increased complexity of new targets often makes them 'difficult-to-express'. This study aimed to define the molecular features that restrict the production of a model 'difficult-to-express' recombinant protein, Tissue Inhibitor Metalloproteinase-3 (TIMP-3). Building from experimental data, computational approaches were used to rationalize the redesign of this recombinant target to generate a chimera with enhanced secretion. The results highlight the importance of early identification of unfavourable sequence attributes, enabling the generation of engineered protein forms that bypass 'secretory' bottlenecks and result in efficient recombinant protein production.
Collapse
Affiliation(s)
- Hirra Hussain
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, University of Manchester, UK
| | - David I Fisher
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Robert G Roth
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - W Mark Abbott
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | - Jim Warwicker
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, University of Manchester, UK
| | - Alan J Dickson
- Faculty of Science and Engineering, Manchester Institute of Biotechnology, University of Manchester, UK
| |
Collapse
|
11
|
An IRES-Mediated Tricistronic Vector for Efficient Generation of Stable, High-Level Monoclonal Antibody Producing CHO DG44 Cell Lines. Methods Mol Biol 2018; 1827:335-349. [PMID: 30196505 DOI: 10.1007/978-1-4939-8648-4_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The generation of stable, high-level monoclonal antibody (mAb) producing cell lines remains a major challenge in biopharmaceutical industry. The commonly used plasmid vectors for mAb expression, which express light chain (LC), heavy chain (HC), and selection marker genes on separate vectors or via multiple promoters on a single vector, are not able to accurately control the ratio of LC over HC expression and tend to result in non-expressing clones. To overcome these issues, we have developed a tricistronic vector using two internal ribosome entry sites (IRES) to express the LC, HC, and dihydrofolate reductase (DHFR) selection marker genes in one transcript. In this tricistronic vector, the three genes are under the control of a hapten-modified human cytomegalovirus (hCMV) promoter containing a core CpG island element (IE) to enhance the production stability. The LC gene is arranged as the first cistron followed by a wild-type IRES to control the HC expression. Such design expresses excess LC polypeptides which enhance mAb expression level and reduce aggregate. A mutated IRES with attenuated strength is applied on DHFR to reduce its expression for enhancing the stringency of selection for high producers. This vector allows easy generation of stable, high mAb producing CHO DG44 pools and clones for antibody development and manufacturing.
Collapse
|
12
|
Kuo CC, Chiang AW, Shamie I, Samoudi M, Gutierrez JM, Lewis NE. The emerging role of systems biology for engineering protein production in CHO cells. Curr Opin Biotechnol 2017; 51:64-69. [PMID: 29223005 DOI: 10.1016/j.copbio.2017.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
Abstract
To meet the ever-growing demand for effective, safe, and affordable protein therapeutics, decades of intense efforts have aimed to maximize the quantity and quality of recombinant proteins produced in CHO cells. Bioprocessing innovations and cell engineering efforts have improved product titer; however, uncharacterized cellular processes and gene regulatory mechanisms still hinder cell growth, specific productivity, and protein quality. Herein, we summarize recent advances in systems biology and data-driven approaches aiming to unravel how molecular pathways, cellular processes, and extrinsic factors (e.g. media supplementation) influence recombinant protein production. In particular, as the available omics data for CHO cells continue to grow, predictive models and screens will be increasingly used to unravel the biological drivers of protein production, which can be used with emerging genome editing technologies to rationally engineer cells to further control the quantity, quality and affordability of many biologic drugs.
