1
|
Oh H, Jang I, Hwang J, Lee S, An J, Sim J. Clinicopathologic Analysis of Five Patients with POLE-Mutated Colorectal Cancer in a Single Korean Institute. Diagnostics (Basel) 2025; 15:972. [PMID: 40310397 PMCID: PMC12025746 DOI: 10.3390/diagnostics15080972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: Mutations in RAS/RAF are common in colorectal cancer (CRC) and play a pivotal role in guiding treatment selection. With the recent advent of immunotherapy, microsatellite (MSI) status, tumor mutation burden (TMB), and POLE mutations, particularly those leading to high TMB, have gained importance in CRC. This study aimed to examine the clinicopathological characteristics of patients with CRC with POLE mutations. Methods: We identified POLE mutations in patients with colorectal cancer who had available next-generation sequencing (NGS) results from a single institute in Korea. RAS/RAF status, MSI status, and TMB were evaluated, and based on the TMB results, patients with POLE mutations were classified as having either pathogenic or non-pathogenic mutations. After excluding non-Korean patients, we compared the groups based on the presence of pathogenic POLE mutations. Results: Five POLE mutations (A456P, P286R, R1111W, R609W, and V922I) were identified. Only A456P and P286R were associated with an exceptionally high TMB, resulting in two patients (1.1%) being categorized as having pathogenic POLE. The POLE-mutant group showed an extremely high TMB and tended to include younger patients. Among the two pathogenic cases, one showed poor histological differentiation, and the tumors were split between the right and left colons (one in each). Conclusions: CRC with POLE mutations tend to exhibit TMB-high, occur in younger patients, localize to the right colon, and display poor histological differentiation. Given that POLE mutations can serve as indicators for immunotherapy, recognizing these mutations is of clinical importance.
Collapse
Affiliation(s)
- Harim Oh
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, 73 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Inho Jang
- Department of Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Jinha Hwang
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Soohyeon Lee
- Division of Medical Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Jungsuk An
- Department of Pathology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul 07985, Republic of Korea;
| | - Jongmin Sim
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, 73 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| |
Collapse
|
2
|
Berner AM, Murugaesu N. The Evolving Role of Genomics in Colorectal Cancer. Clin Oncol (R Coll Radiol) 2025; 37:103661. [PMID: 39536702 DOI: 10.1016/j.clon.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/08/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Approximately 75% of colorectal cancers (CRCs) harbour an identifiable driver mutation, 5% of which are heritable. These drivers have recognised implications for prognosis and therapy selection. In addition, potential germline mutations require investigations to inform testing of relatives, as well as surveillance for other malignancies. With increasing numbers of targeted drugs being approved, judicious testing is required to ensure sufficient tumour sample is available for testing and at the right point in the cancer pathway. Liquid biopsy with circulating tumour DNA (ctDNA) in the blood presents an exciting adjunct to tumour tissue testing for molecular drivers, as well as escalation and de-escalation of therapy. Here, we review the most frequent molecular alterations in CRC, how genomic testing should be integrated into the treatment pathway for CRC, and sources of further education.
Collapse
Affiliation(s)
- A M Berner
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6AU, UK
| | - N Murugaesu
- Guy's & St Thomas' NHS Foundation Trust, Great Maze Pond, London, SE1 9RT, UK; Genomics England, 1 Canada Square, London E14 5AB, UK.
| |
Collapse
|
3
|
Wu J, Wang C, Tang W, Gao J, Guo X. Integrated Analysis of Polymerase Family Gene Mutations in Acute Myeloid Leukemia: Clinical Features, Prognosis, and Bioinformatics Insights. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1975. [PMID: 39768855 PMCID: PMC11676477 DOI: 10.3390/medicina60121975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: The long-term prognosis of acute myeloid leukemia (AML) is challenging due to limited understanding of the molecular markers involved in its development. This study investigates the role of DNA polymerases in AML to offer new insights for diagnosis and treatment. Materials and Methods: A retrospective study on pediatric AML patients with POL gene family mutations from 2021 to 2024 was conducted. Patients were categorized based on risk stratification criteria, and the DAH regimen was used for induction chemotherapy. Bioinformatics analysis integrated data from various databases to identify key genes and develop survival analysis plots and AUC curves. Results: The study included 59 pediatric AML patients, revealing no significant differences in demographic or clinical characteristics between those with and without POL family gene mutations. However, patients with POL gene mutations showed higher complete remission rates after initial DAH chemotherapy (91.67% vs. 59.57%, p = 0.03607), indicating a potential treatment benefit. High expression of four POL genes (POLD1, POLE, POLG, and POLQ) in bone marrow and immune cells suggests their crucial role in hematopoiesis and immune response. Survival analysis across different datasets indicated that AML patients with overexpressed POL family genes had significantly worse outcomes, proposing these genes as potential prognostic biomarkers for AML. Conclusions: This study on pediatric AML demonstrates that POL gene family mutations are associated with higher remission rates post-chemotherapy, indicating their potential as prognostic markers. Bioinformatics analysis emphasizes the significance of these mutations in AML, highlighting their impact on disease prognosis.
Collapse
Affiliation(s)
- Jianrong Wu
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University, Chengdu 610017, China (C.W.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610017, China
| | - Chaoban Wang
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University, Chengdu 610017, China (C.W.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610017, China
| | - Wenhao Tang
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University, Chengdu 610017, China (C.W.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610017, China
| | - Ju Gao
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University, Chengdu 610017, China (C.W.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610017, China
| | - Xia Guo
- Department of Pediatric Hematology, West China Second University Hospital, Sichuan University, Chengdu 610017, China (C.W.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610017, China
| |
Collapse
|
4
|
Garrett C, Steffens D, Ackland S, Solomon M, Koh C. Risk factors, histopathological landscape, biomarkers, treatment patterns and survival of early-onset colorectal cancer: A narrative review. Asia Pac J Clin Oncol 2024; 20:444-449. [PMID: 38776256 DOI: 10.1111/ajco.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/07/2024] [Indexed: 05/24/2024]
Abstract
Early-onset colorectal cancer (EOCRC) incidence has increased in most Western countries over the last decade, with Australia at the forefront. Recent literature has thus focused on characterizing EOCRC from later-onset colorectal cancer (LOCRC). Earlier exposure to modifiable risk factors resulting in gut dysbiosis has been linked with EOCRC development. EOCRCs have more aggressive histopathological features with somatic mutations resulting in pro-inflammatory tumor microenvironments. There is a tendency to treat EOCRCs with multimodal chemotherapeutic regimens and more extensive surgery than LOCRCs with conflicting postoperative outcomes and survival data. Current research is limited by a lack of Australasian studies, retrospective study designs, and heterogeneous definitions of EOCRC. Future research should address these and focus on investigating the role of immunotherapies, establishing minimally invasive diagnostic biomarkers and nomograms, and evaluating the survival and functional outcomes of EOCRC.
