1
|
Attarian F, Hatamian G, Nosrati S, Akbari Oryani M, Javid H, Hashemzadeh A, Tarin M. Role of liposomes in chemoimmunotherapy of breast cancer. J Drug Target 2025; 33:887-915. [PMID: 39967479 DOI: 10.1080/1061186x.2025.2467139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
In the dynamic arena of cancer therapeutics, chemoimmunotherapy has shown tremendous promise, especially for aggressive forms of breast cancer like triple-negative breast cancer (TNBC). This review delves into the significant role of liposomes in enhancing the effectiveness of chemoimmunotherapy by leveraging breast cancer-specific mechanisms such as the induction of immunogenic cell death (ICD), reprogramming the tumour microenvironment (TME), and enabling sequential drug release. We examine innovative dual-targeting liposomes that capitalise on tumour heterogeneity, as well as pH-sensitive formulations that offer improved control over drug delivery. Unlike prior analyses, this review directly links advancements in preclinical research-such as PAMAM dendrimer-based nanoplatforms and RGD-decorated liposomes-to clinical trial results, highlighting their potential to revolutionise TNBC treatment strategies. Additionally, we address ongoing challenges related to scalability, toxicity, and regulatory compliance, and propose future directions for personalised, immune-focused nanomedicine. This work not only synthesises the latest research but also offers a framework for translating liposomal chemoimmunotherapy from laboratory research to clinical practice.
Collapse
Affiliation(s)
- Fatemeh Attarian
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Ghazaleh Hatamian
- Department of Microbiology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Gerakopoulos V, Ramos C, Müller C, Walterskirchen N, Vintila S, Zotter C, Ilg M, Pap A, Riss S, Bergmann M, Unger LW, Vogt AB, Oehler R, Lukowski SW. Single-cell transcriptomic analysis identifies tissue-specific fibroblasts as the main modulators of myeloid cells in peritoneal metastasis of different origin. Cancer Lett 2025; 620:217678. [PMID: 40154914 DOI: 10.1016/j.canlet.2025.217678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Colorectal cancer (CRC) peritoneal metastasis (CPM) is related to limited therapy options and poor prognosis. Although stromal cells heavily infiltrate most CPMs, interactions between different cell types in their microenvironment remain unclear. Here, we investigated tumor and distant normal tissue from CPM and CRC patients using single-cell RNA sequencing. Investigating the incoming and outgoing signals between cells revealed that fibroblasts dominate the CPM signaling landscape with myeloid cells as their strongest interaction partner. Using immunohistochemistry, we confirmed that fibroblasts co-localize with macrophages in the CPM microenvironment. A fibroblast sub-population detected only in CPM and normal peritoneum demonstrated immunoregulatory properties in co-culture experiments, and was further detected in additional peritoneal malignancies derived from ovarian and gastric origin. This novel fibroblast type and its communication with macrophages could be attractive targets for therapeutic interventions in CPM and potentially peritoneal surface malignancies in general.
Collapse
Affiliation(s)
- Vasileios Gerakopoulos
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Cristiano Ramos
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Catharina Müller
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Natalie Walterskirchen
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Stefania Vintila
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Chiara Zotter
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Mathias Ilg
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| | - Anna Pap
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| | - Stefan Riss
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael Bergmann
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Lukas W Unger
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria; Dept. of Colorectal Surgery, Oxford University Hospitals, Old Rd, Headington, Oxford, OX3 7LE, United Kingdom
| | - Anne B Vogt
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| | - Rudolf Oehler
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, 1090, Vienna, Austria.
| | - Samuel W Lukowski
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmBH & Co KG., Dr. Boehringer Gasse 5-11, 1120, Vienna, Austria
| |
Collapse
|
3
|
Moore LL, Jaboin J, Brown ML, Houchen CW. Balancing Regeneration and Resistance: Targeting DCLK1 to Mitigate Gastrointestinal Radiation Injury and Oncogenesis. Cancers (Basel) 2025; 17:2050. [PMID: 40563698 DOI: 10.3390/cancers17122050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2025] [Revised: 06/13/2025] [Accepted: 06/16/2025] [Indexed: 06/28/2025] Open
Abstract
Ionizing radiation (IR) poses a dual challenge in medicine; while essential for cancer therapy, it inflicts collateral damage to normal tissues, particularly the gastrointestinal (GI) tract. High-dose IR triggers acute radiation syndrome (ARS), characterized by crypt stem cell depletion, mucosal barrier disruption, inflammation, and potential progression to fibrosis and secondary malignancy. Emerging evidence identifies the epithelial kinase doublecortin-like kinase 1 (DCLK1)-highly expressed in GI tuft cells and cancer stem-like cells-as a master regulator of post-IR responses. DCLK1 integrates DNA repair (via p53/ATM), and survival signaling (via NF-κB, TGF-β, and MAPK) to promote epithelial regeneration, yet these same mechanisms contribute to therapy resistance and oncogenesis. DCLK1 further modulates the immune microenvironment by skewing macrophages toward an immunosuppressive M2 phenotype, enhancing tissue remodeling, angiogenesis, and immune evasion. Preclinical studies demonstrate that DCLK1 inhibition sensitizes tumors to radiotherapy while preserving mucosal repair. Therapeutic strategies targeting DCLK1, alongside radioprotective agents, immunomodulators, and senolytics, may enhance regeneration, limit fibrosis, and eradicate therapy-resistant cancer stem cells. This review highlights DCLK1's dual role in regeneration and tumorigenesis and evaluates its potential as a therapeutic target and biomarker in IR-induced GI damage.
