1
|
Kowitt C, Zhang Q. Interleukin-33 and Obesity-Related Inflammation and Cancer. ENCYCLOPEDIA 2024; 4:1770-1789. [PMID: 40236667 PMCID: PMC11999627 DOI: 10.3390/encyclopedia4040117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Interleukin-33 (IL-33) is a cytokine belonging to the IL-1 family. It is primarily associated with type 2 immune responses. It interacts with a receptor complex on immune cells in reaction to tissue damage or cellular injury. IL-33 is crucial in immune responses and is involved in various autoimmune and inflammatory diseases. Obesity is marked by chronic inflammation and is a known risk factor for several types of cancer. Recent studies have shown that IL-33 and its receptor complex are expressed in adipose (fat) tissue, suggesting they may play a role in obesity. While inflammation connects obesity and cancer, it is not yet clear whether IL-33 contributes to cancer associated with obesity. Depending on the cellular context, inflammatory environment, expression levels, and bioactivity, IL-33 can exhibit both protumorigenic and antitumorigenic effects. This review will explore the various functions of IL-33 in the inflammation linked to obesity and its relationship with cancer.
Collapse
Affiliation(s)
- Cameron Kowitt
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Qiuyang Zhang
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Palella M, Giustolisi FM, Modica Fiascaro A, Fichera M, Palmieri A, Cannarella R, Calogero AE, Ferrante M, Fiore M. Risk and Prognosis of Thyroid Cancer in Patients with Graves' Disease: An Umbrella Review. Cancers (Basel) 2023; 15:2724. [PMID: 37345061 DOI: 10.3390/cancers15102724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Graves' disease (GD) is an autoimmune disease considered the most common cause of hyperthyroidism. Some studies have investigated its relationship with the risk and prognosis of developing thyroid cancer. Considering that there is no consensus on the relationship between GD and thyroid cancer risk, this umbrella review aimed to summarize the epidemiologic evidence and evaluate its strength and validity on the associations of GD with thyroid cancer risk and its prognosis. This umbrella review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We systematically searched PubMed and Scopus from January 2012 to December 2022. The strength of the epidemiological evidence was graded as high, moderate, or weak by the Measurement Tool to Assess Systematic Reviews (AMSTAR-2). "Strong" evidence was found for the risk of thyroid cancer in GD patients with thyroid nodular disease (OR: 5.30; 95% CI 2.43-12) and for the risk of mortality from thyroid cancer in these patients (OR 2.93, 95% CI 1.17-7.37, p = 0.02), particularly in Europe (OR 4.89; 95% CI 1.52-16). The results of this umbrella review should be interpreted with caution; as the evidence comes mostly from retrospective studies, potential concerns are selection and recall bias, and whether the empirically observed association reflects a causal relationship remains an open question.
Collapse
Affiliation(s)
- Marco Palella
- Department of Medical, Medical Specialization School in Hygiene and Preventive Medicine, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Francesca Maria Giustolisi
- Department of Medical, Medical Specialization School in Hygiene and Preventive Medicine, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Adriana Modica Fiascaro
- Department of Medical, Medical Specialization School in Hygiene and Preventive Medicine, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Martina Fichera
- Department of Medical, Medical Specialization School in Hygiene and Preventive Medicine, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Antonella Palmieri
- Department of Medical, Medical Specialization School in Hygiene and Preventive Medicine, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| |
Collapse
|
3
|
Li H, Cheng Z, Jiang B, Shao X, Xu M. Prognosis value and positive association of Rab1A/IL4Rα aberrant expression in gastric cancer. Sci Rep 2023; 13:6964. [PMID: 37117331 PMCID: PMC10147632 DOI: 10.1038/s41598-023-33955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
Gastric cancer (GC) is the most common gastrointestinal cancer and the leading cause of worldwide cancer-associated mortality. Several GC patients are diagnosed at the advanced stage with an unsatisfactory 5-year survival rate. Rab1A was significantly associated with IL4Rα expression in non-small cell lung cancer. However, their potential correlation in expression and prognosis remains largely unknown in GC. In this study, Rab1A/IL-4Rα was significantly increased in GC than in para-cancerous tissues, and Rab1A/IL-4Rα overexpression caused poor prognosis among GC patients. Rab1A expression was significantly correlated with IL-4Rα expression in GC tissues, as determined by IHC analysis. In addition, the mRNA expression of Rab1A was closely linked with the IL-4Rα mRNA expression in GC tissue expressed by qPCR. Furthermore, the Kaplan-Meier analysis demonstrated that the group with negative Rab1A and IL-4Rα expression had longer 5-year survival rates than the other group. Besides, the group with positive Rab1A and IL-4Rα expression had a worse prognosis than the other group. Finally, nomograms revealed the overall 3 and 5-year survival determined crucial roles of Rab1A/IL-4Rα expression in predicting the prognosis of GC patients. Therefore, Rab1A/IL-4Rα is vital in GC, providing a novel perspective on targeted GC therapy.
Collapse
Affiliation(s)
- Haoran Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Bin Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Xinyu Shao
- Department of Gastroenterology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, No. 242 Guangji Road, Suzhou, 215006, Jiangsu, China.
| | - Menglin Xu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, No. 2 Zheshan West Road, Jinghu District, Wuhu, 241000, Anhui, China.
| |
Collapse
|
4
|
Owji S, Dubin DP, Yassky D, Han J, Tan K, Jagannath S, Parekh S, Gulati N. Dupilumab in Multiple Myeloma: A Case Series. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:928-932. [PMID: 36243663 DOI: 10.1016/j.clml.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Shayan Owji
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, 5 East 98th St, 5th Floor, New York, NY 10029
| | - Danielle P Dubin
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, 5 East 98th St, 5th Floor, New York, NY 10029
| | - Daniel Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, 5 East 98th St, 5th Floor, New York, NY 10029
| | - Joseph Han
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, 5 East 98th St, 5th Floor, New York, NY 10029
| | - Kathryn Tan
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, 5 East 98th St, 5th Floor, New York, NY 10029
| | - Sundar Jagannath
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, United States
| | - Samir Parekh
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, United States
| | - Nicholas Gulati
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, 5 East 98th St, 5th Floor, New York, NY 10029.
| |
Collapse
|
5
|
The past, present, and future of immunotherapy for bladder tumors. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:236. [PMID: 36175715 DOI: 10.1007/s12032-022-01828-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Bladder cancer is a prominent cancer worldwide with a relatively low survival rate for patients with increased stage and metastasis. Current treatments are based on surgical removal, bacillus Calmette-Guerin (BCG) Immunotherapy, and platinum-based chemotherapy. However, treatment resistance due to genetic instability of bladder tumors, as well as intolerance to treatment adverse effects leads to the necessity to further treatment options. New advancements in immunotherapy are on the rise for treatment of various cancers and specifically has shown promise in the treatment of bladder cancer. This review summarizes these new advancements in treatment options involving cytokines and cytokine blockade. Such a study might be helpful for urologists to manage patients with bladder cancer more effectively.
Collapse
|
6
|
Yang MC, Wu D, Sun H, Wang LK, Chen XF. A Metabolic Plasticity-Based Signature for Molecular Classification and Prognosis of Lower-Grade Glioma. Brain Sci 2022; 12:brainsci12091138. [PMID: 36138874 PMCID: PMC9497112 DOI: 10.3390/brainsci12091138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Glioma is one of the major health problems worldwide. Biomarkers for predicting the prognosis of Glioma are still needed. Methods: The transcriptome data and clinic information on Glioma were obtained from the CGGA, TCGA, GDC, and GEO databases. The immune infiltration status in the clusters was compared. The genes with differential expression were identified, and a prognostic model was developed. Several assays were used to detect RPH3A’s role in Glioma cells, including CCK-8, colony formation, wound healing, and transwell migration assay. Results: Lower Grade Glioma (LGG) was divided into two clusters. The immune infiltration difference was observed between the two clusters. We screened for genes that differed between the two groups. WGCNA was used to construct a co-expressed network using the DEGs, and four co-expressed modules were identified, which are blue, green, grey, and yellow modules. High-risk patients have a lower overall survival rate than low-risk patients. In addition, the risk score is associated with histological subtypes. Finally, the role of RPH3A was detected. The overexpression of RPH3A in LGG cells can significantly inhibit cell proliferation and migration and regulate EMT-regulated proteins. Conclusion: Our study developed a metabolic-related model for the prognosis of Glioma cells. RPH3A is a potential therapeutic target for Glioma.
Collapse
Affiliation(s)
- Ming-Chun Yang
- Department of Neurosurgery, 1st Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Di Wu
- Department of Obstetrics and Gynecology, 1st Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hui Sun
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Lian-Kun Wang
- Department of Neurology, Heilongjiang Province Hospital, Harbin 150001, China
| | - Xiao-Feng Chen
- Department of Neurosurgery, 1st Affiliated Hospital, Harbin Medical University, Harbin 150001, China
- Correspondence: ; Tel./Fax: +86-451-8555-5644
| |
Collapse
|
7
|
Identification of an IL-4-Related Gene Risk Signature for Malignancy, Prognosis and Immune Phenotype Prediction in Glioma. Brain Sci 2022; 12:brainsci12020181. [PMID: 35203944 PMCID: PMC8870251 DOI: 10.3390/brainsci12020181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Emerging molecular and genetic biomarkers have been introduced to classify gliomas in the past decades. Here, we introduced a risk signature based on the cellular response to the IL-4 gene set through Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. Methods: In this study, we provide a bioinformatic profiling of our risk signature for the malignancy, prognosis and immune phenotype of glioma. A cohort of 325 patients with whole genome RNA-seq expression data from the Chinese Glioma Genome Atlas (CGGA) dataset was used as the training set, while another cohort of 667 patients from The Cancer Genome Atlas (TCGA) dataset was used as the validating set. The LASSO model identified a 10-gene signature which was considered as the optimal model. Results: The signature was confirmed to be a good predictor of clinical and molecular features involved in the malignancy of gliomas. We also identified that our risk signature could serve as an independently prognostic biomarker in patients with gliomas (p < 0.0001). Correlation analysis showed that our risk signature was strongly correlated with the Tregs, M0 macrophages and NK cells infiltrated in the microenvironment of glioma, which might be a supplement to the existing incomplete innate immune mechanism of glioma phenotypes. Conclusions: Our IL-4-related gene signature was associated with more aggressive and immunosuppressive phenotypes of gliomas. The risk score could predict prognosis independently in glioma, which might provide a new insight for understanding the IL-4 involved mechanism of gliomas.