Collapse
Affiliation(s)
- Celine Garrett
- Surgical Outcomes Research Centre, Royal Prince Alfred Hospital, Camperdown, Australia
- Faculty of Medicine & Health, Central Clinical School, The University of Sydney, Camperdown, Australia
- Faculty of Medicine & Health, St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Daniel Steffens
- Surgical Outcomes Research Centre, Royal Prince Alfred Hospital, Camperdown, Australia
- Faculty of Medicine & Health, Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Stephen Ackland
- Faculty of Health, University of Newcastle, Callaghan, Australia
| | - Michael Solomon
- Surgical Outcomes Research Centre, Royal Prince Alfred Hospital, Camperdown, Australia
- Faculty of Medicine & Health, Central Clinical School, The University of Sydney, Camperdown, Australia
| | - Cherry Koh
- Surgical Outcomes Research Centre, Royal Prince Alfred Hospital, Camperdown, Australia
- Faculty of Medicine & Health, Central Clinical School, The University of Sydney, Camperdown, Australia
| |
Collapse
|
5
|
Zhu J, Lian J, Xu B, Pang X, Ji S, Zhao Y, Lu H. Neoadjuvant immunotherapy for colorectal cancer: Right regimens, right patients, right directions? Front Immunol 2023; 14:1120684. [PMID: 36949951 PMCID: PMC10026962 DOI: 10.3389/fimmu.2023.1120684] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Neoadjuvant chemoradiotherapy (NACRT) or chemotherapy (NACT) followed by radical resection and then adjuvant therapy is considered the optimal treatment model for locally advanced colorectal cancer (LACRC). A recent total neoadjuvant therapy (TNT) strategy further improved the tumour regression rate preoperatively and reduced local-regional recurrence in locally advanced rectal cancer (LARC). However, distant metastasis was still high, and little overall survival benefit was obtained from these preoperative treatment models. According to mismatch repair protein expression, MSI-H/dMMR and non-MSI-H/pMMR statuses were defined in colorectal cancer (CRC) patients. Due to the special features of biologics in MSI-H/dMMR CRC patients, this subgroup of patients achieved little treatment efficacy from chemoradiotherapy but benefited from immune checkpoint inhibitors (ICIs). The KEYNOTE-177 trial observed favourable survival outcomes in metastatic CRC patients treated with one-line pembrolizumab with tolerable toxicity. Given the better systemic immune function, increased antigenic exposure, and improved long-term memory induction before surgery, neoadjuvant ICI (NAICI) treatment was proposed. The NICHE trial pioneered the use of NAICI treatment in LACRC, and recent reports from several phase II studies demonstrated satisfactory tumour downsizing in CRC. Preclinical rationales and preliminary early-phase human trials reveal the feasibility of NAICI therapy and the therapeutic efficacy provided by this treatment model. Better tumour regression before surgery also increases the possibility of organ preservation for low LARC. However, the optimal treatment strategy and effective biomarker identification for beneficiary selection remain unknown, and potential pitfalls exist, including tumour progression during neoadjuvant treatment due to drug resistance and surgery delay. Given these foundations and questions, further phase II or III trials with large samples need to be conducted to explore the right regimens for the right patients.
Collapse
Affiliation(s)
- Jiahao Zhu
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jie Lian
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Benjie Xu
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xiangyi Pang
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shengjun Ji
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yutian Zhao
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Haibo Lu
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Jiang M, Jia Y, Han J, Shi J, Su C, Zhang R, Xing M, Jin S, Zong H. Distinct clinical pattern of colorectal cancer patients with POLE mutations: A retrospective study on real-world data. Front Genet 2022; 13:963964. [PMID: 36479248 PMCID: PMC9719917 DOI: 10.3389/fgene.2022.963964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2023] Open
Abstract
Objective: Studies have demonstrated an association between somatic POLE exonuclease domain mutations (EDMs) and the prognosis of colorectal cancer (CRC). However, the prognostic value of POLE non-EDMs remains unclear. This retrospective study aimed to explore the possible relationships between POLE mutation subtypes and CRC prognosis. Methods: The 272 CRC patients from the First Affiliated Hospital of Zhengzhou University (ZZ cohort) and 499 CRC patients from The Cancer Genome Atlas database (TCGA cohort) were retrospectively collected. The cases were divided into subgroups based on POLE mutation sites and microsatellite instability (MSI) status. The continuous variables were compared among three subgroups with Kruskal-Wallis tests. Pairwise comparisons between three groups were performed by Bonferroni correction method, and adjusted p < 0.05 was considered statistically significant. The categorical variables were compared with Chi-square test and Fisher's exact test. The Kaplan-Meier curves and Cox regression models were conducted to evaluate prognostic values of POLE mutations. Results: In the ZZ cohort, POLE EDMs (2.6%) were significantly associated with younger age (p = 0.018) and localized in the left colon (p = 0.001). POLE non-EDMs were significantly associated with MSI-high status (p < 0.001) and localization in the right colon (p = 0.001). In the TCGA cohort, the tumor mutation burden (TMB) of both POLE EDM tumors (p < 0.001) and POLE non-EDM tumors (p < 0.001) was significantly higher than that of POLE wild-type (WT) tumors. A similar trend was observed in the ZZ cohort, although there were no significant differences. In the ZZ cohort, the POLE EDM group had higher progression-free survival (PFS) (p = 0.002) and overall survival (OS) (p = 0.042) than the POLE non-EDM group and POLE WT group. We also report one CRC patient harboring a germline POLE mutation who received camrelizumab and exhibited long-term stable disease. Conclusion: Both POLE-EDMs and POLE non-EDMs were associated with significantly increased TMB in CRC and may be biomarkers for CRC treatment and prognosis. Current evidence does not support an effect of POLE non-EDMs on PFS and OS. A significant association between POLE EDMs and improved PFS and OS may exist, but future studies with larger sample sizes are needed. Entire coding region of the POLE gene should be screened.
Collapse
Affiliation(s)
- Miao Jiang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongliang Jia
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinming Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianxiang Shi
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chang Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Menglu Xing
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Puccini A, Seeber A, Berger MD. Biomarkers in Metastatic Colorectal Cancer: Status Quo and Future Perspective. Cancers (Basel) 2022; 14:4828. [PMID: 36230751 PMCID: PMC9564318 DOI: 10.3390/cancers14194828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer worldwide, and its incidence is steadily increasing. During the last two decades, a tremendous improvement in outcome has been achieved, mainly due to the introduction of novel drugs, targeted treatment, immune checkpoint inhibitors (CPIs) and biomarker-driven patient selection. Moreover, progress in molecular diagnostics but also improvement in surgical techniques and local ablative treatments significantly contributed to this success. However, novel therapeutic approaches are needed to further improve outcome in patients diagnosed with metastatic CRC. Besides the established biomarkers for mCRC, such as microsatellite instability (MSI) or mismatch repair deficiency (dMMR), RAS/BRAF, sidedness and HER2 amplification, new biomarkers have to be identified to better select patients who derive the most benefit from a specific treatment. In this review, we provide an overview about therapeutic relevant and established biomarkers but also shed light on potential promising markers that may help us to better tailor therapy to the individual mCRC patient in the near future.