Collapse
Affiliation(s)
- Landon L Moore
- Department of Medicine, Digestive Diseases and Nutrition, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Jerry Jaboin
- The Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Milton L Brown
- Department of Medicine, Macon and Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23501-1980, USA
| | - Courtney W Houchen
- Department of Medicine, Digestive Diseases and Nutrition, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Deng S, Wang Q, Li Y, Zhang R, Li J, Zhang Y, Cai Y, Sun W, Chang J, Zhang N, Zhang L. Clinical efficacy and biomarkers of neoadjuvant chemoimmunotherapy in locally advanced esophageal squamous cell carcinoma. Cancer Immunol Immunother 2025; 74:243. [PMID: 40531216 PMCID: PMC12176704 DOI: 10.1007/s00262-025-04099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 05/27/2025] [Indexed: 06/22/2025]
Abstract
BACKGROUND Neoadjuvant immunotherapy has emerged as a promising strategy for treating esophageal squamous cell carcinoma (ESCC). This study evaluates the therapeutic efficacy and safety of neoadjuvant immunochemotherapy (nICT) in ESCC and explores potential biomarkers associated with treatment outcomes. METHODS Patients with locally advanced ESCC were enrolled and received two cycles of nICT followed by surgical resection. The primary endpoint was the pathological complete response rate, while secondary endpoints included overall survival (OS), event-free survival (EFS), safety, and the identification of predictive biomarkers. RESULTS A total of 47 patients were enrolled in the study, with 42 undergoing surgical resection, all of whom achieved R0 resection. The rates of complete and partial pathological responses were 28.5% and 16.7%, respectively. The 1-year and 2-year EFS rates were 82% and 37.3%, while OS rates were 100% and 71.4%, respectively. The majority of treatment-related adverse events were Grade 1-2, and no surgical delays were observed. RNA sequencing analysis identified epithelial-mesenchymal transition as the most significantly enriched pathway in non-responders. Notably, higher infiltration of normal fibroblasts was associated with improved pathological response and enhanced long-term survival, while myofibroblastic cancer-associated fibroblasts (myCAF) negatively impacted treatment efficacy and clinical outcomes. CONCLUSIONS Neoadjuvant PD-1 inhibitors combined with chemotherapy show promising potential for patients with locally advanced ESCC, inducing a robust immune response that correlates with clinical outcomes. The infiltration of myCAF emerges as a potential predictive biomarker for treatment response and disease progression, underscoring the need for further mechanistic exploration and validation in larger cohorts.
Collapse
Affiliation(s)
- Siyou Deng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qi Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yueping Li
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ruijie Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jinjie Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yujie Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yixin Cai
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jiang Chang
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Li Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Almohaimeed HM, Chowdhury A, Sarkar S, Almars AI, Tounsi WA, Singh A, Krithiga T, Ray S, Uti DEJ. Advances in cancer immunotherapy: The role of super NK and super CAR-T cells. Int Immunopharmacol 2025; 161:115074. [PMID: 40513329 DOI: 10.1016/j.intimp.2025.115074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/22/2025] [Accepted: 06/08/2025] [Indexed: 06/16/2025]
Abstract
Immunotherapy has over the recent past established itself as one of the more promising strategies in the treatment of several cancers. Among the described ones, the most efficient are natural killer (NK) cells and chimeric antigen receptor T (CAR-T) cells and both of them are known to be rather effective in killing the cancer cells. Such interventions recently attempted to develop these immune cells have enhanced its beneficence and includes super NK and super CAR-T cells. Cell therapies both types employ the body immunity in order to achieve a superior Tumour killing mechanism over conventional approaches. In this sense, super NK cells provide an out-of-shelf, allogeneic solution that would minimize the early immunological adverse reactions, compared to super CAR-T cells where the outcome is more personalized, with impressive responses in hematological cancer diseases. Nevertheless, certain critical complications, including cytokine release syndrome and neurotoxicity have been noted which require more study and innovation. This review aims at considering the possibilities of these therapies, more precisely, speaking about the roles of such therapies, their functions, types and concerning the development of cancer immunotherapy.