Collapse
Affiliation(s)
- Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, United States; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States
| | - Austin Wt Chiang
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Department of Pediatrics, University of California, San Diego, United States
| | - Isaac Shamie
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Bioinformatics and Systems Biology Program, University of California, San Diego, United States
| | - Mojtaba Samoudi
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Department of Pediatrics, University of California, San Diego, United States
| | - Jahir M Gutierrez
- Department of Bioengineering, University of California, San Diego, United States; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, United States; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, United States; Department of Pediatrics, University of California, San Diego, United States.
| |
Collapse
|
13
|
Lin J, Neo SH, Ho SCL, Yeo JHM, Wang T, Zhang W, Bi X, Chao SH, Yang Y. Impact of Signal Peptides on Furin-2A Mediated Monoclonal Antibody Secretion in CHO Cells. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/03/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Jian'er Lin
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Shu Hui Neo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Steven C. L. Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Jessna H. M. Yeo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Tianhua Wang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Wei Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
- Department of Microbiology; National University of Singapore; Block MD4, 5 Science Drive 2 Singapore 117597 Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| |
Collapse
|
14
|
Hussain H, Fisher DI, Abbott WM, Roth RG, Dickson AJ. Use of a protein engineering strategy to overcome limitations in the production of “Difficult to Express” recombinant proteins. Biotechnol Bioeng 2017. [DOI: 10.1002/bit.26358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hirra Hussain
- Manchester Institute of Biotechnology; Faculty of Science and Engineering; University of Manchester; M1 7DN Manchester United Kingdom
| | - David I. Fisher
- AstraZeneca, Cambridge Science Park; Milton Cambridge United Kingdom
| | - W. Mark Abbott
- AstraZeneca, Cambridge Science Park; Milton Cambridge United Kingdom
| | | | - Alan J. Dickson
- Manchester Institute of Biotechnology; Faculty of Science and Engineering; University of Manchester; M1 7DN Manchester United Kingdom
| |
Collapse
|
15
|
Popovic B, Gibson S, Senussi T, Carmen S, Kidd S, Slidel T, Strickland I, Jianqing X, Spooner J, Lewis A, Hudson N, Mackenzie L, Keen J, Kemp B, Hardman C, Hatton D, Wilkinson T, Vaughan T, Lowe D. Engineering the expression of an anti-interleukin-13 antibody through rational design and mutagenesis. Protein Eng Des Sel 2017; 30:303-311. [PMID: 28130326 DOI: 10.1093/protein/gzx001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
High levels of protein expression are key to the successful development and manufacture of a therapeutic antibody. Here, we describe two related antibodies, Ab001 and Ab008, where Ab001 shows a markedly lower level of expression relative to Ab008 when stably expressed in Chinese hamster ovary cells. We use single-gene expression vectors and structural analysis to show that the reduced titer is associated with the VL CDR2 of Ab001. We adopted two approaches to improve the expression of Ab001. First, we used mutagenesis to change single amino-acid residues in the Ab001 VL back to the equivalent Ab008 residues but this resulted in limited improvements in expression. In contrast when we used an in silico structure-based design approach to generate a set of five individual single-point variants in a discrete region of the VL, all exhibited significantly improved expression relative to Ab001. The most successful of these, D53N, exhibited a 25-fold increase in stable transfectants relative to Ab001. The functional potency of these VL-modified antibodies was unaffected. We expect that this in silico engineering strategy can be used to improve the expression of other antibodies and proteins.