Collapse
Affiliation(s)
- Alberto Puccini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin D. Berger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
8
|
Ma WJ, Chen Y, Peng JH, Tang C, Zhang L, Liu M, Hu S, Xu H, Tan H, Gu Y, Pan ZZ, Chen G, Zhou ZG, Zhang RX. Stage IV colon cancer patients without DENND2D expression benefit more from neoadjuvant chemotherapy. Cell Death Dis 2022; 13:439. [PMID: 35523764 PMCID: PMC9076603 DOI: 10.1038/s41419-022-04885-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022]
Abstract
According to the EPOC study, chemotherapy could improve 5-year disease-free survival of stage IV colon cancer patients by 8.1%. However, more molecular biomarkers are required to identify patients who need neoadjuvant chemotherapy. DENND2D expression was evaluated by immunohistochemistry in 181 stage IV colon cancer patients. The prognosis was better for patients with DENND2D expression than patients without DENND2D expression (5-year overall survival [OS]: 42% vs. 12%, p = 0.038; 5-year disease-free survival: 20% vs. 10%, p = 0.001). Subgroup analysis of the DENND2D-negative group showed that patients treated with neoadjuvant chemotherapy achieved longer OS than patients without neoadjuvant chemotherapy (RR = 0.179; 95% CI = 0.054-0.598; p = 0.003). DENND2D suppressed CRC proliferation in vitro and in vivo. Downregulation of DENND2D also promoted metastasis to distant organs in vivo. Mechanistically, DENND2D suppressed the MAPK pathway in CRC. Colon cancer patients who were DENND2D negative always showed a worse prognosis and were more likely to benefit from neoadjuvant chemotherapy. DENND2D may be a new prognostic factor and a predictor of the need for neoadjuvant chemotherapy in stage IV colon cancer.
Collapse
Affiliation(s)
- Wen-juan Ma
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Intensive Care Unit Department, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| | - Yukun Chen
- grid.12981.330000 0001 2360 039XZhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan Rd. 2, Guangzhou, 510080 Guangdong Province People’s Republic of China
| | - Jian-hong Peng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| | - Chaoming Tang
- grid.410737.60000 0000 8653 1072The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, QingYuan, Guangdong Province People’s Republic of China
| | - Ling Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province People’s Republic of China
| | - Min Liu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Ultrasound, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province People’s Republic of China
| | - Shanshan Hu
- grid.430387.b0000 0004 1936 8796Department of Statistics, Rutgers University, New Brunswick, NJ 08854 USA
| | - Haineng Xu
- grid.25879.310000 0004 1936 8972Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Hua Tan
- grid.267308.80000 0000 9206 2401School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Yangkui Gu
- grid.488530.20000 0004 1803 6191Intervention Department, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province People’s Republic of China
| | - Zhi-zhong Pan
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| | - Gong Chen
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| | - Zhong-guo Zhou
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province People’s Republic of China
| | - Rong-xin Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| |
Collapse
|
9
|
Huyghe N, Benidovskaya E, Stevens P, Van den Eynde M. Biomarkers of Response and Resistance to Immunotherapy in Microsatellite Stable Colorectal Cancer: Toward a New Personalized Medicine. Cancers (Basel) 2022; 14:2241. [PMID: 35565369 PMCID: PMC9105843 DOI: 10.3390/cancers14092241] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022] Open
Abstract
Immune Checkpoint Inhibitors (ICIs) are well recognized as a major immune treatment modality for multiple types of solid cancers. However, for colorectal cancer (CRC), ICIs are only approved for the treatment of Mismatch-Repair-Deficient and Microsatellite Instability-High (dMMR/MSI-H) tumors. For the vast majority of CRC, that are not dMMR/MSI-H, ICIs alone provide limited to no clinical benefit. This discrepancy of response between CRC and other solid cancers suggests that CRC may be inherently resistant to ICIs alone. In translational research, efforts are underway to thoroughly characterize the immune microenvironment of CRC to better understand the mechanisms behind this resistance and to find new biomarkers of response. In the clinic, trials are being set up to study biomarkers along with treatments targeting newly discovered immune checkpoint molecules or treatments combining ICIs with other existing therapies to improve response in MSS CRC. In this review, we will focus on the characteristics of response and resistance to ICIs in CRC, and discuss promising biomarkers studied in recent clinical trials combining ICIs with other therapies.
Collapse
Affiliation(s)
- Nicolas Huyghe
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
| | - Elena Benidovskaya
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
| | - Philippe Stevens
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
| | - Marc Van den Eynde
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, 1200 Brussels, Belgium; (N.H.); (E.B.); (P.S.)
- Institut Roi Albert II, Department of Medical Oncology and Gastroenterology, Cliniques Universitaires St-Luc, 1200 Brussels, Belgium
| |
Collapse
|
10
|
Borozan I, Zaidi SH, Harrison TA, Phipps AI, Zheng J, Lee S, Trinh QM, Steinfelder RS, Adams J, Banbury BL, Berndt SI, Brezina S, Buchanan DD, Bullman S, Cao Y, Farris AB, Figueiredo JC, Giannakis M, Heisler LE, Hopper JL, Lin Y, Luo X, Nishihara R, Mardis ER, Papadopoulos N, Qu C, Reid EEG, Thibodeau SN, Harlid S, Um CY, Hsu L, Gsur A, Campbell PT, Gallinger S, Newcomb PA, Ogino S, Sun W, Hudson TJ, Ferretti V, Peters U. Molecular and Pathology Features of Colorectal Tumors and Patient Outcomes Are Associated with Fusobacterium nucleatum and Its Subspecies animalis. Cancer Epidemiol Biomarkers Prev 2022; 31:210-220. [PMID: 34737207 PMCID: PMC8755593 DOI: 10.1158/1055-9965.epi-21-0463] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/27/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) activates oncogenic signaling pathways and induces inflammation to promote colorectal carcinogenesis. METHODS We characterized F. nucleatum and its subspecies in colorectal tumors and examined associations with tumor characteristics and colorectal cancer-specific survival. We conducted deep sequencing of nusA, nusG, and bacterial 16s rRNA genes in tumors from 1,994 patients with colorectal cancer and assessed associations between F. nucleatum presence and clinical characteristics, colorectal cancer-specific mortality, and somatic mutations. RESULTS F. nucleatum, which was present in 10.3% of tumors, was detected in a higher proportion of right-sided and advanced-stage tumors, particularly subspecies animalis. Presence of F. nucleatum was associated with higher colorectal cancer-specific mortality (HR, 1.97; P = 0.0004). This association was restricted to nonhypermutated, microsatellite-stable tumors (HR, 2.13; P = 0.0002) and those who received chemotherapy [HR, 1.92; confidence interval (CI), 1.07-3.45; P = 0.029). Only F. nucleatum subspecies animalis, the main subspecies detected (65.8%), was associated with colorectal cancer-specific mortality (HR, 2.16; P = 0.0016), subspecies vincentii and nucleatum were not (HR, 1.07; P = 0.86). Additional adjustment for tumor stage suggests that the effect of F. nucleatum on mortality is partly driven by a stage shift. Presence of F. nucleatum was associated with microsatellite instable tumors, tumors with POLE exonuclease domain mutations, and ERBB3 mutations, and suggestively associated with TP53 mutations. CONCLUSIONS F. nucleatum, and particularly subspecies animalis, was associated with a higher colorectal cancer-specific mortality and specific somatic mutated genes. IMPACT Our findings identify the F. nucleatum subspecies animalis as negatively impacting colorectal cancer mortality, which may occur through a stage shift and its effect on chemoresistance.