Collapse
Affiliation(s)
- Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Antarika Chowdhury
- Department of Biological Sciences, School of Life Sciences and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata 700126, India
| | - Subham Sarkar
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Amany I Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Wajnat A Tounsi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India.
| | - Daniel EJim Uti
- Department of Biochemistry/Research and Publications, Kampala International University, Uganda; Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| |
Collapse
|
6
|
Silva Cunha JL. Comment on "Histological tumor necrosis predicts decreased survival after neoadjuvant chemotherapy in head and neck squamous cell carcinoma". Oral Oncol 2025; 165:107336. [PMID: 40300505 DOI: 10.1016/j.oraloncology.2025.107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025]
Affiliation(s)
- John Lennon Silva Cunha
- Center of Biological and Health Sciences, Federal University of Western Bahia (UFOB), Barreiras, BA, Brazil.
| |
Collapse
|
7
|
Lee JJ, Ng KY, Bakhtiar A. Extracellular matrix: unlocking new avenues in cancer treatment. Biomark Res 2025; 13:78. [PMID: 40426238 PMCID: PMC12117852 DOI: 10.1186/s40364-025-00757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/05/2025] [Indexed: 05/29/2025] Open
Abstract
The extracellular matrix (ECM) plays a critical role in cancer progression by influencing tumor growth, invasion, and metastasis. This review explores the emerging therapeutic strategies that target the ECM as a novel approach in cancer treatment. By disrupting the structural and biochemical interactions within the tumor microenvironment, ECM-targeted therapies aim to inhibit cancer progression and overcome therapeutic resistance. We examine the current state of ECM research, focusing on key components such as collagen, laminin, fibronectin, periostin, and hyaluronic acid, and their roles in tumor biology. Additionally, we discuss the challenges associated with ECM-targeted therapies, including drug delivery, specificity, and potential side effects, while highlighting recent advancements and future directions. This review underscores the potential of ECM-focused strategies to enhance the efficacy of existing treatments and contribute to more effective cancer therapies.
Collapse
Affiliation(s)
- Jia Jing Lee
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia.
| |
Collapse
|
8
|
Jeon Y, Jung M, Jeong B, Lee H, Sym SJ, Baek JH. Phase I study of the safety, tolerability, and potential therapeutic dose of OMT-110 for patients with refractory metastatic Colorectal Cancer. BMC Cancer 2025; 25:937. [PMID: 40414889 DOI: 10.1186/s12885-025-14351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 05/19/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND OMT-110 is a repositioned drug candidate for the treatment of metastatic colorectal cancer (mCRC). This phase I study aimed to determine the appropriate dose of OMT-110 for phase II trials and its safety, tolerability, and efficacy. We conducted the first-in-human dose-escalation study of patients with advanced mCRC (age 20 years or older) who had refractory disease. METHODS OMT-110 was administered subcutaneously in a repeated cycle of 21 days on/seven days off until tumor progression, toxicity, or withdrawal. Adverse events were graded according to the National Cancer Institute Common Terminology Criteria ver4.03. The pharmacokinetic profiles were determined before and after OMT-110 administration. Pharmacodynamic and efficacy evaluations were performed using abdominopelvic computed tomography (APCT), chest CT, and 18F-FDG-Positron emission tomography/CT, following the Response Evaluation Criteria in Solid Tumors v1.1. Fourteen patients were divided into four cohorts to receive doses ranging from 12.5 mg to 100 mg daily. RESULTS Based on our results, a daily dose of 100 mg is recommended following a repeated 28-day treatment cycle of 21 days on/seven days off. Of the 54 adverse events experienced by the participants in the safety set, all were grade 1 or 2, except for two serious adverse events. OMT-110 was either "unrelated" or "definitely not related" or "probably unrelated" to these events. Pharmacokinetic analysis revealed no apparent accumulation. CONCLUSIONS Based on the evaluation of pharmacodynamic and efficacy parameters, OMT-110 is a promising novel systemic therapy with potential immunomodulatory effects for patients with advanced mCRC. TRIAL REGISTRATION CRIS Registration Number KCT0005336 (first posted on 08/08/2017).
