1
|
Wijerathna-Yapa A, Isaac KS, Combe M, Hume S, Sokolenko S. Re-imagining human cell culture media: Challenges, innovations, and future directions. Biotechnol Adv 2025; 81:108564. [PMID: 40101881 DOI: 10.1016/j.biotechadv.2025.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025]
Abstract
The development of optimized culture media is pivotal to advancements in human cell culture, underpinning progress in regenerative medicine, cell therapies, and personalized medicine. While foundational formulations like Eagle's Minimum Essential Medium (MEM) and Dulbecco's Modified Eagle Medium (DMEM) have historically enabled significant biological research, these media were primarily designed for non-human cells and do not adequately address the unique metabolic and functional requirements of human cells. This review examines the evolution of cell culture media, identifying persistent challenges in reproducibility, scalability, and ethical concerns, particularly regarding the reliance on animal-derived components such as fetal bovine serum (FBS). We highlight innovations in serum-free and chemically defined media that offer promising alternatives by enhancing consistency, aligning with Good Manufacturing Practices, and addressing ethical concerns. Emerging approaches, including omics-based profiling, high-throughput screening, and artificial intelligence (AI)-driven media design, are reshaping media optimization by enabling precise tailoring to the needs of specific human cell types and patient-derived cells. Furthermore, we discuss economic and regulatory challenges, emphasizing the need for cost-effective and scalable solutions to facilitate clinical translation. Looking forward, integrating advanced biotechnological tools such as 3D bioprinting, organ-on-a-chip systems, and personalized media formulations presents a transformative opportunity for human cell culture. These innovations, aligned with ethical and clinical standards, can drive the development of human-specific media systems that ensure reproducibility, scalability, and enhanced therapeutic potential, thereby advancing both research and clinical applications.
Collapse
Affiliation(s)
- Akila Wijerathna-Yapa
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kathy Sharon Isaac
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Michelle Combe
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Samuel Hume
- Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Stanislav Sokolenko
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
2
|
Combe M, Isaac KS, Potter G, Sokolenko S. NMR metabolomics of plant and yeast-based hydrolysates for cell culture media applications - A comprehensive assessment. Curr Res Food Sci 2024; 9:100855. [PMID: 39429919 PMCID: PMC11490674 DOI: 10.1016/j.crfs.2024.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Cultivated meat products, generated by growing isolated skeletal muscle and fat tissue, offer the promise of a more sustainable and ethical alternative to traditional meat production. However, with cell culture media used to grow the cells accounting for 55-95% of the overall production cost, achieving true sustainability requires significant media optimization. One means of dealing with these high costs is the use of low-cost complex additives such as hydrolysates to provide a wide range of nutrients, from small molecules (metabolites) to growth factors and peptides. Despite their potential, most hydrolysate products remain poorly characterized and many are thought to suffer from persistent issues of high batch-to-batch variability. Although there have been a number of isolated efforts to determine metabolic profiles for a handful of hydrolysate products, we present the first attempt at a more comprehensive metabolomic characterization of nine different products (four plant and five yeast-based) from two to four different lots each. NMR analysis identified 90 unique metabolites, with only 15 metabolites common to all hydrolysate products (including eight of the nine essential amino acids), and 16 metabolites found in only a single hydrolysate product. The different hydrolysate products were found to have substantial differences in metabolite concentrations (as a fraction of overall mass), ranging from a high of 43% in yeast extract to a low of 14% in soy hydrolysates. The proportion of various metabolites also varied between products, with carbohydrate concentrations particularly high in soy hydrolysates and nucleosides more prominent in two of the yeast products. Overall, yeast extract generally had higher metabolite concentrations than all the other products, whereas both yeast extract and cotton had the largest variety of metabolites. A direct calculation of batch-to-batch variability revealed although there are significant differences between lots, these are largely driven by a relatively small fraction of compounds. This report will hopefully serve as a useful starting point for a more nuanced consideration of hydrolysate products in cell culture media optimization, both in the context of cultivated meat and beyond.