Collapse
Affiliation(s)
- Ivan Borozan
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Jiayin Zheng
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Stephen Lee
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Quang M Trinh
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Jeremy Adams
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Familial Cancer Clinic, Genetic Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St Louis, Missouri
| | - Alton B Farris
- Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - John L Hopper
- The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Xuemei Luo
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, Maryland
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Emma E G Reid
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sophia Harlid
- Oncology, Department of Radiation Sciences, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Caroline Y Um
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, University of Toronto, Toronto, Ontario, Canada
- General Surgery, Surgery and Critical Care Program, University Health Network Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Cancer Immunology Program, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
- Cancer Epidemiology Program, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Vincent Ferretti
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Centre, Seattle, Washington.
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Vaziri C, Rogozin IB, Gu Q, Wu D, Day TA. Unravelling roles of error-prone DNA polymerases in shaping cancer genomes. Oncogene 2021; 40:6549-6565. [PMID: 34663880 PMCID: PMC8639439 DOI: 10.1038/s41388-021-02032-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Mutagenesis is a key hallmark and enabling characteristic of cancer cells, yet the diverse underlying mutagenic mechanisms that shape cancer genomes are not understood. This review will consider the emerging challenge of determining how DNA damage response pathways-both tolerance and repair-act upon specific forms of DNA damage to generate mutations characteristic of tumors. DNA polymerases are typically the ultimate mutagenic effectors of DNA repair pathways. Therefore, understanding the contributions of DNA polymerases is critical to develop a more comprehensive picture of mutagenic mechanisms in tumors. Selection of an appropriate DNA polymerase-whether error-free or error-prone-for a particular DNA template is critical to the maintenance of genome stability. We review different modes of DNA polymerase dysregulation including mutation, polymorphism, and over-expression of the polymerases themselves or their associated activators. Based upon recent findings connecting DNA polymerases with specific mechanisms of mutagenesis, we propose that compensation for DNA repair defects by error-prone polymerases may be a general paradigm molding the mutational landscape of cancer cells. Notably, we demonstrate that correlation of error-prone polymerase expression with mutation burden in a subset of patient tumors from The Cancer Genome Atlas can identify mechanistic hypotheses for further testing. We contrast experimental approaches from broad, genome-wide strategies to approaches with a narrower focus on a few hundred base pairs of DNA. In addition, we consider recent developments in computational annotation of patient tumor data to identify patterns of mutagenesis. Finally, we discuss the innovations and future experiments that will develop a more comprehensive portrait of mutagenic mechanisms in human tumors.
Collapse
Affiliation(s)
- Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC, 27599, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Qisheng Gu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC, 27599, USA
| | - Tovah A Day
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Koeppel F, Muller E, Harlé A, Guien C, Sujobert P, Trabelsi Grati O, Kosmider O, Miguet L, Mauvieux L, Cayre A, Salgado D, Preudhomme C, Karayan-Tapon L, Tachon G, Coulet F, Lespagnol A, Beroud C, Leroy K, Rouleau E, Soubeyran I. Standardisation of pathogenicity classification for somatic alterations in solid tumours and haematologic malignancies. Eur J Cancer 2021; 159:1-15. [PMID: 34700215 DOI: 10.1016/j.ejca.2021.08.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The difficulty in interpreting somatic alterations is correlated with the increase in sequencing panel size. To correctly guide the clinical management of patients with cancer, there needs to be accurate classification of pathogenicity followed by actionability assessment. Here, we describe a specific detailed workflow for the classification of the pathogenicity of somatic variants in cancer into five categories: benign, likely benign, unknown significance, likely pathogenic and pathogenic. METHODS Classification is obtained by combining a set of eight relevant criteria in favour of either a pathogenic or a benign effect (pathogenic stand-alone, pathogenic very strong, pathogenic strong, pathogenic moderate, pathogenic supporting, benign supporting, benign strong and benign stand-alone). RESULTS Our guide is concordant with the ACMG/AMP 2015 guidelines for germline variants. Interpretation of somatic variants requires considering specific criteria, such as the disease and therapeutic context, co-occurring genomic events in the tumour when available and the use of cancer-specific variant databases. In addition, the gene role in tumorigenesis (oncogene or tumour suppressor gene) also needs to be taken into consideration. CONCLUSION Our classification could contribute to homogenize best practices on somatic variant pathogenicity interpretation and improve interpretation consistency both within and between laboratories.
Collapse
Affiliation(s)
- Florence Koeppel
- Gustave Roussy, Direction de la Recherche, Villejuif, F-94805, France
| | - Etienne Muller
- Laboratoire de Biologie et Génétique du Cancer, Centre François Baclesse, Caen, 14000, France; Inserm U1245, Normandie Univ, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, Rouen, 76031, France
| | - Alexandre Harlé
- Université de Lorraine CNRS UMR 7039 CRAN, Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, F-54519, France
| | - Céline Guien
- Aix Marseille Univ, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | - Pierre Sujobert
- Hospices Civils de Lyon, Groupement Hospitalier Sud, Service d'hématologie biologique, Pierre-Bénite, France; Cancer Research Center of Lyon, INSERM U1052 UMR CNRS 5286, Equipe labellisée Ligue Contre le Cancer, Université de Lyon, Lyon, France
| | - Olfa Trabelsi Grati
- Unité de pharmacogénomique, Service de Génétique, Institut Curie, 26 rue d'Ulm, Paris, 75005, France
| | - Olivier Kosmider
- AP-HP Centre, Hôpital Cochin, Service d'hématologie Biologique et Université de Paris, Paris-Descartes, France
| | - Laurent Miguet
- Laboratoire d'hématologie, CHRU Strasbourg, INSERM U1113, Avenue Molière, Strasbourg, 67100, France
| | - Laurent Mauvieux
- Laboratoire d'hématologie, CHRU Strasbourg, INSERM U1113, Avenue Molière, Strasbourg, 67100, France
| | - Anne Cayre
- LBM OncoGenAuvergne, UF de Pathologie, Centre Jean Perrin, 58 Rue Montalembert, BP392, Clermont-Ferrand, 63011, France
| | - David Salgado
- Aix Marseille Univ, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | - Claude Preudhomme
- Center of Pathology, Laboratory of Hematology, University Hospital of Lille, Lille, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, INSERMU1084 et CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, France
| | - Gaëlle Tachon
- Université de Poitiers, INSERMU1084 et CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, France
| | - Florence Coulet
- Genetics Department, Assistance publique - Hôpitaux de Paris, Pitié Salpêtrière Hôpital, Paris, France
| | - Alexandra Lespagnol
- CHU Pontchaillou - Laboratoire de Génétique Somatique des Cancers, Rennes, France
| | - Christophe Beroud
- Aix Marseille Univ, INSERM, MMG, Bioinformatics & Genetics, Marseille, France; AP-HM, Hôpital d'Enfants de la Timone, Département de Génétique Médicale et de Biologie Cellulaire, Marseille, France
| | - Karen Leroy
- AP-HP Centre, Hôpital Européen Georges Pompidou, Service de Biochimie et Université de Paris, France
| | - Etienne Rouleau
- Gustave Roussy, Département de biologie et pathologie médicales, Villejuif, F-94805, France.