Collapse
|
8
|
Huang X, Pan T, Yan L, Jin T, Zhang R, Chen B, Feng J, Duan T, Xiang Y, Zhang M, Chen X, Yang Z, Zhang W, Ding X, Xie T, Sui X. The inflammatory microenvironment and the urinary microbiome in the initiation and progression of bladder cancer. Genes Dis 2021; 8:781-797. [PMID: 34522708 PMCID: PMC8427242 DOI: 10.1016/j.gendis.2020.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests that chronic inflammation may play a critical role in various malignancies, including bladder cancer. This hypothesis stems in part from inflammatory cells observed in the urethral microenvironment. Chronic inflammation may drive neoplastic transformation and the progression of bladder cancer by activating a series of inflammatory molecules and signals. Recently, it has been shown that the microbiome also plays an important role in the development and progression of bladder cancer, which can be mediated through the stimulation of chronic inflammation. In effect, the urinary microbiome can play a role in establishing the inflammatory urethral microenvironment that may facilitate the development and progression of bladder cancer. In other words, chronic inflammation caused by the urinary microbiome may promote the initiation and progression of bladder cancer. Here, we provide a detailed and comprehensive account of the link between chronic inflammation, the microbiome and bladder cancer. Finally, we highlight that targeting the urinary microbiome might enable the development of strategies for bladder cancer prevention and personalized treatment.
Collapse
Affiliation(s)
- Xingxing Huang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Pan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Lili Yan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Jin
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ruonan Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Bi Chen
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Jiao Feng
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Duan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Yu Xiang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Mingming Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xiaying Chen
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Zuyi Yang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Wenzheng Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Tian Xie
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| |
Collapse
|
9
|
Li CM, Chen Z. Autoimmunity as an Etiological Factor of Cancer: The Transformative Potential of Chronic Type 2 Inflammation. Front Cell Dev Biol 2021; 9:664305. [PMID: 34235145 PMCID: PMC8255631 DOI: 10.3389/fcell.2021.664305] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Recent epidemiological studies have found an alarming trend of increased cancer incidence in adults younger than 50 years of age and projected a substantial rise in cancer incidence over the next 10 years in this age group. This trend was exemplified in the incidence of non-cardia gastric cancer and its disproportionate impact on non-Hispanic white females under the age of 50. The trend is concurrent with the increasing incidence of autoimmune diseases in industrialized countries, suggesting a causal link between the two. While autoimmunity has been suspected to be a risk factor for some cancers, the exact mechanisms underlying the connection between autoimmunity and cancer remain unclear and are often controversial. The link has been attributed to several mediators such as immune suppression, infection, diet, environment, or, perhaps most plausibly, chronic inflammation because of its well-recognized role in tumorigenesis. In that regard, autoimmune conditions are common causes of chronic inflammation and may trigger repetitive cycles of antigen-specific cell damage, tissue regeneration, and wound healing. Illustrating the connection between autoimmune diseases and cancer are patients who have an increased risk of cancer development associated with genetically predisposed insufficiency of cytotoxic T lymphocyte-associated protein 4 (CTLA4), a prototypical immune checkpoint against autoimmunity and one of the main targets of cancer immune therapy. The tumorigenic process triggered by CTLA4 insufficiency has been shown in a mouse model to be dependent on the type 2 cytokines interleukin-4 (IL4) and interleukin-13 (IL13). In this type 2 inflammatory milieu, crosstalk with type 2 immune cells may initiate epigenetic reprogramming of epithelial cells, leading to a metaplastic differentiation and eventually malignant transformation even in the absence of classical oncogenic mutations. Those findings complement a large body of evidence for type 1, type 3, or other inflammatory mediators in inflammatory tumorigenesis. This review addresses the potential of autoimmunity as a causal factor for tumorigenesis, the underlying inflammatory mechanisms that may vary depending on host-environment variations, and implications to cancer prevention and immunotherapy.
Collapse
Affiliation(s)
- Chris M Li
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
10
|
Feng Y, Dramani Maman ST, Zhu X, Liu X, Bongolo CC, Liang C, Tu J. Clinical value and potential mechanisms of LINC00221 in hepatocellular carcinoma based on integrated analysis. Epigenomics 2021; 13:299-317. [PMID: 33406920 DOI: 10.2217/epi-2020-0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aims:This study aimed to unveil the functional roles of LINC00221 in hepatocellular carcinoma (HCC). Materials and methods:A discovery cohort and a validation cohort were respectively used to identify and verify the clinical value of LINC00221 in HCC. Bioinformatics analysis was performed to explore its potential mechanisms. Results:LINC00221 was upregulated in HCC tissues and serum samples. Survival analysis and receiver operating characteristic curve further revealed its prognostic and diagnostic roles. Exploration of the mechanism showed that LINC00221 might exert a pro-cancer role via the lncRNA-miRNA-mRNA network.Conclusions: Our study reveals that upregulated LINC00221 can serve as a potential diagnostic and prognostic biomarker and provides novel clues as to the role of LINC00221 in HCC.
Collapse
Affiliation(s)
- Yanlin Feng
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Souraka Tapara Dramani Maman
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinyu Zhu
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xuefang Liu
- Department of Clinical Laboratory, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Christian Cedric Bongolo
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunzi Liang
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiancheng Tu
- Program & Department of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
11
|
Maggi E, Veneziani I, Moretta L, Cosmi L, Annunziato F. Group 2 Innate Lymphoid Cells: A Double-Edged Sword in Cancer? Cancers (Basel) 2020; 12:cancers12113452. [PMID: 33233582 PMCID: PMC7699723 DOI: 10.3390/cancers12113452] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Group 2 Innate Lymphoid Cells (ILC2s) belong to the family of helper ILCs which provide host defense against infectious agents, participate in inflammatory responses and mediate lymphoid organogenesis and tissue repair, mainly at the skin and mucosal level. Based on their transcriptional, phenotypic and functional profile, ILC2s mirror the features of the adaptive CD4+ Th2 cell subset, both contributing to the so-called type 2 immune response. Similar to other ILCs, ILC2s are rapidly activated by signals deriving from tissue and/or other tissue-resident immune cells. The biologic activity of ILCs needs to be tightly regulated in order to prevent them from contributing to severe inflammation and damage in several organs. Indeed, ILC2s display both enhancing and regulatory roles in several pathophysiological conditions, including tumors. In this review, we summarize the actual knowledge about ILC2s ability to induce or impair a protective immune response, their pro- or antitumor activity in murine models, human (children and adults) pathologies and the potential strategies to improve cancer immunotherapy by exploiting the features of ILC2s.
Collapse
Affiliation(s)
- Enrico Maggi
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
- Correspondence: ; Tel.: +39-06-6859-3617
| | - Irene Veneziani
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
| | - Lorenzo Moretta
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.C.); (F.A.)
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.C.); (F.A.)
| |
Collapse
|
12
|
Targeting Receptors on Cancer Cells with Protein Toxins. Biomolecules 2020; 10:biom10091331. [PMID: 32957689 PMCID: PMC7563326 DOI: 10.3390/biom10091331] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer cells frequently upregulate surface receptors that promote growth and survival. These receptors constitute valid targets for intervention. One strategy involves the delivery of toxic payloads with the goal of killing those cancer cells with high receptor levels. Delivery can be accomplished by attaching a toxic payload to either a receptor-binding antibody or a receptor-binding ligand. Generally, the cell-binding domain of the toxin is replaced with a ligand or antibody that dictates a new binding specificity. The advantage of this “immunotoxin” approach lies in the potency of these chimeric molecules for killing cancer cells. However, receptor expression on normal tissue represents a significant obstacle to therapeutic intervention.
Collapse
|
13
|
Dias Lopes NM, Mendonça Lens HH, Armani A, Marinello PC, Cecchini AL. Thyroid cancer and thyroid autoimmune disease: A review of molecular aspects and clinical outcomes. Pathol Res Pract 2020; 216:153098. [PMID: 32825964 DOI: 10.1016/j.prp.2020.153098] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
Thyroid cancer (TC) is the most prevalent malignant neoplasm that affects the endocrine system. Hashimoto's thyroiditis (HT), also known as chronic lymphocytic thyroiditis, is the most common autoimmune thyroid disease (AITD) that, together with Graves' disease (GD), represent the main autoimmune diseases that affect the thyroid gland. Some studies suggest a greater risk of AITD and the development of TC, while others, investigate its relationship with TC progression and patient prognosis. In this review, we have analyzed published data on the molecular aspects related to the association between AITD and TC, addressing their influence on TC progression, diagnosis, and prognosis of the patients. MEDLINE database (PubMed) platform was used as a search engine and the original articles related to the topic were selected using the keywords combination "thyroid cancer and Hashimoto thyroiditis" or "thyroid carcinoma and thyroid autoimmune disease". After the selection, we categorized the main findings of the papers into four topics: antitumor immunity, tumor progression, diagnosis, and prognosis. Although most of the studies have pointed out the presence of AITD as a factor that increases the risk of TC, few molecular mechanisms to support this conclusion have been described. Additionally, little information is available to explain, pathophysiologically, the effects of autoimmunity in TC diagnosis, progression, and prognosis.