Collapse
Affiliation(s)
- Michelle Combe
- Process Engineering and Applied Science, Dalhousie University, 5273 DaCosta Row, PO Box 15000, Halifax, B3H 4R2, NS, Canada
| | - Kathy Sharon Isaac
- Process Engineering and Applied Science, Dalhousie University, 5273 DaCosta Row, PO Box 15000, Halifax, B3H 4R2, NS, Canada
| | | | - Stanislav Sokolenko
- Process Engineering and Applied Science, Dalhousie University, 5273 DaCosta Row, PO Box 15000, Halifax, B3H 4R2, NS, Canada
| |
Collapse
|
3
|
Steiner K, Humpel C. Brain Slice Derived Nerve Fibers Grow along Microcontact Prints and are Stimulated by Beta-Amyloid(42). FRONT BIOSCI-LANDMRK 2024; 29:232. [PMID: 38940051 DOI: 10.31083/j.fbl2906232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Alzheimer's disease is characterized by extracellular beta-amyloid plaques, intraneuronal tau neurofibrillary tangles and excessive neurodegeneration. The mechanisms of neuron degeneration and the potential of these neurons to form new nerve fibers for compensation remain elusive. The present study aimed to evaluate the impact of beta-amyloid and tau on new formations of nerve fibers from mouse organotypic brain slices connected to collagen-based microcontact prints. METHODS Organotypic brain slices of postnatal day 8-10 wild-type mice were connected to established collagen-based microcontact prints loaded with polyornithine to enhance nerve fiber outgrowth. Human beta-amyloid(42) or P301S mutated aggregated tau was co-loaded to the prints. Nerve fibers were immunohistochemically stained with neurofilament antibodies. The physiological activity of outgrown neurites was tested with neurotracer MiniRuby, voltage-sensitive dye FluoVolt, and calcium-sensitive dye Rhod-4. RESULTS Immunohistochemical staining revealed newly formed nerve fibers extending along the prints derived from the brain slices. While collagen-only microcontact prints stimulated nerve fiber growth, those loaded with polyornithine significantly enhanced nerve fiber outgrowth. Beta-amyloid(42) significantly increased the neurofilament-positive nerve fibers, while tau had only a weak effect. MiniRuby crystals, retrogradely transported along these newly formed nerve fibers, reached the hippocampus, while FluoVolt and Rhod-4 monitored electrical activity in newly formed nerve fibers. CONCLUSIONS Our data provide evidence that intact nerve fibers can form along collagen-based microcontact prints from mouse brain slices. The Alzheimer's peptide beta-amyloid(42) stimulates this growth, hinting at a neuroprotective function when physiologically active. This "brain-on-chip" model may offer a platform for screening bioactive factors or testing drug effects on nerve fiber growth.
Collapse
Affiliation(s)
- Katharina Steiner
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Flaibam B, da Silva MF, de Mélo AHF, Carvalho PH, Galland F, Pacheco MTB, Goldbeck R. Non-animal protein hydrolysates from agro-industrial wastes: A prospect of alternative inputs for cultured meat. Food Chem 2024; 443:138515. [PMID: 38277934 DOI: 10.1016/j.foodchem.2024.138515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
In light of the growing demand for alternative protein sources, laboratory-grown meat has been proposed as a potential solution to the challenges posed by conventional meat production. Cultured meat does not require animal slaughter and uses sustainable production methods, contributing to animal welfare, human health, and environmental sustainability. However, some challenges still need to be addressed in cultured meat production, such as the use of fetal bovine serum for medium supplementation. This ingredient has limited availability, increases production costs, and raises ethical concerns. This review explores the potential of non-animal protein hydrolysates derived from agro-industrial wastes as substitutes for critical components of fetal bovine serum in cultured meat production. Despite the lack of standardization of hydrolysate composition, the potential benefits of this alternative protein source may outweigh its disadvantages. Future research holds promise for increasing the accessibility of cultured meat.
Collapse
Affiliation(s)
- Bárbara Flaibam
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Marcos F da Silva
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Allan H Félix de Mélo
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Priscila Hoffmann Carvalho
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil
| | - Fabiana Galland
- Institute of Food Technology (ITAL), Avenida Brasil, 2880, PO Box 139, Campinas, SP 13070-178, Brazil
| | | | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP 13083-862, Brazil.