| | - Isabelle Soubeyran
- Unité de Pathologie Moléculaire et Inserm U1218, Institut Bergonié, 229 cours de l'Argonne, Bordeaux, 33076, France
| |
Collapse
|
13
|
Giordano G, Parcesepe P, Bruno G, Piscazzi A, Lizzi V, Remo A, Pancione M, D’Andrea MR, De Santis E, Coppola L, Pietrafesa M, Fersini A, Ambrosi A, Landriscina M. Evidence-Based Second-Line Treatment in RAS Wild-Type/Mutated Metastatic Colorectal Cancer in the Precision Medicine Era. Int J Mol Sci 2021; 22:7717. [PMID: 34299337 PMCID: PMC8307359 DOI: 10.3390/ijms22147717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Target-oriented agents improve metastatic colorectal cancer (mCRC) survival in combination with chemotherapy. However, the majority of patients experience disease progression after first-line treatment and are eligible for second-line approaches. In such a context, antiangiogenic and anti-Epidermal Growth Factor Receptor (EGFR) agents as well as immune checkpoint inhibitors have been approved as second-line options, and RAS and BRAF mutations and microsatellite status represent the molecular drivers that guide therapeutic choices. Patients harboring K- and N-RAS mutations are not eligible for anti-EGFR treatments, and bevacizumab is the only antiangiogenic agent that improves survival in combination with chemotherapy in first-line, regardless of RAS mutational status. Thus, the choice of an appropriate therapy after the progression to a bevacizumab or an EGFR-based first-line treatment should be evaluated according to the patient and disease characteristics and treatment aims. The continuation of bevacizumab beyond progression or its substitution with another anti-angiogenic agents has been shown to increase survival, whereas anti-EGFR monoclonals represent an option in RAS wild-type patients. In addition, specific molecular subgroups, such as BRAF-mutated and Microsatellite Instability-High (MSI-H) mCRCs represent aggressive malignancies that are poorly responsive to standard therapies and deserve targeted approaches. This review provides a critical overview about the state of the art in mCRC second-line treatment and discusses sequential strategies according to key molecular biomarkers.
Collapse
Affiliation(s)
- Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy; (G.B.); (A.P.)
| | - Pietro Parcesepe
- Department of Diagnostics and Public Health—Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Giuseppina Bruno
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy; (G.B.); (A.P.)
| | - Annamaria Piscazzi
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy; (G.B.); (A.P.)
| | - Vincenzo Lizzi
- General Surgey Unit, Policlinico Riuniti, 71122 Foggia, Italy;
| | - Andrea Remo
- Pathology Unit “Mater Salutis” Hospital, ULSS9, Legnago, 37045 Verona, Italy;
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy;
| | | | - Elena De Santis
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luigi Coppola
- UOC Anatomia ed Istologia Patologica e Citologia Diagnostica, Dipartimento dei Servizi Diagnostici e della Farmaceutica, Ospedale Sandro Pertini, ASL Roma 2, 00157 Roma, Italy;
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture, 85028 Potenza, Italy;
| | - Alberto Fersini
- General Surgery Unit, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy; (A.F.); (A.A.)
| | - Antonio Ambrosi
- General Surgery Unit, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy; (A.F.); (A.A.)
| | - Matteo Landriscina
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy; (G.B.); (A.P.)
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture, 85028 Potenza, Italy;
| |
Collapse
|
14
|
Abstract
The immune tumor microenvironment (TME) of colorectal cancer (CRC) is a crucial contributor to disease biology, making it an important target for therapeutic intervention. The diversity of immune cell populations within various subsets of CRC has led to the discovery that immune characterization of the TME has both prognostic and predictive value for patients. The convergence of improved molecular and cellular characterization of CRC along with the widespread use of immunotherapy in solid tumors has led to a revolution in the approach to clinical care. Monoclonal antibodies (mAbs) which target key immune checkpoints, such as programmed death-1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4), have demonstrated remarkable clinical activity in microsatellite instability-high (MSI-H) CRCs and are now used in routine practice. The observation that MSI-H cancers are highly infiltrated with immune cells and carry a high neoantigen load led to the successful targeting of these cancers with immunotherapy. More recently, the Food and Drug Administration (FDA) approved a PD-1 inhibitor for microsatellite stable (MSS) cancers with high tumor mutation burden. However, the anti-tumor activity of immunotherapy is rare in the majority of CRC. While immune cell characterization does provide prognostic value in these patients, these observations have not yet led to therapeutic interventions. By delineating factors that predict efficacy, resistance, and therapeutic targets, ongoing research will inform the development of effective combination strategies for the vast majority of MSS CRC and immunotherapy-resistant MSI-H cancers.
