1
|
Kish WS, Lightholder J, Zeković T, Berrill A, Roach M, Wellborn WB, Vorst E. Removal of empty capsids from high-dose adeno-associated virus 9 gene therapies. Biotechnol Bioeng 2024; 121:2500-2523. [PMID: 38807330 DOI: 10.1002/bit.28737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Recombinant adeno-associated virus, serotype 9 (rAAV9) has shown promise as a gene therapy vector for muscle and central nervous diseases. High-dose requirements of these therapies present critical safety considerations and biomanufacturing challenges. Notably, the reduction of empty capsids (ECs), which lack therapeutic transgene, from rAAV9 products is critical to maximize efficacy. Removal of rAAV ECs from full capsids is a major downstream challenge because of their highly similar biophysical characteristics. Ultracentrifugation (UC) reduces ECs but is laborious and difficult to scale. In this paper, to replace a poorly scalable UC process, we developed an anion exchange (AEX) chromatography for rAAV9 EC reduction from full capsids. AEX load preparation by dilution incurred major product loss. The addition of histidine and surfactants to dilution buffers increased yield and reduced aggregation. Elution salts were screened and sodium acetate was found to maximize yield and EC reduction. The most promising load dilution buffer and elution salt were used in combination to form an optimized AEX method. The process reduced ECs three-fold, demonstrated robustness to a broad range of EC load challenges, and was scaled for large-scale manufacture. Compared to UC, the AEX method simplified scale-up, reduced ECs to comparable levels (20%), afforded similar purity and product quality, and increased yield by 14%.
Collapse
Affiliation(s)
- William S Kish
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| | - John Lightholder
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| | - Tamara Zeković
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| | - Alex Berrill
- Gene Therapy Process Development, Pfizer Inc., Chesterfield, Missouri, USA
| | - Matthew Roach
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| | - William B Wellborn
- Gene Therapy Process Development, Pfizer Inc., Chesterfield, Missouri, USA
| | - Eric Vorst
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| |
Collapse
|
2
|
Di W, Koczera K, Zhang P, Chen DP, Warren JC, Huang C. Improved adeno-associated virus empty and full capsid separation using weak partitioning multi-column AEX chromatography. Biotechnol J 2024; 19:e2300245. [PMID: 38013662 DOI: 10.1002/biot.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/10/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Recombinant adeno-associated virus (rAAV) empty and full capsid separation has been a topic of interest in the rAAV gene therapy community for many years and the anion exchange chromatography (AEX) step has undergone various process optimizations to improve rAAV empty capsid separation, including AEX stationary phase, mobile phase, and process parameters. Here, we present a new AEX method that employs both weak partitioning chromatography (WPC) and multi-column chromatography (MCC) to achieve improved full rAAV percentage in the AEX pool. The WPC technology allows empty rAAV to be displaced by full rAAV during loading, while the MCC technology enables parallel column processing which further increases AEX step productivity. Our results show that, compared to baseline AEX batch chromatography, the AEX-WPC-MCC method demonstrated improvements in both AEX pool full rAAV percentage (∼ 20% increase) and rAAV genome recovery (∼ 20% increase). As a result, the productivity (full capsid generated per liter of AEX column per hour of processing time) of the AEX step increased by ∼34-fold from the baseline AEX batch run to the AEX-WPC-MCC run. It is foreseeable that this AEX-WPC-MCC method could find applications in large-scale rAAV manufacturing processes to improve AEX yield and reduce the cost of goods of rAAV manufacturing.