| |
Collapse
|
5
|
Gupta AJ, Boots JW, Gruppen H, Wierenga PA. Influence of heat treatments on the functionality of soy protein hydrolysates in animal cell cultures. Food Chem 2023; 429:136914. [PMID: 37480781 DOI: 10.1016/j.foodchem.2023.136914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Soy protein hydrolysates enhance integral viable cell density (IVCD) and recombinant protein production (Immunoglobulin, IgG) in cell cultures, but their functionality varies from batch-to-batch. This is undesirable since it affects both quantity and characteristics of the recombinant proteins. It is hypothesized that the variability of hydrolysates is due to variations in meal and hydrolysate processing treatments. To study this, hydrolysates were produced from meals heated at 121 °C/0-120 min. The heating decreased free amino acid and reducing monosaccharide contents in meals (0.72-0.27% and 3.3-2.6%) and hydrolysates (14.7-7.1% and 16.9-7.9%). Dry heating introduced large variation in the IVCD ((115-316%), but additional heating in suspension reduced it (131-159%). The decrease in IVCD variation corresponded with decreased variation in carboxymethyl-lysine (CML) and lysinoalanine (LAL) contents. Thus, meal and hydrolysate processing induced substantial variation in hydrolysate functionality. It is therefore critical to establish strict process controls for meal and hydrolysate production to ensure consistency.
Collapse
Affiliation(s)
- Abhishek J Gupta
- Laboratory of Food Chemistry, P.O. Box 17, 6700 AA Wageningen, Wageningen University, The Netherlands; FrieslandCampina Domo, P.O. Box 1551, 3800 BN Amersfoort, The Netherlands
| | - Jan-Willem Boots
- FrieslandCampina Domo, P.O. Box 1551, 3800 BN Amersfoort, The Netherlands.
| | - Harry Gruppen
- Laboratory of Food Chemistry, P.O. Box 17, 6700 AA Wageningen, Wageningen University, The Netherlands.
| | - Peter A Wierenga
- Laboratory of Food Chemistry, P.O. Box 17, 6700 AA Wageningen, Wageningen University, The Netherlands.
| |
Collapse
|
6
|
Dodia H, Sunder AV, Borkar Y, Wangikar PP. Precision fermentation with mass spectrometry-based spent media analysis. Biotechnol Bioeng 2023; 120:2809-2826. [PMID: 37272489 DOI: 10.1002/bit.28450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023]
Abstract
Optimization and monitoring of bioprocesses requires the measurement of several process parameters and quality attributes. Mass spectrometry (MS)-based techniques such as those coupled to gas chromatography (GCMS) and liquid Chromatography (LCMS) enable the simultaneous measurement of hundreds of metabolites with high sensitivity. When applied to spent media, such metabolome analysis can help determine the sequence of substrate uptake and metabolite secretion, consequently facilitating better design of initial media and feeding strategy. Furthermore, the analysis of metabolite diversity and abundance from spent media will aid the determination of metabolic phases of the culture and the identification of metabolites as surrogate markers for product titer and quality. This review covers the recent advances in metabolomics analysis applied to the development and monitoring of bioprocesses. In this regard, we recommend a stepwise workflow and guidelines that a bioprocesses engineer can adopt to develop and optimize a fermentation process using spent media analysis. Finally, we show examples of how the use of MS can revolutionize the design and monitoring of bioprocesses.
Collapse
Affiliation(s)
- Hardik Dodia
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | - Yogen Borkar
- Clarity Bio Systems India Pvt. Ltd., Pune, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
- Clarity Bio Systems India Pvt. Ltd., Pune, India
| |
Collapse
|
7
|
Innovative Application of Metabolomics on Bioactive Ingredients of Foods. Foods 2022; 11:foods11192974. [PMID: 36230049 PMCID: PMC9562173 DOI: 10.3390/foods11192974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolomics, as a new omics technology, has been widely accepted by researchers and has shown great potential in the field of nutrition and health in recent years. This review briefly introduces the process of metabolomics analysis, including sample preparation and extraction, derivatization, separation and detection, and data processing. This paper focuses on the application of metabolomics in food-derived bioactive ingredients. For example, metabolomics techniques are used to analyze metabolites in food to find bioactive substances or new metabolites in food materials. Moreover, bioactive substances have been tested in vitro and in vivo, as well as in humans, to investigate the changes of metabolites and the underlying metabolic pathways, among which metabolomics is used to find potential biomarkers and targets. Metabolomics provides a new approach for the prevention and regulation of chronic diseases and the study of the underlying mechanisms. It also provides strong support for the development of functional food or drugs. Although metabolomics has some limitations such as low sensitivity, poor repeatability, and limited detection range, it is developing rapidly in general, and also in the field of nutrition and health. At the end of this paper, we put forward our own insights on the development prospects of metabolomics in the application of bioactive ingredients in food.