Collapse
Affiliation(s)
- Parul Agarwal
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Dung T Le
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, United States.
| | - Patrick M Boland
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
15
|
Kawai T, Nyuya A, Mori Y, Tanaka T, Tanioka H, Yasui K, Toshima T, Taniguchi F, Shigeyasu K, Umeda Y, Fujiwara T, Okawaki M, Yamaguchi Y, Goel A, Nagasaka T. Clinical and epigenetic features of colorectal cancer patients with somatic POLE proofreading mutations. Clin Epigenetics 2021; 13:117. [PMID: 34034807 PMCID: PMC8146650 DOI: 10.1186/s13148-021-01104-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
Background Mutations in the POLE gene result in an ultra-hypermutated phenotype in colorectal cancer (CRC); however, the molecular characterisation of epigenetic alterations remains unclear. We examined the genetic and epigenetic profiles of POLE-mutant CRC to elucidate the clinicopathological features of the associated genetic and epigenetic alterations. Results Tumour tissues (1,013) obtained from a cohort of patients with CRC were analysed to determine associations between the proofreading domain mutations of POLE with various clinicopathological variables, microsatellite instability (MSI) status, BRAF and KRAS mutations, and the methylation status of key regions of MLH1, MGMT, and SFRP2 promoters by calculating the methylation scores (range 0–6). Only four cases (0.4%) exhibited pathogenic POLE hotspot mutations (two p.P286R [c.857C > G], one p.V411L [c.1231G > C], and p.S459F [c.1376C > T] each), which were mutually exclusive to BRAF and KRAS mutations and MSI. CRC patients were divided into four subgroups: patients with POLE mutations (POLE, 0.4%, n = 4), patients with both MSI and extensive methylation in MLH1 (MSI-M, 2.9%, n = 29), patients with MSI but no extensive methylation in MLH1 (MSI-U, 3.6%, n = 36), and patients without MSI (non-MSI, 93.2%, n = 944). The POLE group was younger at diagnosis (median 52 years, P < 0.0001), with frequent right-sided tumour localisation (frequency of tumours located in the right colon was 100%, 93.1%, 36.1%, and 29.9% in POLE, MSI-M, MSI-U, and non-MSI, respectively; P < 0.0001), and was diagnosed at an earlier stage (frequency of stages I–II was 100%, 72.4%, 77.8%, and 46.6% in POLE, MSI-M, MSI-U, and non-MSI, respectively, P < 0.0001). The mean methylation score in POLE was not different from that in MSI-U and non-MSI, but the methylation signature was distinct from that of the other subgroups. Additionally, although the examined number of POLE-mutant tumours was small, the number of CD8-positive cells increased in tumours with partial methylation in the MLH1 gene. Conclusions CRC patients with POLE proofreading mutations are rare. Such mutations are observed in younger individuals, and tumours are primarily located in the right colon. Diagnosis occurs at an earlier stage, and distinct epigenetic alterations may be associated with CD8 cell infiltration. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01104-7.
Collapse
Affiliation(s)
- Takashi Kawai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Nyuya
- Department of Clinical Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yoshiko Mori
- Department of Clinical Genetics and Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Tanioka
- Department of Clinical Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Kazuya Yasui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Toshima
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumitaka Taniguchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Makoto Okawaki
- Department of Clinical Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yoshiyuki Yamaguchi
- Department of Clinical Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, 91016, USA
| | - Takeshi Nagasaka
- Department of Clinical Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan.
| |
Collapse
|
16
|
Keshinro A, Vanderbilt C, Kim JK, Firat C, Chen CT, Yaeger R, Ganesh K, Segal NH, Gonen M, Shia J, Stadler Z, Weiser MR. Tumor-Infiltrating Lymphocytes, Tumor Mutational Burden, and Genetic Alterations in Microsatellite Unstable, Microsatellite Stable, or Mutant POLE/POLD1 Colon Cancer. JCO Precis Oncol 2021; 5:PO.20.00456. [PMID: 34250404 PMCID: PMC8232557 DOI: 10.1200/po.20.00456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
To characterize the relationship between tumor-infiltrating lymphocytes (TIL), tumor mutational burden (TMB), and genetic alterations in microsatellite stable (MSS), microsatellite instability (MSI), or mutant POLE/POLD1 colon cancer. MATERIALS AND METHODS Four hundred ninety-nine resected stage I-III colon tumors treated between 2014 and 2019 were assessed for TIL; somatic mutations, copy number alterations, and structural changes in > 400 oncogenes; and MSI status. RESULTS Of the 499 tumors analyzed, 313 were MSS, 175 were MSI, and 11 had POLE/POLD1 pathogenic mutations. Both the percentage of tumors with a high level of TIL (≥ 4 lymphocytes per high-power field) and the median TMB differed significantly between the three phenotypes: MSS, 4.5% and 6 mutations/Mb; MSI, 68% and 54 mutations/Mb; POLE/POLD1, 82% and 158 mutations/Mb (P < .05). Within each phenotype, TMB did not vary significantly with TIL level. Among MSI tumors, the median number of frameshift indels was significantly higher in tumors with high levels of TIL (20 v 17; P = .018). In the MSS group, significantly higher proportions of tumors with high levels of TIL had mutations in the transforming growth factor-β (36% v 12%; P = .01), RAS (86% v 54%; P = .02), and Hippo (7% v 1%; P = .046) pathways; in contrast, TP53 alterations were associated with low levels of TIL (74% v 43%; P = .01). CONCLUSION The association between TIL, TMB, and genetic alterations varies significantly between MSI, MSS, and mutant POLE/POLD1 colon tumors. These differences may help explain tumoral immunity and lead to predictors of response to immunotherapy.
Collapse
Affiliation(s)
- Ajaratu Keshinro
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chad Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jin K. Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Canan Firat
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chin-Tung Chen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karuna Ganesh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neil H. Segal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mithat Gonen
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin R. Weiser
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
17
|
McDermott FD, Newton K, Beggs AD, Clark SK. Implications for the colorectal surgeon following the 100 000 Genomes Project. Colorectal Dis 2021; 23:1049-1058. [PMID: 33471415 DOI: 10.1111/codi.15539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/24/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
AIM The 100 000 Genomes Project was completed in 2019 with the objective of integrating genomic medicine into routine National Health Service (NHS) clinical pathways. This project and genomic research will revolutionize the way we practice colorectal surgery in the 21st century. This paper aims to provide an overview of genomic medicine and its implications for the colorectal surgeon. RESULTS Within NHS England, consolidation has created seven regional Genomic Laboratory Hubs. DNA from solid tumours, including colorectal cancers, will be assessed using 500-gene panels, results will be fed back to Genome Tumour Advisory Boards. Identifying variants from biopsies earlier in the clinical pathway may alter surgical and other treatment options for patients. However, there is an important distinction between somatic variants within a tumour biopsy and germline variants that may suggest a heritable condition such as Lynch syndrome. Novel drugs, for example immunotherapy, will increase treatment options including downstaging cancers and changing the surgical approach. The use of circulating tumour DNA (liquid biopsies) will have applications in diagnosis, treatment and surveillance of cancer. There are many exciting potential future applications of this technology for offering personalized medicine that will require multidisciplinary working and the colorectal community. CONCLUSION There are many challenges but also exciting opportunities to embed new 'omic' technologies and innovation into 21st century colorectal surgery. The next phase for the colorectal community is how we engage with this change, with questions around training, identification of genomic multidisciplinary team (MDT) champions and how we collaborate with the core members of the MDT, clinical geneticists and national genomic testing.