Collapse
Affiliation(s)
- Youngbae Jeon
- Division of Colorectal Surgery, Department of Surgery, Gachon University Gil Medical Center, Incheon, Republic of Korea
- Gachon University College of Medicine, Incheon, Republic of Korea
| | - MinJeong Jung
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - BongHwang Jeong
- Department of Statistics, LSK Global Pharma Services Co., Ltd, Seoul, Republic of Korea
| | - Haejun Lee
- Department of Nuclear Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
- Gachon University College of Medicine, Incheon, Republic of Korea
| | - Sun Jin Sym
- Division of Hematology and Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
- Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jeong-Heum Baek
- Division of Colorectal Surgery, Department of Surgery, Gachon University Gil Medical Center, Incheon, Republic of Korea.
- Gachon University College of Medicine, Incheon, Republic of Korea.
- Division of Colon and Rectal Surgery, Department of Surgery, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 Beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea.
| |
Collapse
|
9
|
Edirisinghe DT, Kaur J, Lee YQ, Lim HX, Lo SWT, Vishupriyaa S, Tan EW, Wong RSY, Goh BH. The role of the tumour microenvironment in lung cancer and its therapeutic implications. Med Oncol 2025; 42:219. [PMID: 40407951 PMCID: PMC12102098 DOI: 10.1007/s12032-025-02765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/28/2025] [Indexed: 05/26/2025]
Abstract
Lung cancer is the leading cause of cancer-related deaths globally, with tumour growth, invasion, and treatment response heavily influenced by the tumour microenvironment (TME). The TME promotes tumour progression by creating an immunosuppressive environment that hampers the body's antitumour immune response, primarily through the Nuclear Factor Kappa B (NF-κB) and Signal Transducer and Activator of Transcription 3 (STAT3) pathways. These pathways contribute to chronic inflammation, immune evasion, and angiogenesis. Targeting the TME and its signalling pathways has shown potential to enhance treatment efficacy. STAT3, a key transcription factor in lung cancer, drives tumour growth and immune suppression via the mTOR and JAK pathways. Inhibiting these pathways can block STAT3 and slow cancer progression. Promising results have been observed with mTOR inhibitors like CC-115 and Vistusertib, especially when combined with immune checkpoint inhibitors, and with JAK inhibitors such as Ruxolitinib, AZD4205, and Filgotinib. These strategies represent a promising direction for lung cancer therapy. This review explores the intricate relationship between the TME and lung cancer, focussing on novel therapeutic approaches that target immune cells, signalling molecules, and fibroblasts within the TME to improve patient outcomes.
Collapse
Affiliation(s)
- Devindi Thathsara Edirisinghe
- Department of Medical Education, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, No. 5 Jalan Universiti, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Jasleen Kaur
- Department of Medical Education, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, No. 5 Jalan Universiti, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Yue Qi Lee
- Department of Medical Education, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, No. 5 Jalan Universiti, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Huey Xin Lim
- Department of Medical Education, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, No. 5 Jalan Universiti, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Sharis Wan Ting Lo
- Department of Medical Education, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, No. 5 Jalan Universiti, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Sri Vishupriyaa
- Department of Medical Education, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, No. 5 Jalan Universiti, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Ee Wern Tan
- Sunway Biofunctional Molecules Discovery Centre, Faculty of Medical and Life Sciences, Sunway University, No. 5 Jalan Universiti, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Rebecca Shin Yee Wong
- Department of Medical Education, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, No. 5 Jalan Universiti, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, Faculty of Medical and Life Sciences, Sunway University, No. 5 Jalan Universiti, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Liu L, Wang H, Chen R, Song Y, Wei W, Baek D, Gillin M, Kurabayashi K, Chen W. Cancer-on-a-chip for precision cancer medicine. LAB ON A CHIP 2025. [PMID: 40376718 DOI: 10.1039/d4lc01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Many cancer therapies fail in clinical trials despite showing potent efficacy in preclinical studies. One of the key reasons is the adopted preclinical models cannot recapitulate the complex tumor microenvironment (TME) and reflect the heterogeneity and patient specificity in human cancer. Cancer-on-a-chip (CoC) microphysiological systems can closely mimic the complex anatomical features and microenvironment interactions in an actual tumor, enabling more accurate disease modeling and therapy testing. This review article concisely summarizes and highlights the state-of-the-art progresses in CoC development for modeling critical TME compartments including the tumor vasculature, stromal and immune niche, as well as its applications in therapying screening. Current dilemma in cancer therapy development demonstrates that future preclinical models should reflect patient specific pathophysiology and heterogeneity with high accuracy and enable high-throughput screening for anticancer drug discovery and development. Therefore, CoC should be evolved as well. We explore future directions and discuss the pathway to develop the next generation of CoC models for precision cancer medicine, such as patient-derived chip, organoids-on-a-chip, and multi-organs-on-a-chip with high fidelity. We also discuss how the integration of sensors and microenvironmental control modules can provide a more comprehensive investigation of disease mechanisms and therapies. Next, we outline the roadmap of future standardization and translation of CoC technology toward real-world applications in pharmaceutical development and clinical settings for precision cancer medicine and the practical challenges and ethical concerns. Finally, we overview how applying advanced artificial intelligence tools and computational models could exploit CoC-derived data and augment the analytical ability of CoC.