Collapse
|
8
|
High Sesitivity and High-Confidence Compound Identification with a Flexible BoxCar Acquisition Method. J Pharm Biomed Anal 2022; 219:114973. [DOI: 10.1016/j.jpba.2022.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
|
9
|
Pulkova NV, Zyrina AN, Mnafki NA, Kuznetsova IM. Microfluidic Chip as a Tool for Effective In Vitro Evaluation of Cyclophosphamide Prodrug Toxicity. Bull Exp Biol Med 2022; 173:146-150. [PMID: 35624353 DOI: 10.1007/s10517-022-05510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/29/2022]
Abstract
Most drugs are metabolized in the liver, which can lead to their activation or inactivation with a change in the parent compound pharmacology, as well as liver damage by active metabolites. Preclinical animal studies of drug safety do not always predict its effect on humans due to species specificity. Thus, for the rapid drug screening, and especially prodrugs, an in vitro system is required that allows predicting xenobiotic cytotoxicity with consideration of their metabolism in liver cells. The use of a microfluidic chip (BioClinicum) made it possible to cultivate a 2D culture of human HaCaT keratinocytes with spheroids of human hepatoma HepaRG cells. After incubation in a specially selected universal serum-free medium containing 3.8 mM cyclophosphamide, pronounced death of HaCaT cells was observed in comparison with culturing in the absence of liver cells.
Collapse
Affiliation(s)
- N V Pulkova
- Moscow Polytechnic University, Moscow, Russia.
| | - A N Zyrina
- M. P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, Russia
| | | | - I M Kuznetsova
- National Research University Higher School of Economics (HSE University), Moscow, Russia
| |
Collapse
|
10
|
Apostol I, Bondarenko PV, Ren D, Semin DJ, Wu CH, Zhang Z, Goudar CT. Enabling development, manufacturing, and regulatory approval of biotherapeutics through advances in mass spectrometry. Curr Opin Biotechnol 2021; 71:206-215. [PMID: 34508981 DOI: 10.1016/j.copbio.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Rapid technological advances have significantly improved the capability, versatility, and robustness of mass spectrometers which has led to them playing a central role in the development, characterization, and regulatory filings of biopharmaceuticals. Their application spans the entire continuum of drug development, starting with discovery research through product development, characterization, and marketing authorization and continues well into product life cycle management. The scope of application extends beyond traditional protein characterization and includes elements like clone selection, cell culture physiology and bioprocess optimization, investigation support, and process analytical technology. More recently, advances in the MS-based multi-attribute method are enabling the introduction of MS in a cGMP environment for routine release and stability testing. While most applications of MS to date have been for monoclonal antibodies, the successes and learnings should translate to the characterization of next-gen biotherapeutics where modalities like multispecifics could be more prevalent. In this review, we describe the most significant advances in MS and correlate them to the broad spectrum of applications to biotherapeutic development. We anticipate rapid technological improvements to continue that will further accelerate widespread deployment of MS, thereby elevating our overall understanding of product quality and enabling attribute-focused product development.
Collapse
Affiliation(s)
- Izydor Apostol
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Da Ren
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - David J Semin
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chao-Hsiang Wu
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Zhongqi Zhang
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chetan T Goudar
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.
| |
Collapse
|
11
|
Ho YY, Lu HK, Lim ZFS, Lim HW, Ho YS, Ng SK. Applications and analysis of hydrolysates in animal cell culture. BIORESOUR BIOPROCESS 2021; 8:93. [PMID: 34603939 PMCID: PMC8476327 DOI: 10.1186/s40643-021-00443-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Animal cells are used in the manufacturing of complex biotherapeutic products since the 1980s. From its initial uses in biological research to its current importance in the biopharmaceutical industry, many types of culture media were developed: from serum-based media to serum-free to protein-free chemically defined media. The cultivation of animal cells economically has become the ultimate goal in the field of biomanufacturing. Serum serves as a source of amino acids, lipids, proteins and most importantly growth factors and hormones, which are essential for many cell types. However, the use of serum is unfavorable due to its high price tag, increased lot-to-lot variations and potential risk of microbial contamination. Efforts are progressively being made to replace serum with recombinant proteins such as growth factors, cytokines and hormones, as well as supplementation with lipids, vitamins, trace elements and hydrolysates. While hydrolysates are more complex, they provide a diverse source of nutrients to animal cells, with potential beneficial effects beyond the nutritional value. In this review, we discuss the use of hydrolysates in animal cell culture and briefly cover the composition of hydrolysates, mode of action and potential contaminants with some perspectives on its potential role in animal cell culture media formulations in the future.