Collapse
Affiliation(s)
- Frank D McDermott
- Royal Devon and Exeter Foundation Trust, University of Exeter, Exeter, UK
| | - Katy Newton
- Department of Surgery and Cancer, LNWUH NHS Trust, St Mark's Hospital, Imperial College, London, UK
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham and Queen Elizabeth Hospital, Birmingham, UK
| | - Susan K Clark
- Department of Surgery and Cancer, LNWUH NHS Trust, St Mark's Hospital, Imperial College, London, UK
| |
Collapse
|
18
|
Wang K, Liu M, Wang HW, Jin KM, Yan XL, Bao Q, Xu D, Wang LJ, Liu W, Wang YY, Li J, Liu LJ, Zhang XY, Yang CH, Jin G, Xing BC. Mutated DNA Damage Repair Pathways Are Prognostic and Chemosensitivity Markers for Resected Colorectal Cancer Liver Metastases. Front Oncol 2021; 11:643375. [PMID: 33869034 PMCID: PMC8045762 DOI: 10.3389/fonc.2021.643375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Deficiency of the DNA damage repair (DDR) signaling pathways is potentially responsible for genetic instability and oncogenesis in tumors, including colorectal cancer. However, the correlations of mutated DDR signaling pathways to the prognosis of colorectal cancer liver metastasis (CRLM) after resection and other clinical applications have not been fully investigated. Here, to test the potential correlation of mutated DDR pathways with survival and pre-operative chemotherapy responses, tumor tissues from 146 patients with CRLM were collected for next-generation sequencing with a 620-gene panel, including 68 genes in 7 DDR pathways, and clinical data were collected accordingly. The analyses revealed that 137 of 146 (93.8%) patients had at least one mutation in the DDR pathways. Mutations in BER, FA, HRR and MMR pathways were significantly correlated with worse overall survival than the wild-types (P < 0.05), and co-mutated DDR pathways showed even more significant correlations (P < 0.01). The number of mutated DDR pathways was also proved an independent stratifying factor of overall survival by Cox multivariable analysis with other clinical factors and biomarkers (hazard ratio = 9.14; 95% confidence interval, 1.21–68.9; P = 0.032). Additionally, mutated FA and MMR pathways were positively and negatively correlated with the response of oxaliplatin-based pre-operative chemotherapy (P = 0.0095 and 0.048, respectively). Mutated DDR signaling pathways can predict pre-operative chemotherapy response and post-operative survival in CRLM patients.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Ming Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Hong-Wei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Ke-Min Jin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Xiao-Luan Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Quan Bao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Da Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Li-Jun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Wei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Yan-Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Juan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Li-Juan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Xiao-Yu Zhang
- GloriousMed Clinical Laboratory (Shanghai) Co., Ltd., Shanghai, China
| | - Chun-He Yang
- GloriousMed Clinical Laboratory (Shanghai) Co., Ltd., Shanghai, China
| | - Ge Jin
- GloriousMed Clinical Laboratory (Shanghai) Co., Ltd., Shanghai, China
| | - Bao-Cai Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
19
|
Burnett-Hartman AN, Lee JK, Demb J, Gupta S. An Update on the Epidemiology, Molecular Characterization, Diagnosis, and Screening Strategies for Early-Onset Colorectal Cancer. Gastroenterology 2021; 160:1041-1049. [PMID: 33417940 PMCID: PMC8273929 DOI: 10.1053/j.gastro.2020.12.068] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022]
Abstract
Rising trends in the incidence and mortality of early-onset colorectal cancer (CRC) in those who are younger than 50 years have been well established. These trends have spurred intense investigation focused on elucidating the epidemiology and characteristics of early-onset CRC, as well as on identifying strategies for early detection and prevention. In this review, we provide a contemporary update on early-onset CRC with a particular focus on epidemiology, molecular characterization, red flag signs and symptoms, and screening for early-onset CRC.
Collapse
Affiliation(s)
| | - Jeffrey K Lee
- Division of Research, Kaiser Permanente Northern California; Department of Gastroenterology, Kaiser Permanente San Francisco Medical Center, San Francisco, California.
| | - Joshua Demb
- Division of Gastroenterology, Department of Internal Medicine, University of California, San Diego, La Jolla, California
| | - Samir Gupta
- Division of Gastroenterology, Department of Internal Medicine, University of California, San Diego, La Jolla, California; VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
20
|
Hu H, Cai W, Wu D, Hu W, Dong Wang L, Mao J, Zheng S, Ge W. Ultra-mutated colorectal cancer patients with POLE driver mutations exhibit distinct clinical patterns. Cancer Med 2021; 10:135-142. [PMID: 33125191 PMCID: PMC7826451 DOI: 10.1002/cam4.3579] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022] Open
Abstract
POLE mutations, which lead to an ultramutated phenotype in colorectal cancer (CRC), have been reported as a promising marker in immunotherapy. We performed sequencing of CRC cases in Zhejiang University (ZJU) and extracted obtainable data from recently published results, including The Cancer Genome Atlas (TCGA), Japanese studies and clinical trials, to present clinical patterns of POLE driver-mutated CRC and reveal its heterogeneity. The rate of somatic POLE driver mutations has been reported as 2.60% (ZJU cohort), 1.50% (TCGA cohort), 1.00% (Japan cohort), and 1.00% (Lancet cohort). POLE driver mutations show a clearly increased mutation burden (mean TMB: 217.98 mut/Mb in ZJU; 203.13 mut/Mb in TCGA). Based on pooled data, more than 70.00% of patients with POLE driver mutations were diagnosed before they were 55 years old and at an early disease stage (Stage 0-II >70.00%), and more than 70.00% were male. Among Asian patients, 68.40% developed POLE driver mutations in the left-side colon, whereas 64.00% of non-Asian patients developed them in the right-side colon (p < 0.01). The top three amino acid changes due to POLE driver mutations are P286R, V411L, and S459F. Investigators and physicians should ascertain the heterogeneity and clinical patterns of POLE driver mutations to be better equipped to design clinical trials and analyze the data.
Collapse
Affiliation(s)
- Hanguang Hu
- Department of Medical OncologyThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Wen Cai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education)The Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Dehao Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education)The Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Wangxiong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education)The Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Li Dong Wang
- Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated HospitalState Key Laboratory for Esophageal Cancer Prevention & TreatmentZhengzhou UniversityZhengzhouHenanChina
| | - Jianshan Mao
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education)The Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Weiting Ge
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education)The Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
21
|
Kishore C, Bhadra P. Current advancements and future perspectives of immunotherapy in colorectal cancer research. Eur J Pharmacol 2020; 893:173819. [PMID: 33347822 DOI: 10.1016/j.ejphar.2020.173819] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/17/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022]
Abstract
5-Fluorouracil (5-FU) is the first-line chemotherapy drug for colorectal cancer but most of the patients get resistant to the drug on a longer course of treatment. After the successful use of immunotherapy in melanoma treatment, it was explored with enthusiasm in different types of solid cancers including colorectal cancer. Nivolumab and pembrolizumab (Programmed cell death-1 blocking antibodies) have shown efficacy in the mismatch repair deficient high microsatellite instability (dMMR-MSI-H) subtype of metastatic colorectal cancer (CRC) patients. Immunotherapy has shown long time remission in a subset of metastatic CRC patients. The molecular mechanism and emerging roles of immunotherapy in colorectal cancer are explored in this review article and future directions for the proper utilization of the development in immunobiology are suggested.