Collapse
Affiliation(s)
- Natália Medeiros Dias Lopes
- Laboratory of Molecular Pathology, Department of Pathological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Hannah Hamada Mendonça Lens
- Laboratory of Molecular Pathology, Department of Pathological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - André Armani
- Department of Surgical Clinic, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Poliana Camila Marinello
- Laboratory of Molecular Pathology, Department of Pathological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Alessandra Lourenço Cecchini
- Laboratory of Molecular Pathology, Department of Pathological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil.
| |
Collapse
|
14
|
Busetto GM, Porreca A, Del Giudice F, Maggi M, D'Agostino D, Romagnoli D, Musi G, Lucarelli G, Palmer K, Colonna di Paliano A, Muto M, Hurle R, Terracciano D, de Cobelli O, Sciarra A, De Berardinis E, Ferro M. SARS-CoV-2 Infection and High-Risk Non-Muscle-Invasive Bladder Cancer: Are There Any Common Features? Urol Int 2020; 104:510-522. [PMID: 32516772 PMCID: PMC7316644 DOI: 10.1159/000509065] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/31/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND The new severe acute respiratory syndrome virus (SARS-CoV-2) outbreak is a huge health, social and economic issue and has been declared a pandemic by the World Health Organization. Bladder cancer, on the contrary, is a well-known disease burdened by a high rate of affected patients and risk of recurrence, progression and death. SUMMARY The coronavirus disease (COVID-19 or 2019-nCoV) often involves mild clinical symptoms but in some cases, it can lead to pneumonia with acute respiratory distress syndrome and multiorgan dysfunction. Factors associated with developing a more severe disease are increased age, obesity, smoking and chronic underlying comorbidities (including diabetes mellitus). High-risk non-muscle-invasive bladder cancer (NMIBC) progression and worse prognosis are also characterized by a higher incidence in patients with risk factors similar to COVID-19. Immune system response and inflammation have been found as a common hallmark of both diseases. Most severe cases of COVID-19 and high-risk NMIBC patients at higher recurrence and progression risk are characterized by innate and adaptive immune activation followed by inflammation and cytokine/chemokine storm (interleukin [IL]-2, IL-6, IL-8). Alterations in neutrophils, lymphocytes and platelets accompany the systemic inflammatory response to cancer and infections. Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio for example have been recognized as factors related to poor prognosis for many solid tumors, including bladder cancer, and their role has been found important even for the prognosis of SARS-CoV-2 infection. Key Messages: All these mechanisms should be further analyzed in order to find new therapeutic agents and new strategies to block infection and cancer progression. Further than commonly used therapies, controlling cytokine production and inflammatory response is a promising field.
Collapse
Affiliation(s)
- Gian Maria Busetto
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy,
| | - Angelo Porreca
- Department of Urology, Abano Terme Policlinic, Abano Terme, Italy
| | - Francesco Del Giudice
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Martina Maggi
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | | | | | - Gennaro Musi
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Katie Palmer
- Department of Internal Medicine and Geriatrics, Cattolica del Sacro Cuore University, Rome, Italy
| | | | - Matteo Muto
- Radiotherapy Unit, S.G. Moscati Hospital, Avellino, Italy
| | - Rodolfo Hurle
- Department of Urology, Humanitas Research Hospital, Milan, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Ottavio de Cobelli
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Sciarra
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Ettore De Berardinis
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Matteo Ferro
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
15
|
Bai XD, Cao XW, Chen YH, Fu LY, Zhao J, Wang FJ. Constructing a better binding peptide for drug delivery targeting the interleukin-4 receptor. J Drug Target 2020; 28:970-981. [PMID: 32363946 DOI: 10.1080/1061186x.2020.1764964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Targeted delivery of antitumor drugs is especially important for tumour therapy. Tumour targeting peptides have been shown to be very effective drug carriers for tumour therapy. Interleukin-4 receptor (IL-4R) is overexpressed on the surface of various human solid tumours. To obtain a better targeting peptide, we first designed a novel targeting peptide derived from interleukin-4 (IL-4), ILBP-b. ILBP-b contains the key high-affinity binding residue E9 of IL-4 to IL-4R. Compared with a reported targeting peptide ILBP-a (containing another key high affinity residue R88), ILBP-b was proved to be a better targeting peptide by the fluorescence experiments. Then, we further fused ILBP-b and ILBP-a to increase the multisite-binding ability of ILBP-b and got a better targeting peptide ILBP-ba. ILBP-ba showed a stronger preferential binding ability to IL-4R high-expressing cells than ILBP-a and ILBP-b. Competitive binding experiments demonstrated ILBP-ba specifically targets IL-4R. By fusing ILBP-ba with drug protein trichosanthin (TCS), in vitro drug carrying experiments showed that ILBP-ba could specifically enhance the killing effect of TCS on IL-4R high-expressing tumour cells (more than 10 folds). These results indicated that ILBP-ba has great potential for drug delivery applications targeting IL-4R and will be beneficial for the development of tumour therapeutic agents.
Collapse
Affiliation(s)
- Xue-Di Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xue-Wei Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi-Hui Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Long-Yun Fu
- Zhejiang Fonow Medicine Co. Ltd., Dongyang, China
| | - Jian Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fu-Jun Wang
- Zhejiang Fonow Medicine Co. Ltd., Dongyang, China.,Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Mbanefo EC, Fu CL, Ho CP, Le L, Ishida K, Hammam O, Hsieh MH. Interleukin-4 Signaling Plays a Major Role in Urogenital Schistosomiasis-Associated Bladder Pathogenesis. Infect Immun 2020; 88:e00669-19. [PMID: 31843965 PMCID: PMC7035943 DOI: 10.1128/iai.00669-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/26/2019] [Indexed: 11/20/2022] Open
Abstract
Interleukin-4 (IL-4) is crucial in many helminth infections, but its role in urogenital schistosomiasis, infection with Schistosoma haematobium worms, remains poorly understood due to a historical lack of animal models. The bladder pathology of urogenital schistosomiasis is caused by immune responses to eggs deposited in the bladder wall. A range of pathology occurs, including urothelial hyperplasia and cancer, but associated mechanisms and links to IL-4 are largely unknown. We modeled urogenital schistosomiasis by injecting the bladder walls of IL-4 receptor-alpha knockout (Il4ra-/- ) and wild-type mice with S. haematobium eggs. Readouts included bladder histology and ex vivo assessments of urothelial proliferation, cell cycle, and ploidy status. We also quantified the effects of exogenous IL-4 on urothelial cell proliferation in vitro, including cell cycle status and phosphorylation patterns of major downstream regulators in the IL-4 signaling pathway. There was a significant decrease in the intensity of granulomatous responses to bladder-wall-injected S. haematobium eggs in Il4ra-/- versus wild-type mice. S. haematobium egg injection triggered significant urothelial proliferation, including evidence of urothelial hyper-diploidy and cell cycle skewing in wild-type but not Il4ra-/- mice. Urothelial exposure to IL-4 in vitro led to cell cycle polarization and increased phosphorylation of AKT. Our results show that IL-4 signaling is required for key pathogenic features of urogenital schistosomiasis and that particular aspects of this signaling pathway may exert these effects directly on the urothelium. These findings point to potential mechanisms by which urogenital schistosomiasis promotes bladder carcinogenesis.
Collapse
Affiliation(s)
- Evaristus C Mbanefo
- Division of Urology, Children's National Medical Center, Washington, DC, USA
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
| | - Chi-Ling Fu
- Stanford University School of Medicine, Stanford, California, USA
| | - Christina P Ho
- Division of Urology, Children's National Medical Center, Washington, DC, USA
| | - Loc Le
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kenji Ishida
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
| | | | - Michael H Hsieh
- Division of Urology, Children's National Medical Center, Washington, DC, USA
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
- Department of Urology, The George Washington University, Washington, DC, USA
| |
Collapse
|
17
|
Roife D, Fleming JB, Gomer RH. Fibrocytes in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:79-85. [PMID: 32036606 PMCID: PMC7212529 DOI: 10.1007/978-3-030-35723-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumors have long been compared to chronic wounds that do not heal, since they share many of the same molecular and cellular processes. In normal wounds, healing processes lead to restoration of cellular architecture, while in malignant tumors, these healing processes become dysregulated and contribute to growth and invasion of neoplastic cells into the surrounding tissues. Fibrocytes are fibroblast-like cells that differentiate from bone marrow-derived CD14+ circulating monocytes and aid wound healing. Although most monocytes will differentiate into macrophages after extravasating into a tissue, signals present in a wound environment can cause some monocytes to differentiate into fibrocytes. The fibrocytes secrete matrix proteins and inflammatory cytokines, activate local fibroblasts to proliferate and increase extracellular matrix production, and promote angiogenesis, and because fibrocytes are contractile, they also help wound contraction. There is now emerging evidence that fibrocytes are present in the tumor microenvironment, attracted by the chronic tissue damage and cytokines from both cancer cells and other immune cells. Fibrocytes may aid in the survival and spread of neoplastic cells, so these wound-healing cells may be a promising target for anticancer research in future studies.
Collapse
Affiliation(s)
- David Roife
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Richard H Gomer
- Department of Biology/ILSB, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
18
|
Peng YS, Syu JP, Wang SD, Pan PC, Kung HN. BSA-bounded p-cresyl sulfate potentiates the malignancy of bladder carcinoma by triggering cell migration and EMT through the ROS/Src/FAK signaling pathway. Cell Biol Toxicol 2019; 36:287-300. [PMID: 31873818 DOI: 10.1007/s10565-019-09509-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
Abstract
Para-cresyl sulfate (P-CS), a major uremic toxin derived from the metabolites of tyrosine and phenylalanine through liver, existed in the blood of patients with chronic kidney disease (CKD). CKD increases the malignancy in bladder cancers; however, effects of P-CS on bladder cancers are not fully understood. P-CS is conjugated with BSA physiologically, and this study aims to investigate the effects and possible underlying mechanisms of BSA-bounded P-CS on human bladder cancer cells. With P-CS treatment, the intracellular ROS increased in bladder cancer cells. ROS then triggered epithelial-mesenchymal transition (EMT), stress fiber redistribution, and cell migration. With specific inhibitors, the key signals regulating P-CS-treated migration are Src and FAK. This study provided a clinical clue that patients with higher serum P-CS have a higher risk of malignant urothelial carcinomas, and a regulatory pathway of how P-CS regulates bladder cancer migration.