Collapse
Affiliation(s)
- Lunan Liu
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Huishu Wang
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - Ruiqi Chen
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Yujing Song
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
| | - William Wei
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - David Baek
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Mahan Gillin
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Katsuo Kurabayashi
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
11
|
Andrianto A, Rudiman R, Ruchimat T, Lukman K, Sulthana BAAS, Purnama A, Wijaya A, Primastari E, Nugraha P. Association of PD-L1 Expression with Lymph Node Metastasis and Clinical Stage in Ampulla of Vater Cancer: An Observational Study. Cancer Manag Res 2025; 17:965-974. [PMID: 40391126 PMCID: PMC12087912 DOI: 10.2147/cmar.s513961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/02/2025] [Indexed: 05/21/2025] Open
Abstract
Background Ampulla of Vater cancer is a subtype of periampullary cancer originating from pancreatic ducts and the bile ducts. Immune checkpoint proteins, particularly Programmed Death-Ligand 1 (PD-L1), show a crucial function in influencing cancer progression, tumor microenvironment, and immune evasion. This study investigates the association between PD-L1 expression and clinical characteristics in patients with ampulla of Vater cancer. Methods A retrospective observational study was carried out at a general hospital in West Java, Indonesia, from July 2019 to June 2024. Forty-four patients diagnosed with ampulla of Vater cancer were included. PD-L1 expression was evaluated using immunohistochemistry, and clinicopathological data were analyzed using chi-square, Mann-Whitney, and independent t-tests. Results There were 44 research subject. The PD-L1 expression was positive in 59.1% of patients and negatively associated with carcinoembryonic antigen (CEA) levels (p = 0.010). There was a significant association between PD-L1 positivity and lymph node involvement (p = 0.042) and clinical stage (p = 0.017). No significant association was found between PD-L1 expression and age, sex, histopathological grade, or distant metastasis. Conclusion PD-L1 expression in ampulla of Vater cancer is significantly associated with higher lymph node metastasis and advanced clinical stage but not with age, sex, or tumor differentiation. These findings suggest PD-L1 as a potential prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Andrianto Andrianto
- Department of Surgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Reno Rudiman
- Department of Surgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Tommy Ruchimat
- Department of Surgery, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Kiki Lukman
- Department of Surgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Andriana Purnama
- Department of Surgery, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Alma Wijaya
- Department of Surgery, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Etis Primastari
- Department of Pathological Anatomy, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Prapanca Nugraha
- Department of Surgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
12
|
Yan L, Lv J, Xu M, Jia H, Li S. High Midkine Expression Correlates with Poor Prognosis and Immune Cell Infiltration in Hepatocellular Carcinoma. Int J Gen Med 2025; 18:2567-2579. [PMID: 40386763 PMCID: PMC12085142 DOI: 10.2147/ijgm.s490409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/26/2025] [Indexed: 05/20/2025] Open
Abstract
Objective This study investigated the role of MDK (Midkine) in hepatocellular carcinoma (HCC) through bioinformatics analysis and experimental validation, focusing on its relationship with tumor immune microenvironment and patient prognosis. Methods We employed the GEPIA database to analyze MDK expression patterns across cancer types and specifically in HCC versus normal tissues. MDK expression was validated through immunohistochemistry (IHC) in 100 paired HCC and adjacent tissue samples. Survival analyses were conducted using Kaplan-Meier and Cox regression methods. The relationship between MDK expression and immune cell infiltration was investigated using TIMER 2.0 database and verified through IHC staining of immune cell markers. Results MDK expression was significantly elevated in HCC tissues compared to adjacent normal tissues. High MDK expression strongly correlated with tumor number, vascular invasion, advanced clinical stage and poor prognosis, serving as an independent prognostic factor. Notably, elevated MDK expression predicted poor outcomes in patients receiving immunotherapy. Database analysis and IHC analysis revealed that MDK expression positively correlated with regulatory T (Treg) cell infiltration while negatively correlating with natural killer (NK) cell presence, suggesting its role in shaping the tumor immune microenvironment. Conclusion High MDK expression in HCC correlates with unfavorable patient outcomes and impacts immune cell infiltration. MDK may serve as a novel prognostic biomarker and potential therapeutic target in HCC treatment.