Collapse
Affiliation(s)
- Chandra Kishore
- Life Science Building, Fatki Kutti, Madhepur, Madhubani, Patna, 847408, Bihar, India.
| | - Priyanka Bhadra
- Boral Tripursundari Road, Kolkata, 700154, West Bengal, India
| |
Collapse
|
22
|
Kiyozumi Y, Matsubayashi H, Higashigawa S, Horiuchi Y, Kado N, Hirashima Y, Shiomi A, Oishi T, Ohnami S, Ohshima K, Urakami K, Nagashima T, Yamaguchi K. Role of Tumor Mutation Burden Analysis in Detecting Lynch Syndrome in Precision Medicine: Analysis of 2,501 Japanese Cancer Patients. Cancer Epidemiol Biomarkers Prev 2020; 30:166-174. [PMID: 33046448 DOI: 10.1158/1055-9965.epi-20-0694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tumor mutation burden (TMB) is the total exonic mutation count per megabase of tumor DNA. Recent advances in precision medicine occasionally detect Lynch syndrome (LS) by germline sequencing for mismatch-repair (g.MMR) genes but not using TMB. The current study analyzes the utility of TMB in detecting LS. METHODS Whole-exome sequencing (ion-semiconductor sequencing) was performed for somatic and germline DNA from 2,501 various cancer patients to detect TMB and g.MMR sequencing. MMR IHC was conducted when high TMB (≥10) was detected in LS-related cancers with an additional condition of wild-type BRAF in colorectal cancers. Target sequencing and multiplex ligation-dependent probe amplification (MLPA) were further performed for g.MMR genes in MMR-deficient cancers (TMB-based g.MMR target sequencing). We compared universal sequencing and TMB-based target sequencing in their sensitivity for detecting LS. RESULTS LS was detected in 16 (0.6%) of the 2,501 patients: 1.1% (9/826) of colorectal cancer patients, 16.2% (6/37) of endometrial cancer patients, and 14.3% (1/7) of small intestine cancer patients. TMB-based g.MMR target sequencing (81.3%) showed superior sensitivity for detecting LS than universal g.MMR sequencing (56.3%; P = 0.127) but missed 3 LS patients (1 with a low-TMB cancer, 1 with a BRAF-mutant colorectal cancer, and 1 with an MMR-proficient cancer). Ion-semiconductor sequencing could detect single-nucleotide substitutions but not large deletions. POL-mutated cancers showed extremely high TMBs (48.4-749.2). CONCLUSIONS g.MMR target sequencing, combined with TMB, somatic BRAF mutation, and MMR IHC is an effective strategy for detecting LS. IMPACT TMB can be a biomarker for detecting LS in precision medicine.
Collapse
Affiliation(s)
- Yoshimi Kiyozumi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hiroyuki Matsubayashi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan.
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Satomi Higashigawa
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yasue Horiuchi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Nobuhiro Kado
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
- Division of Gynecology, Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takuma Oishi
- Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Sumiko Ohnami
- Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | | | | | - Takeshi Nagashima
- Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| |
Collapse
|
23
|
Bae JM, Yoo SY, Kim JH, Kang GH. Immune landscape and biomarkers for immuno-oncology in colorectal cancers. J Pathol Transl Med 2020; 54:351-360. [PMID: 32580539 PMCID: PMC7483026 DOI: 10.4132/jptm.2020.05.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in immuno-oncology have increased understanding of the tumor immune microenvironment (TIME), and clinical trials for immune checkpoint inhibitor treatment have shown remission and/or durable response in certain proportions of patients stratified by predictive biomarkers. The TIME in colorectal cancer (CRC) was initially evaluated several decades ago. The prognostic value of the immune response to tumors, including tumor-infiltrating lymphocytes, peritumoral lymphoid reaction, and Crohn's-like lymphoid reaction, has been well demonstrated. In this review, we describe the chronology of TIME research and review the up-to-date high-dimensional TIME landscape of CRC. We also summarize the clinical relevance of several biomarkers associated with immunotherapy in CRC, such as microsatellite instability, tumor mutational burden, POLE/POLD mutation, consensus molecular subtype, and programmed death-ligand 1 expression.
Collapse
Affiliation(s)
- Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Yeon Yoo
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Hino H, Shiomi A, Kusuhara M, Kagawa H, Yamakawa Y, Hatakeyama K, Kawabata T, Oishi T, Urakami K, Nagashima T, Kinugasa Y, Yamaguchi K. Clinicopathological and mutational analyses of colorectal cancer with mutations in the POLE gene. Cancer Med 2019; 8:4587-4597. [PMID: 31240875 PMCID: PMC6712448 DOI: 10.1002/cam4.2344] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
Here, we investigated the clinicopathological and mutation profiles of colorectal cancer (CRC) with POLE mutations. Whole‐exome sequencing was performed in 910 surgically resected primary CRCs. Tumors exceeding 500 counts of nonsynonymous single nucleotide variants (SNVs) were classified as hypermutators, whereas the remaining were classified as nonhypermutators. The hypermutators were subdivided into 2 groups. CRCs harboring more than 20% C‐to‐A and less than 3% C‐to‐G transversions were classified as POLE category tumors, whereas the remaining were classified as common‐hypermutators. Gene expression profiling (GEP) analysis was performed in 892 (98.0%) tumors. Fifty‐seven (6.3%) and 10 (1.1%) tumors were classified common‐hypermutators and POLE category tumors, respectively. POLE category tumors harbored a significantly higher SNV count than common‐hypermutators, and all POLE category tumors were associated with exonuclease domain mutations, such as P286R, F367C, V411L, and S297Y, in the POLE gene. Patients with POLE category tumors were significantly younger than those with nonhypermutators and common‐hypermutators. All POLE mutations in the early‐onset (age of onset ≤50 years old) POLE category (7 tumors) were P286R mutations. GEP analysis revealed that PD‐L1 and PD‐1 gene expression levels were significantly increased in both common‐hypermutators and POLE category tumors compared with those in nonhypermutators. CD8A expression was significantly upregulated in POLE category tumors compared with that in nonhypermutators. Thus, we concluded that CRCs with POLE proofreading deficiency had characteristics distinct from those of other CRCs. Analysis of POLE proofreading deficiency may be clinically significant for personalized management of CRCs.
Collapse
Affiliation(s)
- Hitoshi Hino
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Masatoshi Kusuhara
- Regional Resources Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Hiroyasu Kagawa
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yushi Yamakawa
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takanori Kawabata
- Clinical Research Promotion Unit, Clinical Research Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takuma Oishi
- Division of Pathology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | | | - Yusuke Kinugasa
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan.,Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| |
Collapse
|