Collapse
Affiliation(s)
- Yu-Sen Peng
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan.,Department of Electrical Engineering, Yuan-Ze University, Taoyuan City, Taiwan
| | - Jhih-Pu Syu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, 10051, Taipei, Taiwan
| | - Sheng-De Wang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, 10051, Taipei, Taiwan
| | - Pie-Chun Pan
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, 10051, Taipei, Taiwan
| | - Hsiu-Ni Kung
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, 10051, Taipei, Taiwan.
| |
Collapse
|
19
|
Degoricija M, Korac-Prlic J, Vilovic K, Ivanisevic T, Haupt B, Palada V, Petkovic M, Karaman I, Terzic J. The dynamics of the inflammatory response during BBN-induced bladder carcinogenesis in mice. J Transl Med 2019; 17:394. [PMID: 31779626 PMCID: PMC6883615 DOI: 10.1186/s12967-019-02146-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/18/2019] [Indexed: 01/14/2023] Open
Abstract
Background Bladder cancer (BC) is the most common malignant disease of the urinary tract. Recurrent high grade non muscle invasive BC carries a serious risk for progression and subsequent metastases. The most common preclinical mouse model for bladder cancer relies on administration of N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) to mice. BBN-induced tumors in mice recapitulate the histology of human BC and were characterized with an overexpression of markers typical for basal-like cancer subtype in addition to a high mutational burden with frequent mutations in Trp53, similar to human muscle invasive BC. Methods Bladder cancer was induced in C57BL/6J male mice by administering the BBN in the drinking water. A thorough histopathological analysis of bladder specimen during and post BBN treatment was performed at 2, 4, 16, 20 and 25 weeks. RNA sequencing and qPCR was performed to assess the levels of expression of immunologically relevant genes at 2 weeks and 20 weeks during and post BBN treatment. Results We characterized the dynamics of the inflammatory response in the BBN-induced BC in mice. The treatment with BBN had gradually induced a robust inflammation in the first 2 weeks of administration, however, the inflammatory response was progressively silenced in the following weeks of the treatment, until the progression of the primary carcinoma. Tumors at 20 weeks were characterized with a marked upregulation of IL18 when compared to premalignant inflammatory response at 2 weeks. In accordance with this, we observed an increase in expression of IFNγ-responsive genes coupled to a pronounced lymphocytic infiltrate during the early stages of malignant transformation in bladder. Similar to human basal-like BC, BBN-induced murine tumors displayed an upregulated expression of immunoinhibitory molecules such as CTLA-4, PD-L1, and IDO1 which can lead to cytotoxic resistance and tumor escape. Conclusions Despite the recent advances in bladder cancer therapy which include the use of checkpoint inhibitors, the treatment options for patients with locally advanced and metastatic BC remain limited. BBN-induced BC in mice displays an immunological profile which shares similarities with human MIBC thus representing an optimal model for preclinical studies on immunomodulation in management of BC.
Collapse
Affiliation(s)
- Marina Degoricija
- Department of Immunology, School of Medicine, University of Split, 21000, Split, Croatia
| | - Jelena Korac-Prlic
- Department of Immunology, School of Medicine, University of Split, 21000, Split, Croatia
| | - Katarina Vilovic
- Department of Pathology, University Hospital of Split, 21000, Split, Croatia
| | - Tonci Ivanisevic
- Department of Immunology, School of Medicine, University of Split, 21000, Split, Croatia
| | - Benedikt Haupt
- Department of Immunology, School of Medicine, University of Split, 21000, Split, Croatia
| | - Vinko Palada
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Marina Petkovic
- Department of Immunology, School of Medicine, University of Split, 21000, Split, Croatia
| | - Ivana Karaman
- Department of Pathology, University Hospital of Split, 21000, Split, Croatia
| | - Janos Terzic
- Department of Immunology, School of Medicine, University of Split, 21000, Split, Croatia.
| |
Collapse
|
20
|
Kang MA, Lee J, Ha SH, Lee CM, Kim KM, Jang KY, Park SH. Interleukin4Rα (IL4Rα) and IL13Rα1 Are Associated with the Progress of Renal Cell Carcinoma through Janus Kinase 2 (JAK2)/Forkhead Box O3 (FOXO3) Pathways. Cancers (Basel) 2019; 11:cancers11091394. [PMID: 31540495 PMCID: PMC6770213 DOI: 10.3390/cancers11091394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022] Open
Abstract
Specific kinds of interleukin (IL) receptors are known to mediate lymphocyte proliferation and survival. However, recent reports have suggested that the high expression of IL4Rα and IL13Rα1 in tumor tissue might be associated with tumorigenesis in several kinds of tumor. We found that a significant association between mRNA level of IL4Rα or IL13Rα1 and the poor prognosis of renal cell carcinoma (RCC) from the public database (http://www.oncolnc.org/). Then, we evaluated the clinicopathological significance of the immunohistochemical expression of IL4Rα and IL13Rα1 in 199 clear cell RCC (CCRCC) patients. The individual and co-expression patterns of IL4Rα and IL13Rα1 were significantly associated with cancer-specific survival (CSS) and relapse-free survival (RFS) in univariate analysis. Multivariate analysis indicated IL4Rα-positivity and co-expression of IL4Rα and IL13Rα1 as the independent indicators of shorter CSS and RFS of CCRCC patients. For the in vitro evaluation of the oncogenic role of IL4Rα and IL13Rα1 in RCC, we knock-downed IL4Rα or IL13Rα1 and observed that the cell proliferation rate was decreased, and the apoptosis rate was increased in A498 and ACHN cells. Furthermore, we examined the possible role of Janus kinase 2 (JAK2), well-known down-stream tyrosine kinase under the heterodimeric receptor complex of IL4Rα and IL13Rα1. Interestingly, JAK2 interacted with Forkhead box O3 (FOXO3) to cause tyrosine-phosphorylation of FOXO3. Silencing IL4Rα or JAK2 in A498 and ACHN cells reduced the interaction between JAK2 and FOXO3. Moreover, pharmacological inhibition of JAK2 induced the nuclear localization of FOXO3, leading to increase apoptosis and decrease cell proliferation rate in A498 and ACHN cells. Taken together, these results suggest that IL4Rα and IL13Rα1 might be involved in the progression of RCC through JAK2/FOXO3 pathway, and their expression might be used as the novel prognostic factor and therapeutic target for RCC patients.
Collapse
Affiliation(s)
- Mi-Ae Kang
- Department of Biological Science, Gachon University, Seongnam 13120, Korea.
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea.
| | - Sang Hoon Ha
- Division of Biotechnology, Chonbuk National University, Iksan 54596, Korea.
| | - Chang Min Lee
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea.
| | - Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Chonbuk National University Hospital, Chonbuk National University, Jeonju 54896, Korea.
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Chonbuk National University Hospital, Chonbuk National University, Jeonju 54896, Korea.
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea.
| |
Collapse
|
21
|
Shadpour P, Zamani M, Aghaalikhani N, Rashtchizadeh N. Inflammatory cytokines in bladder cancer. J Cell Physiol 2019; 234:14489-14499. [PMID: 30779110 DOI: 10.1002/jcp.28252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/29/2018] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
The presence of inflammatory cells and their products in the tumor microenvironment plays a crucial role in the pathogenesis of a tumor. Releasing the cytokines from a host in response to infection and inflammation can inhibit tumor growth and progression. However, tumor cells can also respond to the host cytokines with increasing the growth/invasion/metastasis. Bladder cancer (BC) is one of the most common cancers in the world. The microenvironment of a bladder tumor has been indicated to be rich in growth factors/inflammatory cytokines that can induce the tumor growth/progression and also suppress the immune system. On the contrary, modulate of the cancer progression has been shown following upregulation of the cytokines-related pathways that suggested the cytokines as potential therapeutic targets. In this study, we provide a summary of cytokines that are involved in BC formation/regression with both inflammatory and anti-inflammatory properties. A more accurate understanding of tumor microenvironment creates favorable conditions for cytokines targeting to treat BC.
Collapse
Affiliation(s)
- Pejman Shadpour
- Hasheminejad Kidney Center (HKC), Hospital Management Research Center (HMRC), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mojtaba Zamani
- Department of Agronomy and Plant Breeding, School of Agriculture, University of Tehran, Karaj, Iran
| | - Nazi Aghaalikhani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadereh Rashtchizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Espinoza-Sánchez NA, Győrffy B, Fuentes-Pananá EM, Götte M. Differential impact of classical and non-canonical NF-κB pathway-related gene expression on the survival of breast cancer patients. J Cancer 2019; 10:5191-5211. [PMID: 31602271 PMCID: PMC6775609 DOI: 10.7150/jca.34302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a well-known driver of carcinogenesis and cancer progression, often attributed to the tumor microenvironment. However, tumor cells themselves are capable of secreting a variety of inflammatory molecules, leading to the activation of specific signaling pathways that promote tumor progression. The NF-κB signaling pathway is one of the most important connections between inflammation and tumorigenesis. NF-κB is a superfamily of transcription factors that plays an important role in several types of hematological and solid tumors, including breast cancer. However, the role of the NF-κB pathway in the survival of breast cancer patients is poorly studied. In this study, we analyzed and related the expression of both canonical and alternative NF-κB pathways and selected target genes with the relapse-free and overall survival of breast cancer patients. We used the public database Kaplan-Meier plotter (KMplot) which includes gene expression data and survival information of 3951 breast cancer patients. We found that the expression of IKKα was associated with poor relapse-free survival in patients with ER-positive tumors. Moreover, the expression of IL-8 and MMP-1 was associated with poor relapse-free and overall survival. In contrast, expression of IKKβ, p50, and p65 from the canonical pathway, and NIK and RELB from the alternative pathway correlated with better relapse-free survival also when the patients were classified by their hormonal and nodal status. Our study suggests that the expression of genes of the canonical and alternative NF-κB pathways is ultimately critical for tumor persistence. Understanding the communication between both pathways would help to find better therapeutic and prophylactic targets to prevent breast cancer progression and relapse.