Collapse
Affiliation(s)
- Lili Yan
- Department of Gastroenterology, First Hospital of Qinhuangdao, Qinhuangdao, 066005, People’s Republic of China
| | - Ji Lv
- Department of Breast Surgery, First Hospital of Qinhuangdao, Qinhuangdao, 066005, People’s Republic of China
| | - Meimei Xu
- Department of Gastroenterology, First Hospital of Qinhuangdao, Qinhuangdao, 066005, People’s Republic of China
| | - Hongyu Jia
- Department of Gastroenterology, First Hospital of Qinhuangdao, Qinhuangdao, 066005, People’s Republic of China
| | - Shanshan Li
- Department of Gastroenterology, First Hospital of Qinhuangdao, Qinhuangdao, 066005, People’s Republic of China
| |
Collapse
|
13
|
Parodi I, Palamà MEF, Di Lisa D, Pastorino L, Lagazzo A, Falleroni F, Aiello M, Fato MM, Scaglione S. Core-Shell Hydrogels with Tunable Stiffness for Breast Cancer Tissue Modelling in an Organ-on-Chip System. Gels 2025; 11:356. [PMID: 40422376 DOI: 10.3390/gels11050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Breast cancer remains the most common malignancy in women, yet, many patients fail to achieve full remission despite significant advancements. This is largely due to tumour heterogeneity and the limitations of current experimental models in accurately replicating the complexity of in vivo tumour environment. In this study, we present a compartmentalised alginate hydrogel platform as an innovative in vitro tool for three-dimensional breast cancer cell culture. To mimic the heterogeneity of tumour tissues, we developed a core-shell structure (3.5% alginate core and 2% alginate shell) that mimic the stiffer, denser internal tumour matrix. The human triple-negative breast cancer cell line (MDA-MB-231) was embedded in core-shell alginate gels to assess viability, proliferation and hypoxic activity. Over one week, good cells proliferation and viability was observed, especially in the softer shell. Interestingly, cells within the stiffer core were more positive to hypoxic marker expression (HIF-1α) than those embedded in the shell, confirming the presence of a hypoxic niche, as observed in vivo. When cultured in the MIVO® milli fluidic organ-on-chip resembling the physiological fluid flow conditions, cancer cells viability became comparable between core and shell hydrogel area, emphasising the importance of the fluid flow in nutrients diffusion within three-dimensional matrixes. Cisplatin chemotherapy treatment further highlighted these differences: under static conditions, cancer cell death was prominent in the softer shell, whereas cells in the stiffer core remained resistant to cisplatin. Conversely, drug diffusion was more homogeneous in the core-shell structured treated in the organ-on-chip, leading to a uniform reduction in cell viability. These findings suggest that integrating a compartmentalised core-shell cell laden alginate model with the millifluidic organ on chip offers a more physiologically relevant experimental approach to deepening cancer cell behaviour and drug response.
Collapse
Affiliation(s)
- Ilaria Parodi
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, 16145 Genoa, Italy
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications Engineering (CNR-IEIIT), 16149 Genoa, Italy
| | | | - Donatella Di Lisa
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, 16145 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16131 Genoa, Italy
| | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, 16145 Genoa, Italy
| | - Alberto Lagazzo
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, 16145 Genoa, Italy
| | | | - Maurizio Aiello
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications Engineering (CNR-IEIIT), 16149 Genoa, Italy
- React4life S.p.A., 16152 Genoa, Italy
| | - Marco Massimo Fato
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, 16145 Genoa, Italy
| | - Silvia Scaglione
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications Engineering (CNR-IEIIT), 16149 Genoa, Italy
- React4life S.p.A., 16152 Genoa, Italy
| |
Collapse
|
14
|
Lorenc P, Dams-Kozlowska H, Guzniczak N, Florczak-Substyk A. Application of nanoparticles to target tumor blood vessels as a promising cancer treatment strategy. Biomed Pharmacother 2025; 186:118038. [PMID: 40215646 DOI: 10.1016/j.biopha.2025.118038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is a critical process in tumor growth and metastasis. The VEGF/VEGFR pathway plays a crucial role in regulating angiogenesis. Many anti-angiogenesis agents, including monoclonal antibodies and tyrosine kinase inhibitors, have been investigated for the treatment of various cancers. However, they face significant limitations such as limited bioavailability and drug resistance. Nanoparticles have emerged as a promising tool for effective drug delivery while minimizing systemic side effects. This review explores the application of nanoparticles dedicated to angiogenesis-targeted cancer therapy, particularly targeting the VEGF/VEGFR pathway. We describe drug delivery systems based on inorganic, lipid, and polymeric nanoparticles. Moreover, special attention is given to functionalized nanoparticles, which can precisely target numerous proteins that are significantly overexpressed on the surfaces of endothelial cells, tumors, or other cells in the tumor microenvironment. We summarize a series of nanoparticles designed for selective targeting of tumor vasculature, emphasizing the challenges faced by anti-angiogenic cancer therapies.