Collapse
Affiliation(s)
- Yin Ying Ho
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Hao Kim Lu
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Zhi Feng Sherman Lim
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Hao Wei Lim
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Ying Swan Ho
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| | - Say Kong Ng
- grid.185448.40000 0004 0637 0221Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668 Singapore
| |
Collapse
|
12
|
Kumar S, Dhara VG, Orzolek LD, Hao H, More AJ, Lau EC, Betenbaugh MJ. Elucidating the impact of cottonseed hydrolysates on CHO cell culture performance through transcriptomic analysis. Appl Microbiol Biotechnol 2020; 105:271-285. [PMID: 33201275 DOI: 10.1007/s00253-020-10972-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023]
Abstract
In order to evaluate the impact of plant-based hydrolysates on CHO cells, a transcriptomic study was undertaken using cottonseed hydrolysate and Illumina's NextSeq transcriptomics profiling for 2 days of a batch cell culture. While cottonseed hydrolysate extended cell growth and increased antibody titer, significant effects were seen on transcriptomic signatures of supplemented cultures when compared to untreated cultures, evaluated using fold change, gene ontology (GO), and KEGG pathway analysis. Transcription and other factors commonly associated with cell growth such as those of the Atf family and homeobox proteins were upregulated while genes in the Hippo signaling pathway were downregulated. Genes involved in anabolic pathways such as gluconeogenesis and those involving protein folding and translation elongation were upregulated. GO analysis of biological processes for cottonseed-supplemented cultures indicated enrichments in DNA replication, protein processing, and unfolded protein response while molecular functions associated with growth such as GTPases, ATP binding, and aminoacyl t-RNA ligase activity were also enriched. Cellular components associated with structural integrity such as actin cytoskeleton, microtubules, mitochondrion, and Lewy body were enriched. Enriched KEGG pathways include growth-associated pathways such as cell cycle, pI3K-AKT-mTOR, and cancer-related pathways as well as those enhancing glycan metabolism, purine metabolism, amino acid biosynthesis, and protein processing in the endoplasmic reticulum (ER). These transcriptomic profiles provide insights into the roles that hydrolysates such as cottonseed can play in altering CHO cell growth and other physiological characteristics as well as suggesting ways in which CHO cell culture may be modified for enhancing performance in biotechnology applications. KEY POINTS: • Hydrolysate-supplemented cultures increased mammalian cell growth and productivity. • Fold-change analysis revealed upregulation in transcription and translation. • Enriched GOs and KEGG pathways including cell cycle and metabolism were observed.
Collapse
Affiliation(s)
- Swetha Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Venkata Gayatri Dhara
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Linda D Orzolek
- Transcriptomics and Deep Sequencing Core, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Haiping Hao
- Transcriptomics and Deep Sequencing Core, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Balabashin DS, Kaliberda EN, Smirnov IV, Mokrushina YA, Bobik TV, Aliev TK, Dolgikh DA, Kirpichnikov MP. Development of a Serum-Free Media Based on the Optimal Combination of Recombinant Protein Additives and Hydrolysates of Non-animal Origin to Produce Immunoglobulins. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Floris P, McGillicuddy N, Morrissey B, Albrecht S, Kaisermayer C, Hawe D, Riordan L, Lindeberg A, Forestell S, Bones J. A LC–MS/MS platform for the identification of productivity markers in industrial mammalian cell culture media. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Metabolomics as a tool to study the mechanism of action of bioactive protein hydrolysates and peptides: A review of current literature. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Graham RJ, Bhatia H, Yoon S. Consequences of trace metal variability and supplementation on Chinese hamster ovary (CHO) cell culture performance: A review of key mechanisms and considerations. Biotechnol Bioeng 2019; 116:3446-3456. [PMID: 31403183 DOI: 10.1002/bit.27140] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022]
Abstract
Trace metals are supplied to chemically-defined media (CDM) for optimal Chinese hamster ovary (CHO) cell culture performance during the production of monoclonal antibodies and other therapeutic proteins. However, lot-to-lot and vendor-to-vendor variability in raw materials consequently leads to an imbalance of trace metals that are supplied to CDM. This imbalance can yield detrimental effects rooted in several primary mechanisms and pathways including oxidative stress, apoptosis, lactate accumulation, and unfavorable glycan synthesis. Recent research endeavors involve supplying zinc, copper, and manganese to CDM in excess to further maximize culture productivity and product quality. These treatments significantly impact critical quality attributes and furthermore highlight the degree to which trace metal availability can affect CHO cell culture performance. This review highlights the role of trace metal variability, supplementation, and interplay on key cellular mechanisms responsible for overall culture performance and the production and quality of therapeutic proteins.