Collapse
Affiliation(s)
- Nancy Adriana Espinoza-Sánchez
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, C.P. 06720, Ciudad de México, México
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, and Semmelweis University 2nd Dept. of Pediatrics, Budapest, Hungary
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, C.P. 06720, Ciudad de México, México
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
23
|
Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor β on cancer cells. Cent Eur J Immunol 2019; 44:190-200. [PMID: 31530989 PMCID: PMC6745546 DOI: 10.5114/ceji.2018.76273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Cytokines are signalling proteins generated in most part by immune cells that have critical functions in cellular lifespan. Here we present recent data on three selected anti-inflammatory cytokines: interleukin (IL)-10, IL-4 and transforming growth factor β (TGF-β). IL-10 inhibits the synthesis of major pro-inflammatory cytokines, chemokines, and mediates anti-inflammatory reactions. IL-4 is a multifunctional cytokine which plays a crucial role in the regulation of immune responses and is involved in processes associated with development and differentiation of lymphocytes and regulation of T cell survival. Transforming TGF-β, which in normal cells or pre-cancerous cells, promotes proliferation arrest which represses tumour growth. In this review, we focus on the influence of IL-10, IL-4 and TGF-β on various types of cancer as well as potential of these selected cytokines to serve as new biomarkers which can support effective therapies for cancer patients. This article is presented based on a review of the newest research results.
Collapse
|
24
|
Suzuki A, Puri S, Leland P, Puri A, Moudgil T, Fox BA, Puri RK, Joshi BH. Subcellular compartmentalization of PKM2 identifies anti-PKM2 therapy response in vitro and in vivo mouse model of human non-small-cell lung cancer. PLoS One 2019; 14:e0217131. [PMID: 31120964 PMCID: PMC6532891 DOI: 10.1371/journal.pone.0217131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 05/06/2019] [Indexed: 01/09/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) is an alternatively spliced variant, which mediates the conversion of glucose to lactate in cancer cells under normoxic conditions, known as the Warburg effect. Previously, we demonstrated that PKM2 is one of 97 genes that are overexpressed in non-small-cell lung cancer (NSCLC) cell lines. Herein, we demonstrate a novel role of subcellular PKM2 expression as a biomarker of therapeutic response after targeting this gene by shRNA or small molecule inhibitor (SMI) of PKM2 enzyme activity in vitro and in vivo. We examined two established lung cancer cell lines, nine patients derived NSCLC and three normal lung fibroblast cell lines for PKM2 mRNA, protein and enzyme activity by RT-qPCR, immunocytochemistry (ICC), and Western blot analysis. All eleven NSCLC cell lines showed upregulated PKM2 enzymatic activity and protein expression mainly in their cytoplasm. Targeting PKM2 by shRNA or SMI, NSCLC cells showed significantly reduced mRNA, enzyme activity, cell viability, and colony formation, which also downregulated cytosolic PKM2 and upregulated nuclear enzyme activities. Normal lung fibroblast cell lines did not express PKM2, which served as negative controls. PKM2 targeting by SMI slowed tumor growth while gene-silencing significantly reduced growth of human NSCLC xenografts. Tumor sections from responding mice showed >70% reduction in cytoplasmic PKM2 with low or undetectable nuclear staining by immunohistochemistry (IHC). In sharp contrast, non-responding tumors showed a >38% increase in PKM2 nuclear staining with low or undetectable cytoplasmic staining. In conclusion, these results confirmed PKM2 as a target for cancer therapy and an unique function of subcellular PKM2, which may characterize therapeutic response to anti-PKM2 therapy in NSCLC.
Collapse
Affiliation(s)
- Akiko Suzuki
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Sachin Puri
- Molecular & Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon, United States of America
| | - Pamela Leland
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Ankit Puri
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Tarsem Moudgil
- Molecular & Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon, United States of America
| | - Bernard A. Fox
- Molecular & Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, OHSU, Portland, Oregon, United States of America
| | - Raj K. Puri
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Bharat H. Joshi
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Lin Y, Yuan Q, Qian F, Qin C, Cao Q, Wang M, Chu H, Zhang Z. Polymorphism rs4787951 in IL-4R contributes to the increased risk of renal cell carcinoma in a Chinese population. Gene 2019; 685:242-247. [PMID: 30472377 DOI: 10.1016/j.gene.2018.11.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Interleukins are important molecules involved in tumor formation. In this study, the association between renal cell carcinoma (RCC) risk and single nucleotide polymorphisms (SNPs) on IL-4/IL-13/IL-4R was assessed. METHODS We recruited 620/623 cases/controls and conducted a case-control study. Five tagSNPs (i.e., IL-4R rs8832, IL-4R rs4787951, IL-13 rs1881457, IL-13 rs2066960 and IL-13 rs2069744) were selected. Odds ratios (ORs) with their 95% confidence intervals (CIs) were obtained to appraise the association between SNPs and RCC susceptibility. Luciferase report assay and EMSA were conducted to investigate whether SNPs could affect binding affinity of transcription factors to target genes. RESULTS IL-4R rs4787951T>C was significantly associated with RCC susceptibility. Individuals carrying CC genotypes had a significant increment in RCC risk compared with TT genotype carriers (adjusted OR = 1.57, 95% CI = 1.07-2.28, P = 0.020). By stratified analyses, more pronounced association was found in the female, diabetic or without smoking, drinking and hypertension group. Besides, SNP rs4787951 could influence the binding affinity of IL-4R to transcription factors. Sequence surrounding allele T was prone to bind transcription factor NFATc. CONCLUSIONS This study revealed that IL-4R rs4787951T>C was associated with susceptibility of RCC and could be a predictive biomarker for RCC risk.
Collapse
Affiliation(s)
- Yadi Lin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China; Center for Disease Prevention and Control of Gusu District, Suzhou, China
| | - Qi Yuan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fangze Qian
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Cao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
26
|
The Expression Levels of IL-4/IL-13/STAT6 Signaling Pathway Genes and SOCS3 Could Help to Differentiate the Histopathological Subtypes of Non-Small Cell Lung Carcinoma. Mol Diagn Ther 2019; 22:621-629. [PMID: 30105735 PMCID: PMC6132440 DOI: 10.1007/s40291-018-0355-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background The interleukin (IL)-4/IL-13/signal transducer and activator of transcription (STAT) 6 signaling pathway and the SOCS3 gene, one of its main regulators, constitute an important link between the inflammation process in the epithelial cells and inflammatory-related tumorigenesis. The present study is the first to evaluate IL-4, IL-13, STAT6, and SOCS3 mRNA expression in non-small cell lung carcinoma (NSCLC) histopathological subtypes. Methods Gene expression levels were assessed using TaqMan® probes by quantitative reverse transcription PCR (qRT-PCR) in lung tumor samples and unchanged lung tissue samples. Results Increased expression of IL-4, IL-13, and STAT6 was observed in all histopathological NSCLC subtypes (squamous cell carcinoma [SCC], adenocarcinoma [AC], and large cell carcinoma [LCC]). Significantly higher expression of IL-13 and STAT6 (p = 0.019 and p = 0.008, respectively) was found in SCC than in LCC. No statistically significant differences were found for IL-4. Significantly higher SOCS3 expression was found in LCC than in AC (p = 0.027). A negative correlation (rho = –0.519) was observed for the STAT6 and SOCS3 genes in SCC (p = 0.005). No associations were found between gene expression and tumor staging (post-operative Tumor Node Metastasis [pTNM], American Joint Committee on Cancer [AJCC]), patients’ age, sex, or history of smoking. Conclusions As the number of LCC cases in our study was quite low, the statistically significant results obtained should be confirmed in a larger group of patients, particularly as the relationships identified between increased IL-4, IL-13, and STAT6 mRNA expression and decreased SOCS3 expression suggest that these genes may serve as potential diagnostic markers for differentiating between NSCLC histopathological subtypes.
Collapse
|
27
|
Abstract
Pancreatic cancer is a devastating disease with poor prognosis in the modern era. Inflammatory processes have emerged as key mediators of pancreatic cancer development and progression. Recently, studies have been carried out to investigate the underlying mechanisms that contribute to tumorigenesis induced by inflammation. In this review, the role of inflammation in the initiation and progression of pancreatic cancer is discussed.