Collapse
Affiliation(s)
- Patryk Lorenc
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61-866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61-866, Poland
| | - Natalia Guzniczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland
| | - Anna Florczak-Substyk
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61-866, Poland.
| |
Collapse
|
15
|
Belge Bilgin G, Lucien-Matteoni F, Chaudhuri AA, Orme JJ, Childs DS, Muniz M, Li GG, Chauhan PS, Lee S, Gupta S, Thorpe MP, Johnson DR, Johnson GB, Kendi AT, Sartor O. Current and future directions in theranostics for neuroendocrine prostate cancer. Cancer Treat Rev 2025; 136:102941. [PMID: 40239461 DOI: 10.1016/j.ctrv.2025.102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Neuroendocrine prostate cancer (NEPC) is rare at the time of initial diagnosis but much more common in patients treated with the combination of androgen deprivation therapy (ADT) and androgen receptor pathway inhibitors (ARPI) such as abiraterone and enzalutamide. NEPC is typically characterized by the loss of prostate-specific membrane antigen (PSMA) expression while exhibiting variable neuroendocrine markers. Recent advancements in nuclear medicine have provided a promising avenue for the development of molecular imaging techniques and targeted therapies tailored to NEPC. This review examines the current and future role of theranostics in the diagnosis and management of NEPC and explores potential future directions in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | | | - Jacob J Orme
- Department of Oncology, Mayo Clinic Rochester, MN, USA
| | | | - Miguel Muniz
- Department of Oncology, Mayo Clinic Rochester, MN, USA
| | | | | | - SeungBaek Lee
- Department of Radiology, Mayo Clinic Rochester, MN, USA
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, MN, USA
| | | | | | - Geoffrey B Johnson
- Department of Radiology, Mayo Clinic Rochester, MN, USA; Department of Immunology, Mayo Clinic Rochester, MN, USA
| | | | - Oliver Sartor
- Department of Radiology, Mayo Clinic Rochester, MN, USA; Department of Urology, Mayo Clinic Rochester, MN, USA; Department of Oncology, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
16
|
Gupta G, Samuel VP, M RM, Rani B, Sasikumar Y, Nayak PP, Sudan P, Goyal K, Oliver BG, Chakraborty A, Dua K. Caspase-independent cell death in lung cancer: from mechanisms to clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04149-0. [PMID: 40257494 DOI: 10.1007/s00210-025-04149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Caspase-independent cell death (CICD) has recently become a very important mechanism in lung cancer, in particular, to overcome a critical failure in apoptotic cell death that is common to disease progression and treatment failures. The pathways involved in CICD span from necroptosis, ferroptosis, mitochondrial dysfunction, and autophagy-mediated cell death. Its potential therapeutic applications have been recently highlighted. Glutathione peroxidase 4 (GPX4) inhibition-driven ferroptosis has overcome drug resistance in non-small cell lung cancer (NSCLC). In addition, necroptosis involving RIPK1 and RIPK3 causes tumor cell death and modulation of immune responses in the tumor microenvironment (TME). Mitochondrial pathways are critical for CICD through modulation of metabolic and redox homeostasis. Ferroptosis is amplified by mitochondrial reactive oxygen species (ROS) and lipid peroxidation in lung cancer cells, and mitochondrial depolarization induces oxidative stress and leads to cell death. In addition, mitochondria-mediated autophagy, or mitophagy, results in the clearance of damaged organelles under stress conditions, while this function is also linked to CICD when dysregulated. The role of cell death through autophagy regulated by ATG proteins and PI3K/AKT/mTOR pathway is dual: to suppress tumor and to sensitize cells to therapy. A promising approach to enhancing therapeutic outcomes involves targeting mechanisms of CICD, including inducing ferroptosis by SLC7A11 inhibition, modulating mitochondrial ROS generation, or combining inhibition of autophagy with chemotherapy. Here, we review the molecular underpinnings of CICD, particularly on mitochondrial pathways and their potential to transform lung cancer treatment.