Collapse
Affiliation(s)
- Wenjun Di
- Pharmaceutical Development, Ultragenyx Pharmaceutical Inc., Woburn, Massachusetts, USA
| | - Kyle Koczera
- Pharmaceutical Development, Ultragenyx Pharmaceutical Inc., Woburn, Massachusetts, USA
| | - Peilun Zhang
- Pharmaceutical Development, Ultragenyx Pharmaceutical Inc., Woburn, Massachusetts, USA
| | - Dennis P Chen
- Pharmaceutical Development, Ultragenyx Pharmaceutical Inc., Woburn, Massachusetts, USA
| | - James C Warren
- Pharmaceutical Development, Ultragenyx Pharmaceutical Inc., Woburn, Massachusetts, USA
| | - Chao Huang
- Pharmaceutical Development, Ultragenyx Pharmaceutical Inc., Woburn, Massachusetts, USA
| |
Collapse
|
3
|
Beck J, Hochdaninger G, Carta G, Hahn R. Resin structure impacts two-component protein adsorption and separation in anion exchange chromatography. J Chromatogr A 2023; 1705:464208. [PMID: 37453173 DOI: 10.1016/j.chroma.2023.464208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The influence of the resin structure, on the competitive binding and separation of a two-component protein mixture with anion exchange resins is evaluated using conalbumin and green fluorescent protein as a model system. Two macroporous resins, one with large open pores and one with smaller pores, are compared to a resin with grafted polymers. Investigations include measurements of single and two-component isotherms, batch uptake kinetics and two-component column breakthrough. On both macroporous resins, the weaker binding protein, conalbumin, is displaced by the stronger binding green fluorescent protein. For the large pore resin, this results in a pronounced overshoot and efficient separation by frontal chromatography. The polymer-grafted resin exhibits superior capacity and kinetics for one-component adsorption, but is unable to achieve separation due to strongly hindered counter-diffusion. Intermediate separation efficiency is obtained with the smaller pore resin. Confocal laser scanning microscopy provides a mechanistic explanation of the underlying intra-particle diffusional phenomena revealing whether unhindered counter-diffusion of the displaced protein can occur or not. This study demonstrates that the resin's intra-particle structure and its effects on diffusional transport are crucial for an efficient separation process. The novelty of this work lies in its comprehensive nature which includes examples of the three most commonly used resin structures: a small pore agarose matrix, a large-pore polymeric matrix, and a polymer grafted resin. Comparison of the protein adsorption properties of these materials provides valuable clues about advantages and disadvantages of each for anion exchange chromatography applications.
Collapse
Affiliation(s)
- Jürgen Beck
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg Hochdaninger
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Giorgio Carta
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Rainer Hahn
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
4
|
Bernau CR, Knödler M, Emonts J, Jäpel RC, Buyel JF. The use of predictive models to develop chromatography-based purification processes. Front Bioeng Biotechnol 2022; 10:1009102. [PMID: 36312533 PMCID: PMC9605695 DOI: 10.3389/fbioe.2022.1009102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatography is the workhorse of biopharmaceutical downstream processing because it can selectively enrich a target product while removing impurities from complex feed streams. This is achieved by exploiting differences in molecular properties, such as size, charge and hydrophobicity (alone or in different combinations). Accordingly, many parameters must be tested during process development in order to maximize product purity and recovery, including resin and ligand types, conductivity, pH, gradient profiles, and the sequence of separation operations. The number of possible experimental conditions quickly becomes unmanageable. Although the range of suitable conditions can be narrowed based on experience, the time and cost of the work remain high even when using high-throughput laboratory automation. In contrast, chromatography modeling using inexpensive, parallelized computer hardware can provide expert knowledge, predicting conditions that achieve high purity and efficient recovery. The prediction of suitable conditions in silico reduces the number of empirical tests required and provides in-depth process understanding, which is recommended by regulatory authorities. In this article, we discuss the benefits and specific challenges of chromatography modeling. We describe the experimental characterization of chromatography devices and settings prior to modeling, such as the determination of column porosity. We also consider the challenges that must be overcome when models are set up and calibrated, including the cross-validation and verification of data-driven and hybrid (combined data-driven and mechanistic) models. This review will therefore support researchers intending to establish a chromatography modeling workflow in their laboratory.
Collapse
Affiliation(s)
- C. R. Bernau
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - M. Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - J. Emonts
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - R. C. Jäpel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - J. F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Vienna, Austria
- *Correspondence: J. F. Buyel,
| |
Collapse
|
5
|
Patterns of protein adsorption in ion-exchange particles and columns: Evolution of protein concentration profiles during load, hold, and wash steps predicted for pore and solid diffusion mechanisms. J Chromatogr A 2021; 1653:462412. [PMID: 34320430 DOI: 10.1016/j.chroma.2021.462412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022]
Abstract
Elucidation of protein transport mechanism in ion exchanges is essential to model separation performance. In this work we simulate intraparticle adsorption profiles during batch adsorption assuming typical process conditions for pore, solid and parallel diffusion. Artificial confocal laser scanning microscopy images are created to identify apparent differences between the different transport mechanisms. Typical sharp fronts for pore diffusion are characteristic for Langmuir equilibrium constants of KL ≥1. Only at KL = 0.1 and lower, the profiles are smooth and practically indistinguishable from a solid diffusion mechanism. During hold and wash steps, at which the interstitial buffer is removed or exchanged, continuation of diffusion of protein molecules is significant for solid diffusion due to the adsorbed phase concentration driving force. For pore diffusion, protein mobility is considerable at low and moderate binding strength. Only when pore diffusion if completely dominant, and the binding strength is very high, protein mobility is low enough to restrict diffusion out of the particles. Simulation of column operation reveals substantial protein loss when operating conditions are not adjusted appropriately.