Collapse
Affiliation(s)
- Bojana Popovic
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Suzanne Gibson
- Department of Biopharmaceutical Development, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Tarik Senussi
- Department of Biopharmaceutical Development, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Sara Carmen
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Sara Kidd
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Tim Slidel
- Department of Research Informatics, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Ian Strickland
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Xu Jianqing
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Jennifer Spooner
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Amanda Lewis
- Department of Biopharmaceutical Development, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Nathan Hudson
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Lorna Mackenzie
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Jennifer Keen
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Ben Kemp
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Colin Hardman
- Department of Research Informatics, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Diane Hatton
- Department of Biopharmaceutical Development, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Trevor Wilkinson
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Tristan Vaughan
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - David Lowe
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| |
Collapse
|
16
|
Chng J, Wang T, Nian R, Lau A, Hoi KM, Ho SCL, Gagnon P, Bi X, Yang Y. Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells. MAbs 2015; 7:403-12. [PMID: 25621616 DOI: 10.1080/19420862.2015.1008351] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Linking the heavy chain (HC) and light chain (LC) genes required for monoclonal antibodies (mAb) production on a single cassette using 2A peptides allows control of LC and HC ratio and reduces non-expressing cells. Four 2A peptides derived from the foot-and-mouth disease virus (F2A), equine rhinitis A virus (E2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A), respectively, were compared for expression of 3 biosimilar IgG1 mAbs in Chinese hamster ovary (CHO) cell lines. HC and LC were linked by different 2A peptides both in the absence and presence of GSG linkers. Insertion of a furin recognition site upstream of 2A allowed removal of 2A residues that would otherwise be attached to the HC. Different 2A peptides exhibited different cleavage efficiencies that correlated to the mAb expression level. The relative cleavage efficiency of each 2A peptide remains similar for expression of different IgG1 mAbs in different CHO cells. While complete cleavage was not observed for any of the 2A peptides, GSG linkers did enhance the cleavage efficiency and thus the mAb expression level. T2A with the GSG linker (GT2A) exhibited the highest cleavage efficiency and mAb expression level. Stably amplified CHO DG44 pools generated using GT2A had titers 357, 416 and 600 mg/L for the 3 mAbs in shake flask batch cultures. Incomplete cleavage likely resulted in incorrectly processed mAb species and aggregates, which were removed with a chromatin-directed clarification method and protein A purification. The vector and methods presented provide an easy process beneficial for both mAb development and manufacturing.
Collapse
Key Words
- 2A peptide
- CHO
- CHO, Chinese hamster ovary
- E2A, 2A peptide derived from the equine rhinitis virus
- F2A, 2A peptide derived from the foot-and-mouth disease virus
- G, glycine
- GE2A, E2A with the GSG linker
- GF2A, F2A with the GSG linker
- GFP, green fluorescence protein
- GP2A, P2A with the GSG linker
- GSG linker
- GT2A, T2A with the GSG linker
- HC, heavy chain
- HT, hypoxanthine and thymine
- IRES, internal ribosome entry site
- IgG, immunoglobulin G
- K, lysine
- LC, light chain
- MS, mass spectrometry
- MTX, methotrexate
- P, proline
- P2A, 2A peptide derived from the porcine teschovirus-1
- PFM, protein-free medium
- PVDF, polyvinylidene difluoride
- SEC, size exclusion chromatography
- T2A, 2A peptide derived from the Thosea asigna virus
- cleavage efficiency
- furin
- mAb, monoclonal antibody
- monoclonal antibody
Collapse
Affiliation(s)
- Jake Chng
- a Bioprocessing Technology Institute; Agency for Science , Technology and Research (A*STAR) ; Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Early implementation of QbD in biopharmaceutical development: a practical example. BIOMED RESEARCH INTERNATIONAL 2015; 2015:605427. [PMID: 26075248 PMCID: PMC4449898 DOI: 10.1155/2015/605427] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/08/2023]
Abstract
In drug development, the “onus” of the low R&D efficiency has been put traditionally onto the drug discovery process (i.e., finding the right target or “binding” functionality). Here, we show that manufacturing is not only a central component of product success, but also that, by integrating manufacturing and discovery activities in a “holistic” interpretation of QbD methodologies, we could expect to increase the efficiency of the drug discovery process as a whole. In this new context, early risk assessment, using developability methodologies and computational methods in particular, can assist in reducing risks during development in a cost-effective way. We define specific areas of risk and how they can impact product quality in a broad sense, including essential aspects such as product efficacy and patient safety. Emerging industry practices around developability are introduced, including some specific examples of applications to biotherapeutics. Furthermore, we suggest some potential workflows to illustrate how developability strategies can be introduced in practical terms during early drug development in order to mitigate risks, reduce drug attrition and ultimately increase the robustness of the biopharmaceutical supply chain. Finally, we also discuss how the implementation of such methodologies could accelerate the access of new therapeutic treatments to patients in the clinic.
Collapse
|
18
|
|