Collapse
Affiliation(s)
- Kamleshsingh Shadhu
- Pancreas Center of The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
- Pancreas Institute of Nanjing Medical University, Nanjing, P.R. China
- School of International Education of Nanjing Medical University, Nanjing, P.R. China
| | - Chunhua Xi
- Pancreas Center of The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
- Pancreas Institute of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
28
|
Bhardwaj R, Suzuki A, Leland P, Joshi BH, Puri RK. Identification of a novel role of IL-13Rα2 in human Glioblastoma multiforme: interleukin-13 mediates signal transduction through AP-1 pathway. J Transl Med 2018; 16:369. [PMID: 30572904 PMCID: PMC6302477 DOI: 10.1186/s12967-018-1746-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022] Open
Abstract
Background Previously, we have demonstrated that Interleukin 13 receptor alpha 2 (IL-13Rα2) is overexpressed in approximate 78% Glioblastoma multiforme (GBM) samples. We have also demonstrated that IL-13Rα2 can serve as a target for cancer immunotherapy in several pre-clinical and clinical studies. However, the significance of overexpression of IL-13Rα2 in GBM and astrocytoma and signaling through these receptors is not known. IL-13 can signal through IL-13R via JAK/STAT and AP-1 pathways in certain cell lines including some tumor cell lines. Herein, we have investigated a role of IL-13/IL-13Rα2 axis in signaling through AP-1 transcription factors in human glioma samples in situ. Methods We examined the activation of AP-1 family of transcription factors (c-Jun, Fra-1, Jun-D, c-Fos, and Jun-B) after treating U251, A172 (IL-13Rα2 +ve) and T98G (IL-13Rα2 −ve) glioma cell lines with IL-13 by RT-qPCR, and immunocytochemistry (ICC). We also performed colorimetric ELISA based assay to determine AP-1 transcription factor activation in glioma cell lines. Furthermore, we examined the expression of AP-1 transcription factors in situ in GBM and astrocytoma specimens by multiplex-immunohistochemistry (IHC). Student t test and ANOVA were used for statistical analysis of the results. Results We have demonstrated up-regulation of two AP-1 transcription factors (c-Jun and Fra-1) at mRNA and protein levels upon treatment with IL-13 in IL-13Rα2 positive but not in IL-13Rα2 negative glioma cell lines. Both transcription factors were also overexpressed in patient derived GBM specimens, however, in contrast to GBM cell lines, c-Fos is also overexpressed in patient derived specimens. Astrocytoma specimens showed lesser extent of immunostaining for IL-13Rα2 and three AP-1 factors compared to GBM specimens. By transcription factor activation assay, we demonstrated that AP-1 transcription factors (C-Jun and Fra-1) were activated upon treatment of IL-13Rα2 + GBM cell lines but not IL-13Rα2 − GBM cell line with IL-13. Our results demonstrate functional activity of AP-1 transcription factor in GBM cell lines in response to IL-13. Conclusions These results indicate that IL-13/IL-13Rα2 axis can mediate signal transduction in situ via AP-1 pathway in GBM and astrocytoma and may serve as a new target for GBM immunotherapy. Electronic supplementary material The online version of this article (10.1186/s12967-018-1746-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rukmini Bhardwaj
- Division of Cellular and Gene Therapies (DCGT) Office of Tissues and Advanced Therapies (OTAT), Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Akiko Suzuki
- Division of Cellular and Gene Therapies (DCGT) Office of Tissues and Advanced Therapies (OTAT), Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Pamela Leland
- Division of Cellular and Gene Therapies (DCGT) Office of Tissues and Advanced Therapies (OTAT), Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Bharat H Joshi
- Division of Cellular and Gene Therapies (DCGT) Office of Tissues and Advanced Therapies (OTAT), Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Raj K Puri
- Division of Cellular and Gene Therapies (DCGT) Office of Tissues and Advanced Therapies (OTAT), Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA.
| |
Collapse
|
29
|
Jing J, Du Z, Wen Z, Jiang B, He B. Dynamic changes of urinary proteins in a rat model of acute hypercoagulable state induced by tranexamic acid. J Cell Physiol 2018; 234:10809-10818. [PMID: 30536986 DOI: 10.1002/jcp.27904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 10/23/2018] [Indexed: 11/09/2022]
Abstract
The hypercoagulable state leads to the development of thrombotic diseases, but it is difficult to diagnose due to the lack of available biomarkers. This study aimed to investigate systematic changes of the urinary proteome in the acute hypercoagulable state. A rat model of the acute hypercoagulable state was induced by an antifibrinolytic agent tranexamic acid and urine samples were collected for proteomic analysis by liquid chromatography-tandem mass spectrometry. A total of 28 differential proteins were detected in the urinary proteome of the model rats, of which 12 had been previously considered as candidate biomarkers such as myoglobin, and 10 had been considered stable in healthy human urine. Of the 28 differentially expressed proteins 18 had counterparts in humans. Of these 18 proteins, 10 were members of the human core urinary proteome distributed in a variety of human tissues but concentrated in the urinary and digestive systems. Fumarylacetoacetase was verified as a potential marker of the acute hypercoagulable state by Western blot analysis. In conclusion, urine proteome analysis is a powerful approach to identify potential biomarkers of acute hypercoagulable state.
Collapse
Affiliation(s)
- Jian Jing
- Department of Biochemistry, Beijing Key Laboratory of Genetic Engineering and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhenhuan Du
- Department of Biochemistry, Beijing Key Laboratory of Genetic Engineering and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhang Wen
- Department of Biochemistry, Beijing Key Laboratory of Genetic Engineering and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Bo Jiang
- Department of Biochemistry, Beijing Key Laboratory of Genetic Engineering and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Bixi He
- Department of Biochemistry, Beijing Key Laboratory of Genetic Engineering and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
30
|
Tumor growth suppressive effect of IL-4 through p21-mediated activation of STAT6 in IL-4Rα overexpressed melanoma models. Oncotarget 2018; 7:23425-38. [PMID: 26993600 PMCID: PMC5029637 DOI: 10.18632/oncotarget.8111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/28/2016] [Indexed: 01/16/2023] Open
Abstract
To evaluate the significance of interleukin 4 (IL-4) in tumor development, we compared B16F10 melanoma growth in IL-4-overespressing transgenic mice (IL-4 mice) and non-transgenic mice. In IL-4 mice, reduced tumor volume and weight were observed when compared with those of non-transgenic mice. Significant activation of DNA binding activity of STAT6, phosphorylation of STAT6 as well as IL-4, IL-4Rα and p21 expression were found in the tumor tissues of IL-4 mice compared to non-transgenic mice. Higher expression of IL-4, STAT6 and p21 in human melanoma tissue compared to normal human skin tissue was also found. Higher expression of apoptotic protein such as cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax, p53 and p21, but lower expression levels of survival protein such as Bcl-2 were found in the tumor of IL-4 mice. In vitro study, we found that overexpression of IL-4 significantly inhibited SK-MEL-28 human melanoma cell and B16F10 murine melanoma cell growth via p21-mediated activation of STAT6 pathway as well as increased expression of apoptotic cell death proteins. Moreover, p21 knockdown with siRNA abolished IL-4 induced activation of STAT6 and expression of p53 and p21 accompanied with reduced IL-4 expression as well as melanoma cell growth inhibition. Therefore, these results showed that IL-4 overexpression suppressed tumor development through p21-mediated activation of STAT6 pathways in melanoma models.
Collapse
|
31
|
High expression of IL-4R enhances proliferation and invasion of hepatocellular carcinoma cells. Int J Biol Markers 2017; 32:e384-e390. [PMID: 28665449 DOI: 10.5301/ijbm.5000280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVE In this study, we aimed to investigate the expression and function of interleukin-4 receptor (IL-4R) in hepatocellular carcinoma (HCC). METHODS We collected 40 pairs of human HCC and adjacent normal tissue specimens and examined the expression levels of IL-4R. After IL-4R knockdown in HCC cell lines, cell proliferation and invasion ability were examined. Cell cycle and apoptosis were analyzed by flow cytometry. The activity of multiple signaling pathways was examined by Western blot. RESULTS IL-4R was overexpressed in HCC tumors compared with adjacent normal control tissues and was associated with tumor differentiation status. IL-4R knockdown resulted in enhanced apoptosis, impaired proliferation and reduced invasion of HCC cells. Furthermore, IL-4R knockdown abolished IL-4-induced activation of the Janus Kinase 1 (JAK1)/signal transducer and activator of transcription 6 (STAT6) and JUN N-terminal kinase (JNK)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways. CONCLUSIONS IL-4R plays an important role in regulating HCC cell survival and metastasis, and regulates the activity of the JAK1/STAT6 and JNK/ERK1/2 signaling pathways. We therefore suggest that IL-4/IL-4R may be a new therapeutic target for HCC.
Collapse
|
32
|
Setrerrahmane S, Xu H. Tumor-related interleukins: old validated targets for new anti-cancer drug development. Mol Cancer 2017; 16:153. [PMID: 28927416 PMCID: PMC5606116 DOI: 10.1186/s12943-017-0721-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
In-depth knowledge of cancer molecular and cellular mechanisms have revealed a strong regulation of cancer development and progression by the inflammation which orchestrates the tumor microenvironment. Immune cells, residents or recruited, in the inflammation milieu can have rather contrasting effects during cancer development. Accumulated clinical and experimental data support the notion that acute inflammation could exert an immunoprotective effect leading to tumor eradication. However, chronic immune response promotes tumor growth and invasion. These reactions are mediated by soluble mediators or cytokines produced by either host immune cells or tumor cells themselves. Herein, we provide an overview of the current understanding of the role of the best-validated cytokines involved in tumor progression, IL-1, IL-4 and IL-6; in addition to IL-2 cytokines family, which is known to promote tumor eradication by immune cells. Furthermore, we summarize the clinical attempts to block or bolster the effect of these tumor-related interleukins in anti-cancer therapy development.
Collapse
Affiliation(s)
- Sarra Setrerrahmane
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Hanmei Xu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China. .,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
33
|
Park MH, Kwon HJ, Kim JR, Lee B, Lee SJ, Bae YK. Elevated Interleukin-13 Receptor Alpha 1 Expression in Tumor Cells Is Associated with Poor Prognosis in Patients with Invasive Breast Cancer. Ann Surg Oncol 2017. [PMID: 28634667 DOI: 10.1245/s10434-017-5907-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Interleukin (IL)-13 is an immunoregulatory, anti-inflammatory cytokine that is produced by numerous immune cells, and plasma membrane receptor for IL-13 (IL-13R) is known to be expressed in various human malignancies and in immune cells. METHODS The authors evaluated the expression of IL-13R alpha 1 (IL-13Rα1, an IL-13R subtype) by immunohistochemistry in tissue microarrays of 1213 invasive breast cancer (IBC) samples to determine the prognostic value of IL-13Rα1 expression. RESULTS High IL-13Rα1 expression was observed in 619 (51%) cases and was found to be associated with an older (≥50 years) age (p = 0.022), lymph node metastasis (p = 0.015), ductal and micropapillary histologic subtypes (p < 0.001), lymphovascular invasion (p = 0.012), HER2 positivity (p < 0.001), and a high (>20%) Ki-67 index (p = 0.039). No significant correlation was found between IL-13Rα1 expression and clinicopathological variables, including tumor size, histological grade, hormone receptor expressions, and tumor-infiltrating lymphocyte levels. Patients with high IL-13Rα1 expression showed poorer overall survival (p = 0.044) and disease-free survival (DFS, p = 0.001) than those with low/negative expression. Subgroup analysis revealed an association between IL-13Rα1 expression and survival for HER2-negative, but not for HER2-positive tumors. Multivariate analysis showed high IL-13Rα1 expression was an independent negative prognostic factor of DFS (p = 0.019). CONCLUSIONS The results of this study suggest the IL-13 and IL-13Rα1 interaction promotes cancer cell growth and metastasis, and IL-13Rα1 expression is a potential prognostic marker in IBC.