Collapse
|
6
|
Continuous Fc detection for protein A capture process control. Biosens Bioelectron 2020; 165:112327. [DOI: 10.1016/j.bios.2020.112327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/16/2020] [Accepted: 05/23/2020] [Indexed: 11/19/2022]
|
7
|
Khanal O, Kumar V, Lenhoff AM. Displacement to separate host-cell proteins and aggregates in cation-exchange chromatography of monoclonal antibodies. Biotechnol Bioeng 2020; 118:164-174. [PMID: 32910459 DOI: 10.1002/bit.27559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
An efficient and consistent method of monoclonal antibody (mAb) purification can improve process productivity and product consistency. Although protein A chromatography removes most host-cell proteins (HCPs), mAb aggregates and the remaining HCPs are challenging to remove in a typical bind-and-elute cation-exchange chromatography (CEX) polishing step. A variant of the bind-and-elute mode is the displacement mode, which allows strongly binding impurities to be preferentially retained and significantly improves resin utilization. Improved resin utilization renders displacement chromatography particularly suitable in continuous chromatography operations. In this study we demonstrate and exploit sample displacement between a mAb and impurities present at low prevalence (0.002%-1.4%) using different multicolumn designs and recycling. Aggregate displacement depends on the residence time, sample concentration, and solution environment, the latter by enhancing the differences between the binding affinities of the product and the impurities. Displacement among the mAb and low-prevalence HCPs resulted in an effectively bimodal-like distribution of HCPs along the length of a multi-column system, with the mAb separating the relatively more basic group of HCPs from those that are more acidic. Our findings demonstrate that displacement of low-prevalence impurities along multiple CEX columns allows for selective separation of mAb aggregates and HCPs that persist through protein A chromatography.
Collapse
Affiliation(s)
- Ohnmar Khanal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Vijesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
8
|
Sánchez-Trasviña C, Fuks P, Mushagasha C, Kimerer L, Mayolo-Deloisa K, Rito-Palomares M, Carta G. Structure and functional properties of Capto™ Core 700 core-shell particles. J Chromatogr A 2020; 1621:461079. [DOI: 10.1016/j.chroma.2020.461079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 01/13/2023]
|
9
|
Vogg S, Müller-Späth T, Morbidelli M. Current status and future challenges in continuous biochromatography. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Hindered diffusion of proteins in mixture adsorption on porous anion exchangers and impact on flow-through purification of large proteins. J Chromatogr A 2018; 1585:121-130. [PMID: 30503698 DOI: 10.1016/j.chroma.2018.11.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023]
Abstract
Complex adsorption kinetics behaviors of proteins in mixtures hampers chromatographic process development and complicates model-based prediction of separation. We investigated the adsorption characteristics of mixtures comprised of a larger protein (secretory immunoglobulins or thyroglobulin) and a smaller protein (serum albumin or green fluorescence protein) on the small-pore anion exchanger Q Sepharose FF. Confocal laser scanning microscopy measurements revealed that binding of the large protein was extremely slow and eventually stopped completely after the adsorption front penetrated just a few μm into the particle. Binding capacities after 24 h of incubation were nevertheless around 35 mg/mL of particle which is relatively high when considering that only a fraction of the particle was saturated, suggesting that locally-high bound protein concentrations are attained in a layer close to the particle surface. During mixture adsorption, the bound protein layer also significantly hindered diffusion of the smaller proteins into the particles resulting in about three times slower adsorption kinetics compared to single component adsorption. The combined effects of restricted diffusion and protein binding explain why flow-through purification of these mixtures with the small-pore resin Q Sepharose FF is effective under practical conditions. In this resin, diffusion of secretory immunoglobulins (or thyroglobulin) is restricted in the small pores so that despite their intrinsically greater affinity for the resin, much less binds compared to small proteins. Using the large-pore resin POROS 50 HQ results in faster transport, but also in more binding of secretory immunoglobulins (or thyroglobulin) compared to smaller protein impurities, preventing effective flow-through purification.