Collapse
Affiliation(s)
- Ryan J Graham
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Hemlata Bhatia
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts
| |
Collapse
|
17
|
Chemometric identification of canonical metabolites linking critical process parameters to monoclonal antibody production during bioprocess development. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
A serum-free medium suitable for maintaining cell morphology and liver-specific function in induced human hepatocytes. Cytotechnology 2019; 71:329-344. [PMID: 30603919 DOI: 10.1007/s10616-018-0289-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022] Open
Abstract
hiHep is a new type of hepatocyte-like cell that is predicted to be a potential unlimited source of hepatocytes for a bioartificial liver. However, hiHep cannot currently be used in clinical settings because serum must be added during the culture process. Thus, a defined medium is required. Because serum is complex, an efficient statistical approach based on the Plackett-Burman design was used. In this manner, an original medium and several significant cell growth factors were identified. These factors include insulin, VH, and VE, and the original medium was optimized based on these significant factors. Additionally, hiHep liver-specific functions and metabolism in the optimized serum-free medium were measured. Results showed that hiHep functions, such as glycogen storage, albumin secretion, and urea production, were well maintained in our optimized serum-free medium. In summary, we created a chemically defined, serum-free medium in which cell growth, proliferation, metabolism, and function were well maintained. This medium has the potential to support the clinical use of hiHep.
Collapse
|
19
|
Dickens J, Khattak S, Matthews TE, Kolwyck D, Wiltberger K. Biopharmaceutical raw material variation and control. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
|
21
|
Hu D, Zhao L, Wang J, Fan L, Liu X, Wang H, Tan WS. Physiological responses of Chinese hamster ovary cells to a productivity-enhancing yeast extract. J Biosci Bioeng 2018; 126:636-643. [PMID: 29853300 DOI: 10.1016/j.jbiosc.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/24/2018] [Accepted: 05/05/2018] [Indexed: 12/23/2022]
Abstract
Hydrolysates play important roles in enhancing the productivity of recombinant proteins in mammalian cell cultures. Lacking of detailed understanding of the mechanisms, hydrolysate is commonly regarded as an unstable factor which should be used with cautions. A yeast extract (YE) was approved to improve the Fc-fusion protein productivity in a recombinant Chinese hamster ovary (CHO) cell line. To elucidate the responses of cells to hydrolysates, we further elaborate their physiological changes during the processes in the presence and absence of YE. Firstly, cell sizes and the cellular components including dry cell weight, cellular fatty acid, and total cellular protein were increased in the presence of YE. Then, by comparing the extracellular and intracellular concentrations of the main metabolites and their consumption rates, we excluded the possibility of nutrient depletion in the absence of YE and observed a distinct improvement on the net consumption rates of metabolites in the presence of YE. Furthermore, the increase on the contents of intracellular nucleotides illustrated an abundance of the nucleic acid precursors and energy charge for recombinant protein synthesis in the presence of YE. In conclusion, this study systematically elucidated YE enhanced cell mass and capacity, activated substrate and energy metabolism of cells in addition to a boost in product synthesis process. The findings provide valuable information for process optimization and cell engineering.