Collapse
Affiliation(s)
- Min Hui Park
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Hee Jung Kwon
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology and Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Soo Jung Lee
- Department of Surgery, Yeungnam University College of Medicine, Daegu, South Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea.
| |
Collapse
|
34
|
Paquette M, Vilera-Perez LG, Beaudoin S, Ekindi-Ndongo N, Boudreaut PL, Bonin MA, Battista MC, Bentourkia M, Lopez AF, Lecomte R, Marsault E, Guérin B, Sabbagh R, Leyton JV. Targeting IL-5Rα with antibody-conjugates reveals a strategy for imaging and therapy for invasive bladder cancer. Oncoimmunology 2017; 6:e1331195. [PMID: 29123949 DOI: 10.1080/2162402x.2017.1331195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
Despite the high interest and concern due to an increasing incidence and death rate, patients who develop muscle invasive bladder cancer (MIBC) have few options available. However, the past decade has produced many candidate bladder tumor-specific markers but further development of these markers is still needed for creating effective targeted medications to solve this urgent need. Interleukin-5 receptor α-subunit (IL-5Rα) has recently been reported to be involved in MIBC progression. Thus, we aimed to validate IL-5Rα as a target for antibody-conjugates to better manage patients with MIBC. Patients were recruited and their tumors were processed for IL-5Rα immunohistochemical analysis. NOD/SCID mice were also heterotopically implanted with the human MIBC HT-1376 and HT-B9 cell lines and established xenografts immunohistochemically evaluated for IL-5Rα and compared against patient tumors. Using the mAb A14, an antibody-drug conjugate (ADC) and a radiolabeled immunoconjugate (RIC) were developed by conjugating to vinblastine and to the positron emitter copper-64 (64Cu), respectively. As a proof-of-concept for ADC and RIC efficacy, in vitro cytotoxicity and in vivo positron emission tomography (PET) imaging in tumor-bearing mice were performed, respectively. In addition, as rapid internalization and accumulation are important components for effective antibody-conjugates, we evaluated these aspects in response to IL-5 and 64Cu-A14 treatments. Our findings suggest that although IL-5Rα protein expression is preferentially increased in MIBC, it is rapid IL-5Rα-mediated internalization allowing vinblastine-A14 to have cytotoxic activity and 64Cu-A14 to detect MIBC tumors in vivo. This is the first report to elucidate the potential of IL-5Rα as an attractive MIBC target for antibody-conjugate applications.
Collapse
Affiliation(s)
- Michel Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences (FMHS), Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, Québec, Canada
| | | | - Simon Beaudoin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences (FMHS), Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, Québec, Canada
| | | | - Pierre-Luc Boudreaut
- Department of Pharmacology and Physiology, FMHS, CHUS, UdeS, Sherbrooke, Québec, Canada
| | | | - Marie-Claude Battista
- Division of Endocrinology, Department of Medicine and Department of Obstetrics and Gynecology, FMHS, CHUS, Sherbrooke, Québec, Canada
| | - M'hamed Bentourkia
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences (FMHS), Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, Québec, Canada.,Sherbrooke Molecular Imaging Centre (SMIC), Centre de recherche du CHUS (CRCHUS), Sherbrooke, Québec, Canada.,Sherbrooke Pharmacology Institute, Sherbrooke, Québec, Canada
| | - Angel F Lopez
- The Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Roger Lecomte
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences (FMHS), Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, Québec, Canada.,Sherbrooke Molecular Imaging Centre (SMIC), Centre de recherche du CHUS (CRCHUS), Sherbrooke, Québec, Canada.,Sherbrooke Pharmacology Institute, Sherbrooke, Québec, Canada
| | - Eric Marsault
- Department of Pharmacology and Physiology, FMHS, CHUS, UdeS, Sherbrooke, Québec, Canada.,Sherbrooke Pharmacology Institute, Sherbrooke, Québec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences (FMHS), Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, Québec, Canada.,Sherbrooke Molecular Imaging Centre (SMIC), Centre de recherche du CHUS (CRCHUS), Sherbrooke, Québec, Canada.,Sherbrooke Pharmacology Institute, Sherbrooke, Québec, Canada
| | - Robert Sabbagh
- Department of Surgery, FMHS, CHUS, UdeS, Sherbrooke, Québec, Canada
| | - Jeffrey V Leyton
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences (FMHS), Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, Québec, Canada.,Sherbrooke Molecular Imaging Centre (SMIC), Centre de recherche du CHUS (CRCHUS), Sherbrooke, Québec, Canada.,Sherbrooke Pharmacology Institute, Sherbrooke, Québec, Canada
| |
Collapse
|
35
|
Endogenously Expressed IL-4Rα Promotes the Malignant Phenotype of Human Pancreatic Cancer In Vitro and In Vivo. Int J Mol Sci 2017; 18:ijms18040716. [PMID: 28350325 PMCID: PMC5412302 DOI: 10.3390/ijms18040716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
Exogenous interleukin-4 (IL-4) has been demonstrated to affect the growth of different human malignancies including pancreatic cancer cells. The aim of our study was to determine the role of endogenously expressed IL-4-receptor-α-chain (IL-4Rα) in pancreatic cancer cells. IL-4Rα-suppression was achieved by generating Capan-1 cells stably expressing shRNA targeting IL-4Rα. The malignant phenotype was characterized by assessing growth properties, directional and non-directional cell movement in vitro and tumor growth in vivo. Signaling pathways were analyzed upon IL-4 and IL-13 stimulation of wildtype (WT) and control-transfected cells compared to IL-4Rα-knockdown cells. Silencing of IL-4Rα resulted in reduced anchorage-dependent cell growth (p < 0.05) and reduced anchorage-independent colony size (p < 0.001) in vitro. Moreover, cell movement and migration was inhibited. IL-4 and IL-13 stimulation of Capan-1-WT cells induced activation of similar pathways like stimulation with Insulin-like growth factor (IGF)-I. This activation was reduced after IL-4Rα downregulation while IGF-I signaling seemed to be enhanced in knockdown-clones. Importantly, IL-4Rα silencing also significantly suppressed tumor growth in vivo. The present study indicates that endogenously expressed IL-4 and IL-4Rα contribute to the malignant phenotype of pancreatic cancer cells by activating diverse pro-oncogenic signaling pathways. Addressing these pathways may contribute to the treatment of the disease.
Collapse
|
36
|
Shaik AP, Shaik AS, Majwal AA, Faraj AA. Blocking Interleukin-4 Receptor α Using Polyethylene Glycol Functionalized Superparamagnetic Iron Oxide Nanocarriers to Inhibit Breast Cancer Cell Proliferation. Cancer Res Treat 2016; 49:322-329. [PMID: 27456946 PMCID: PMC5398403 DOI: 10.4143/crt.2016.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/16/2016] [Indexed: 12/25/2022] Open
Abstract
Purpose The specific targeting of interleukin-4 receptor α (IL4Rα) receptor offers a promising therapeutic approach for inhibition of tumor cell progression in breast cancer patients. In the current study, the in vitro efficacy of superparamagnetic iron oxide nanoparticles conjugated with anti-IL4Rα blocking antibodies (SPION-IL4Rα) via polyethylene glycol polymers was evaluated in 4T1 breast cancer cells. Materials and Methods Cell viability, reactive oxygen species generation, and apoptosis frequency were assessed in vitro in 4T1 cancer cell lines following exposure to SPION-IL4Rα alone or combined with doxorubicin. In addition, immunofluorescence assessments and fluorimetrywere performed to confirm the specific targeting and interaction of the developed nanocarriers with IL4Rα receptors in breast cancer cells. Results Blocking of IL4Rα receptors caused a significant decrease in cell viability and induced apoptosis in 4T1 cells. In addition, combined treatment with SPION-IL4Rα+doxorubicin caused significant increases in cell death, apoptosis, and oxidative stress compared to either SPION-IL4Rα or doxorubicin alone, indicating the enhanced therapeutic efficacy of this combination. The decrease in fluorescence intensity upon immunofluorescence and fluorimetry assays combined with increased viability and decreased apoptosis following the blocking of IL4Rα receptors confirmed the successful binding of the synthesized nanocarriers to the target sites on murine 4T1 breast cancerous cells. Conclusion These results suggest that SPION-IL4Rα nanocarriers might be used for successfulreduction of tumor growth and inhibition of progression of metastasis in vivo.
Collapse
Affiliation(s)
- Abjal Pasha Shaik
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Asma Sultana Shaik
- Prince Naif Health Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ali Al Majwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Achraf Al Faraj
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Park SH, Yoon YI, Moon H, Lee GH, Lee BH, Yoon TJ, Lee HJ. Development of a novel microbubble-liposome complex conjugated with peptide ligands targeting IL4R on brain tumor cells. Oncol Rep 2016; 36:131-6. [PMID: 27220374 DOI: 10.3892/or.2016.4836] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/05/2016] [Indexed: 11/06/2022] Open
Abstract
Gas (SF6)-filled microbubbles (MBs) were prepared by emulsion and solvent-evaporation method. The prepared MBs were further conjugated with doxorubicin (Dox)-loaded nano-sized liposome and peptide ligands to interleukin-4 receptor (IL4R) for targeting brain tumor cells. The final MB-liposome (Dox)-IL4R targeting peptide ligand [MB-Lipo (Dox)-IL4RTP] had a spherical structure with the mean size of 1,500 nm. The MB-Lipo (Dox)‑IL4RTP exhibited cellular uptake in U87MG brain tumor cells (a brain tumor cell line expressing strongly IL4R) with frequency ultrasound energy suggesting that MB-Lipo (Dox)‑IL4RTP provided effective targeting ability for brain tumor cells. In addition, WST-1 assay results showed that MB-Lipo (Dox)‑IL4RTP inhibited the proliferation of U87MG cells IL4R‑dependently. This was confirmed by western blotting of γH2AX, phospho (Ser15)-p53, p53 and p21 which are signal transduction proteins involved in DNA damage response and cell cycle arrest. Taken together, these results indicate that MB-Lipo (Dox)-IL4RTP represents a promising ultrasonic contrast agent for tumor-targeting ultrasonic imaging.