Collapse
|
11
|
B Carvalho S, Fortuna AR, Wolff MW, Peixoto C, M Alves P, Reichl U, JT Carrondo M. Purification of influenza virus-like particles using sulfated cellulose membrane adsorbers. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2018; 93:1988-1996. [PMID: 30008506 PMCID: PMC6033026 DOI: 10.1002/jctb.5474] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/30/2017] [Accepted: 10/01/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Vaccines based on virus-like particles (VLPs) are an alternative to inactivated viral vaccines that combine good safety profiles with strong immunogenicity. In order to be economically competitive, efficient manufacturing is required, in particular downstream processing, which often accounts for major production costs. This study describes the optimization and establishment of a chromatography capturing technique using sulfated cellulose membrane adsorbers (SCMA) for purification of influenza VLPs. RESULTS Using a design of experiments approach, the critical factors for SCMA performance were described and optimized. For optimal conditions (membrane ligand density: 15.4 µmol cm-2, salt concentration of the loading buffer: 24 mmol L-1 NaCl, and elution buffer: 920 mmol L-1 NaCl, as well as the corresponding flow rates: 0.24 and 1.4 mL min-1), a yield of 80% in the product fraction was obtained. No loss of VLPs was detected in the flowthrough fraction. Removal of total protein and DNA impurities were higher than 89% and 80%, respectively. CONCLUSION Use of SCMA represents a significant improvement compared with conventional ion exchanger membrane adsorbers. As the method proposed is easily scalable and reduces the number of steps required compared with conventional purification methods, SCMA could qualify as a generic platform for purification of VLP-based influenza vaccines. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sofia B Carvalho
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - A Raquel Fortuna
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Michael W Wolff
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyUniversity of Applied Sciences MittelhessenGießenGermany
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Otto von Guericke University MagdeburgMagdeburgGermany
| | - Manuel JT Carrondo
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
- Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
| |
Collapse
|
12
|
Pirrung SM, Parruca da Cruz D, Hanke AT, Berends C, Van Beckhoven RFWC, Eppink MHM, Ottens M. Chromatographic parameter determination for complex biological feedstocks. Biotechnol Prog 2018; 34:1006-1018. [PMID: 29693326 PMCID: PMC6175100 DOI: 10.1002/btpr.2642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/12/2018] [Indexed: 11/23/2022]
Abstract
The application of mechanistic models for chromatography requires accurate model parameters. Especially for complex feedstocks such as a clarified cell harvest, this can still be an obstacle limiting the use of mechanistic models. Another commonly encountered obstacle is a limited amount of sample material and time to determine all needed parameters. Therefore, this study aimed at implementing an approach on a robotic liquid handling system that starts directly with a complex feedstock containing a monoclonal antibody. The approach was tested by comparing independent experimental data sets with predictions generated by the mechanistic model using all parameters determined in this study. An excellent agreement between prediction and experimental data was found verifying the approach. Thus, it can be concluded that RoboColumns with a bed volume of 200 μL can well be used to determine isotherm parameters for predictions of larger scale columns. Overall, this approach offers a new way to determine crucial model input parameters for mechanistic modelling of chromatography for complex biological feedstocks. © 2018 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:1006–1018, 2018
Collapse
Affiliation(s)
- Silvia M Pirrung
- Dept. of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, the Netherlands
| | - Diogo Parruca da Cruz
- Dept. of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, the Netherlands
| | - Alexander T Hanke
- Dept. of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, the Netherlands
| | - Carmen Berends
- Dept. of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, the Netherlands
| | | | - Michel H M Eppink
- Synthon Biopharmaceuticals BV, Microweg 22, GN Nijmegen, 6503, the Netherlands
| | - Marcel Ottens
- Dept. of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, the Netherlands
| |
Collapse
|
13
|
Recent developments in chromatographic purification of biopharmaceuticals. Biotechnol Lett 2018; 40:895-905. [DOI: 10.1007/s10529-018-2552-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
|