Collapse
Affiliation(s)
- Dongdong Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaqi Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuping Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haibin Wang
- Zhejiang Hisun Pharmaceutical Co. Ltd., Fuyang, Hangzhou, Zhejiang 311404, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
22
|
Zhao A, Chen F, Ning C, Wu H, Song H, Wu Y, Chen R, Zhou K, Xu X, Lu Y, Gao J. Use of real-time cellular analysis and Plackett-Burman design to develop the serum-free media for PC-3 prostate cancer cells. PLoS One 2017; 12:e0185470. [PMID: 28945791 PMCID: PMC5612757 DOI: 10.1371/journal.pone.0185470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/13/2017] [Indexed: 11/19/2022] Open
Abstract
In this study, we developed a rapid strategy to screen a serum-free medium for culturing the anchorage-dependent PC-3 prostate cancer cells, which was going to be prepared in large scale to generate GM-CSF/TNFα-surface-modified whole cell prostate cancer vaccine. Automated real-time cellular analysis as a rapid and non-invasive technology was used to monitor the growth of PC-3 cells in 16-well plates. At the same time, Plackett-Burman design was employed to identify the most influential formulation by integrating relevant information statistically. The effects of the 16 selected factors were evaluated during exponential cell growth and three medium constituents (EGF, FGF and linoleic acid) were identified to have significant effects on the cell growth. Subsequently, the response surface methodology with central composite design was applied to determine the interactions among the three factors so that these factors were optimized to improve cell growth. Finally, the prediction of the best combination was made under the maximal response to optimize cell growth by Design-Expert software 7.0. A total of 20 experiments were conducted to construct a quadratic model and a second-order polynomial equation. With the optimized combination validated by the stability test of serial passaging PC-3 cells, the serum-free medium had similar cell density and cell viability to the original serum medium. In summary, this high-throughput scheme minimized the screening time and may thus provide a new platform to efficiently develop the serum-free media for adherent cells.
Collapse
Affiliation(s)
- Ai Zhao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fahai Chen
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunhong Ning
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiming Wu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huanfang Song
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanqing Wu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong Chen
- Hospital 212 of the Nuclear Industry, Wuwei, Gansu, China
| | - Kaihua Zhou
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoling Xu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinxiang Lu
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine& Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
23
|
McGillicuddy N, Floris P, Albrecht S, Bones J. Examining the sources of variability in cell culture media used for biopharmaceutical production. Biotechnol Lett 2017; 40:5-21. [DOI: 10.1007/s10529-017-2437-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
|
24
|
Floris P, McGillicuddy N, Albrecht S, Morrissey B, Kaisermayer C, Lindeberg A, Bones J. Untargeted LC-MS/MS Profiling of Cell Culture Media Formulations for Evaluation of High Temperature Short Time Treatment Effects. Anal Chem 2017; 89:9953-9960. [PMID: 28823148 DOI: 10.1021/acs.analchem.7b02290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An untargeted LC-MS/MS platform was implemented for monitoring variations in CHO cell culture media upon exposure to high temperature short time (HTST) treatment, a commonly used viral clearance upstream strategy. Chemically defined (CD) and hydrolysate-supplemented media formulations were not visibly altered by the treatment. The absence of solute precipitation effects during media treatment and very modest shifts in pH values observed indicated sufficient compatibility of the formulations evaluated with the HTST-processing conditions. Unsupervised chemometric analysis of LC-MS/MS data, however, revealed clear separation of HTST-treated samples from untreated counterparts as observed from analysis of principal components and hierarchical clustering sample grouping. An increased presence of Maillard products in HTST-treated formulations contributed to the observed differences which included organic acids, observed particularly in chemically defined formulations, and furans, pyridines, pyrazines, and pyrrolidines which were determined in hydrolysate-supplemented formulations. The presence of Maillard products in media did not affect cell culture performance with similar growth and viability profiles observed for CHO-K1 and CHO-DP12 cells when cultured using both HTST-treated and untreated media formulations.