Collapse
Affiliation(s)
- See-Hyoung Park
- Program in Nano Science and Technology, Department of Transdisciplinary Studies, Seoul National University, Graduate School of Convergence Science and Technology, Suwon, Republic of Korea
| | - Young Ii Yoon
- Program in Nano Science and Technology, Department of Transdisciplinary Studies, Seoul National University, Graduate School of Convergence Science and Technology, Suwon, Republic of Korea
| | - Hyoungwon Moon
- Department of Radiology, Seoul National University, Bundang Hospital, Seungnam, Republic of Korea
| | - Ga-Hyun Lee
- Department of Cellular and Molecular Biology, California State University, Chico, CA, USA
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-Jong Yoon
- Department of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Hak Jong Lee
- Program in Nano Science and Technology, Department of Transdisciplinary Studies, Seoul National University, Graduate School of Convergence Science and Technology, Suwon, Republic of Korea
| |
Collapse
|
38
|
|
39
|
Liu CT, Xin Y, Tong CY, Li B, Bao HL, Zhang CY, Wang XH. Production of interleukin‑4 in CD133+ cervical cancer stem cells promotes resistance to apoptosis and initiates tumor growth. Mol Med Rep 2016; 13:5068-76. [PMID: 27121303 PMCID: PMC4878543 DOI: 10.3892/mmr.2016.5195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 12/21/2015] [Indexed: 12/14/2022] Open
Abstract
The cancer stem cell (CSC) theory suggests that cancer growth and invasion is dictated by the small population of CSCs within the heterogenous tumor. The aim of the present study was to elucidate the cause for chemotherapy failure and the resistance of CSCs to apoptosis. A total of ~2.3% cluster of differentiation (CD)133+ cancer stem-like side population (SP) cells were identified in cases of uterine cervical cancer. These CD133+ SP cells were found to potently initiate tumor growth and invasion, as they exhibit transcriptional upregulation of stemness genes, including octamer-binding transcription factor-4, B-cell-specific Moloney murine leukemia virus insertion site-1, epithelial cell adhesion molecule, (sex determining region Y)-box 2, Nestin and anti-apoptotic B cell lymphoma-2. In addition, the CD133+ SP cells showed resistance to multi-drug treatment and apoptosis. The present study further showed that the secretion of interleukin-4 (IL-4) in CD133+ cervical cancer SP cells promoted cell proliferation and prevented the SP cells from apoptosis. Following the neutralization of IL-4 with anti-IL-4 antibody, the CD133+ SP cells were more sensitive to drug treatment and apoptosis. Therefore, the data obtained in the present study suggested that the autocrine secretion of IL-4 promotes increased survival and resistance to cell death in CSCs.
Collapse
Affiliation(s)
- Chun-Tao Liu
- Department of Gynecology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Ying Xin
- Department of Gynecology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Chun-Yan Tong
- Department of Gynecology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Bing Li
- Department of Gynecology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Hong-Li Bao
- Department of Gynecology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Cai-Yun Zhang
- Department of Gynecology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Xue-Hui Wang
- Department of Gynecology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
40
|
Kiselyov A, Bunimovich-Mendrazitsky S, Startsev V. Key signaling pathways in the muscle-invasive bladder carcinoma: Clinical markers for disease modeling and optimized treatment. Int J Cancer 2015; 138:2562-9. [PMID: 26547270 DOI: 10.1002/ijc.29918] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/03/2015] [Accepted: 11/04/2015] [Indexed: 02/01/2023]
Abstract
In this review, we evaluate key molecular pathways and markers of muscle-invasive bladder cancer (MIBC). Overexpression and activation of EGFR, p63, and EMT genes are suggestive of basal MIBC subtype generally responsive to chemotherapy. Alterations in PPARγ, ERBB2/3, and FGFR3 gene products and their signaling along with deregulated p53, cytokeratins KRT5/6/14 in combination with the cellular proliferation (Ki-67), and cell cycle markers (p16) indicate the need for more radical treatment protocols. Similarly, the "bell-shape" dynamics of Shh expression levels may suggest aggressive MIBC. A panel of diverse biological markers may be suitable for simulation studies of MIBC and development of an optimized treatment protocol. We conducted a critical evaluation of PubMed/Medline and SciFinder databases related to MIBC covering the period 2009-2015. The free-text search was extended by adding the following keywords and phrases: bladder cancer, metastatic, muscle-invasive, basal, luminal, epithelial-to-mesenchymal transition, cancer stem cell, mutations, immune response, signaling, biological markers, molecular markers, mathematical models, simulation, epigenetics, transmembrane, transcription factor, kinase, predictor, prognosis. The resulting selection of ca 500 abstracts was further analyzed in order to select the latest publications relevant to MIBC molecular markers of immediate clinical significance.
Collapse
Affiliation(s)
- Alex Kiselyov
- NBIC, Moscow Institute of Physics and Technology (MIPT), 9 Institutsky per, Dolgoprudny, Moscow Region, 141700, Russia
| | | | - Vladimir Startsev
- Department of Oncology, State Pediatric Medical University, St.-Petersburg, 194100, Russia
| |
Collapse
|
41
|
Suzuki A, Leland P, Joshi BH, Puri RK. Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 2015; 75:79-88. [DOI: 10.1016/j.cyto.2015.05.026] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 02/03/2023]
|
42
|
McCormick SM, Heller NM. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 2015; 75:38-50. [PMID: 26187331 PMCID: PMC4546937 DOI: 10.1016/j.cyto.2015.05.023] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
Interleukin (IL)-4 and IL-13 were discovered approximately 30years ago and were immediately linked to allergy and atopic diseases. Since then, new roles for IL-4 and IL-13 and their receptors in normal gestation, fetal development and neurological function and in the pathogenesis of cancer and fibrosis have been appreciated. Studying IL-4/-13 and their receptors has revealed important clues about cytokine biology and led to the development of numerous experimental therapeutics. Here we aim to highlight new discoveries and consolidate concepts in the field of IL-4 and IL-13 structure, receptor regulation, signaling and experimental therapeutics.
Collapse
Affiliation(s)
- Sarah M McCormick
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
43
|
Chi L, Na MH, Jung HK, Vadevoo SMP, Kim CW, Padmanaban G, Park TI, Park JY, Hwang I, Park KU, Liang F, Lu M, Park J, Kim IS, Lee BH. Enhanced delivery of liposomes to lung tumor through targeting interleukin-4 receptor on both tumor cells and tumor endothelial cells. J Control Release 2015; 209:327-36. [PMID: 25979323 DOI: 10.1016/j.jconrel.2015.05.260] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/07/2015] [Accepted: 05/09/2015] [Indexed: 10/23/2022]
Abstract
A growing body of evidence suggests that pathological lesions express tissue-specific molecular targets or biomarkers within the tissue. Interleukin-4 receptor (IL-4R) is overexpressed in many types of cancer cells, including lung cancer. Here we investigated the properties of IL-4R-binding peptide-1 (IL4RPep-1), a CRKRLDRNC peptide, and its ability to target the delivery of liposomes to lung tumor. IL4RPep-1 preferentially bound to H226 lung tumor cells which express higher levers of IL-4R compared to H460 lung tumor cells which express less IL-4R. Mutational analysis revealed that C1, R2, and R4 residues of IL4RPep-1 were the key binding determinants. IL4RPep-1-labeled liposomes containing doxorubicin were more efficiently internalized in H226 cells and effectively delivered doxorubicin into the cells compared to unlabeled liposomes. In vivo fluorescence imaging of nude mice subcutaneously xenotransplanted with H226 tumor cells indicated that IL4RPep-1-labeled liposomes accumulate more efficiently in the tumor and inhibit tumor growth more effectively compared to unlabeled liposomes. Interestingly, expression of IL-4R was high in vascular endothelial cells of tumor, while little was detected in vascular endothelial cells of control organs including the liver. IL-4R expression in cultured human vascular endothelial cells was also up-regulated when activated by a pro-inflammatory cytokine tumor necrosis factor-α. Moreover, the up-regulation of IL-4R expression was observed in primary human lung cancer tissues. These results indicate that IL-4R-targeting nanocarriers may be a useful strategy to enhance drug delivery through the recognition of IL-4R in both tumor cells and tumor endothelial cells.
Collapse
Affiliation(s)
- Lianhua Chi
- Department of Biochemistry and Cell Biology, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea; CMRI, Kyungpook National University, Daegu, Republic of Korea
| | - Moon-Hee Na
- Department of Biochemistry and Cell Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Kyung Jung
- Department of Biochemistry and Cell Biology, Kyungpook National University, Daegu, Republic of Korea; CMRI, Kyungpook National University, Daegu, Republic of Korea
| | - Sri Murugan Poongkavithai Vadevoo
- Department of Biochemistry and Cell Biology, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea; CMRI, Kyungpook National University, Daegu, Republic of Korea
| | - Cheong-Wun Kim
- Department of Biochemistry and Cell Biology, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea; CMRI, Kyungpook National University, Daegu, Republic of Korea
| | - Guruprasath Padmanaban
- Department of Biochemistry and Cell Biology, Kyungpook National University, Daegu, Republic of Korea; CMRI, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-In Park
- Department of Pathology, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ilseon Hwang
- Dongsan Medical Center, Daegu, Republic of Korea
| | - Keon Uk Park
- Dongsan Medical Center, Daegu, Republic of Korea
| | - Frank Liang
- Industrial Technology Research Institute, HsinChu, Taiwan
| | - Maggie Lu
- Industrial Technology Research Institute, HsinChu, Taiwan
| | - Jiho Park
- Department of Bio and Brain engineering, KAIST, Daejeon, Republic of Korea
| | - In-San Kim
- Biomedical Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea; CMRI, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|