Collapse
Affiliation(s)
- Patrick Floris
- Characterisation and Comparability Laboratory, NIBRT-The National Institute for Bioprocessing Research and Training , Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Nicola McGillicuddy
- Characterisation and Comparability Laboratory, NIBRT-The National Institute for Bioprocessing Research and Training , Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Simone Albrecht
- Characterisation and Comparability Laboratory, NIBRT-The National Institute for Bioprocessing Research and Training , Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Brian Morrissey
- Characterisation and Comparability Laboratory, NIBRT-The National Institute for Bioprocessing Research and Training , Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Christian Kaisermayer
- Biomarin International Limited , Shanbally, Ringaskiddy, Co. Cork, P43 R298, Ireland
| | - Anna Lindeberg
- Biomarin International Limited , Shanbally, Ringaskiddy, Co. Cork, P43 R298, Ireland
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, NIBRT-The National Institute for Bioprocessing Research and Training , Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin , Belfield, Dublin 4, D04 V1 W8, Ireland
| |
Collapse
|
25
|
Ho SCL, Nian R, Woen S, Chng J, Zhang P, Yang Y. Impact of hydrolysates on monoclonal antibody productivity, purification and quality in Chinese hamster ovary cells. J Biosci Bioeng 2016; 122:499-506. [PMID: 27067279 DOI: 10.1016/j.jbiosc.2016.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
Plant and yeast derived hydrolysates are economical and efficient alternative medium supplements to improve mammalian cell culture performance. We supplemented two commercial Chinese hamster ovary (CHO) culture media with hydrolysates from four different sources, yeast, soybean, Ex-Cell CD (a chemically defined hydrolysate replacement) and wheat to improve the productivity of two cell lines expressing different monoclonal antibodies (mAbs). Yeast, soybean and Ex-Cell CD improved the final mAb titer by increasing the specific productivity (qP) and/or extension of the culture period. Wheat hydrolysates increased peak viable cell density but did not improve productivity. IgG recovery from protein A purification was not compromised for all cultures by adding yeast, soybean and Ex-Cell CD hydrolysates except for one sample from soybean supplemented culture. Adding these three hydrolysates neither increased the amount of host cell protein, DNA or aggregate impurity amounts nor affect their clearance after purification. Profiling of the glycan types revealed that yeast and soybean hydrolysates could affect the distribution of galactosylated glycans. Ex-Cell CD performed the best at maintaining glycan profile compared to the non-supplemented cultures. Overall, yeast performed the best at improving CHO culture growth and productivity without being detrimental to downstream protein A processes but could affect mAb product glycan distribution while Ex-Cell CD yielded lower titers but has less effect on glycosylation. The hydrolysate to use would thus depend on the requirements of each process and our results would provide a good reference for improving culture performance with hydrolysates or related studies.
Collapse
Affiliation(s)
- Steven C L Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Rui Nian
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Susanto Woen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Jake Chng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Peiqing Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, 138668, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, 138668, Singapore.
| |
Collapse
|
26
|
Spearman M, Chan S, Jung V, Kowbel V, Mendoza M, Miranda V, Butler M. Components of yeast (Sacchromyces cervisiae) extract as defined media additives that support the growth and productivity of CHO cells. J Biotechnol 2016; 233:129-42. [DOI: 10.1016/j.jbiotec.2016.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/18/2016] [Accepted: 04/19/2016] [Indexed: 12/19/2022]
|
27
|
Monitoring utilizations of amino acids and vitamins in culture media and Chinese hamster ovary cells by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2016; 117:163-72. [DOI: 10.1016/j.jpba.2015.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 11/21/2022]
|
28
|
Gupta AJ, Wierenga PA, Gruppen H, Boots JW. Influence of protein and carbohydrate contents of soy protein hydrolysates on cell density and IgG production in animal cell cultures. Biotechnol Prog 2015; 31:1396-405. [DOI: 10.1002/btpr.2121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/26/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Abhishek J. Gupta
- Laboratory of Food Chemistry; Wageningen University; Wageningen The Netherlands
- FrieslandCampina Domo; Amersfoort The Netherlands
| | - Peter A. Wierenga
- Laboratory of Food Chemistry; Wageningen University; Wageningen The Netherlands
| | - Harry Gruppen
- Laboratory of Food Chemistry; Wageningen University; Wageningen The Netherlands
| | | |
Collapse
|
29
|
Kang S, Zhang Z, Richardson J, Shah B, Gupta S, Huang CJ, Qiu J, Le N, Lin H, Bondarenko PV. Metabolic markers associated with high mannose glycan levels of therapeutic recombinant monoclonal antibodies. J Biotechnol 2015; 203:22-31. [DOI: 10.1016/j.jbiotec.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/28/2015] [Accepted: 03/05/2015] [Indexed: 01/21/2023]
|