Collapse
Affiliation(s)
- Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Y Sasikumar
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Priya Priyadarshini Nayak
- Department of Medical Oncology IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Puneet Sudan
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Kamal Dua
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
17
|
Song L, Zhang H, Yang W. Multiple machine learning algorithms identified SLC6A8 as a diagnostic biomarker of the late stage of Hepatocellular carcinoma. Discov Oncol 2025; 16:543. [PMID: 40240560 PMCID: PMC12003237 DOI: 10.1007/s12672-025-02351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/09/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a chronic liver disease characterized by persistent tumor growth, contributing significantly to mortality rates worldwide. Consequently, there is an urgent need to develop effective diagnostic and treatment strategies for HCC. This study aims to identify crucial genes for early HCC diagnosis to mitigate disease progression and to investigate differences in immune cell infiltration between early-stage and late-stage HCC. We integrated two published datasets for a comprehensive analysis, identifying 575 DEGs subjected to GSEA to reveal pathways distinguishing early-stage from late-stage HCC. Notably, the gene SLC6A8 emerged as a potential diagnostic biomarker for late-stage HCC through machine learning (LASSO-LR/SVM-RFE/RF-Boruta). ROC curves for SLC6A8 were utilized to evaluate diagnostic accuracy. The ImmuCellAI algorithm assessed immune cell composition differences between early and late-stage HCC, revealing that SLC6A8 expression positively correlates with resting Tfh cells and Th2, while negatively correlating with B cells, indicating its association with immune cell infiltration patterns. To strengthen our results, we further analyzed SLC6A8 expression using single-cell transcriptome data, confirming notably overexpression in late-stage HCC, particularly in key liver cell types such as Hepatocyte cells. Overall, our study nominates SLC6A8 as a dual biomarker for HCC Staging and precision therapy.
Collapse
Affiliation(s)
- Linlin Song
- Department of Anesthesiology (the Hei Long Jiang Province Key Lab of Research On Anesthesiology and Critical Care Medicine), the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hongli Zhang
- Department of Anesthesiology (the Hei Long Jiang Province Key Lab of Research On Anesthesiology and Critical Care Medicine), the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wang Yang
- Department of Anesthesiology (the Hei Long Jiang Province Key Lab of Research On Anesthesiology and Critical Care Medicine), the Second Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
18
|
Liu L, Kishengere MA, Xu X, Yue Z. Revealing tumor microenvironment communication through m6A single-cell analysis and elucidating immunotherapeutic potentials for cutaneous melanoma (CM). J Cancer Res Clin Oncol 2025; 151:135. [PMID: 40205154 PMCID: PMC11982169 DOI: 10.1007/s00432-025-06176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND The methylation of N6-methyladenosine (m6A) RNA plays a crucial role in the genetic regulation of various cancers. While m6A modifications have been extensively studied in the tumor microenvironment (TME) of several malignancies, their role in cutaneous melanoma (CM) remains unexplored. METHODS Using Non-negative matrix factorization (NMF) analysis on single-cell RNA-seq data (GSE215121) from three CM samples obtained from public databases, 26 m6A RNA methylation regulators were utilized to determine TME subclusters, their expression, and function. RESULTS Six distinct TME cell types were identified and NMF clustering further revealed unique m6A-based subpopulations of cancer-associated fibroblasts and T cells. The prognostic model demonstrated strong predictive capabilities, particularly for fibroblast and T cell m6A clusters, and highlighted COL3A1 as a critical regulator of melanoma-fibroblast interactions. CONCLUSION Highlighting the COL3A1 gene as a critical link and potential therapeutic target in melanoma could offer new avenues for targeted therapies and improve prognostic assessments in cutaneous melanoma.
Collapse
Affiliation(s)
- Lun Liu
- Department of Bioinformatics, Changsha Duxact Clinical Laboratory Co., Ltd, C9 Building, Lugu S&T Park, 28 Lutian Road, Changsha, 410000, Hunan, People's Republic of China
| | - Maxwell Andriano Kishengere
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410000, Hunan, People's Republic of China
| | - Xueming Xu
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhanghui Yue
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410000, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Fatima S. Tumor Microenvironment: A Complex Landscape of Cancer Development and Drug Resistance. Cureus 2025; 17:e82090. [PMID: 40351953 PMCID: PMC12066109 DOI: 10.7759/cureus.82090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
Cancer is responsible for nearly one in six global fatalities, making it a major health issue worldwide. Despite advancements in early detection, surgery, and targeted therapies, effective treatment remains challenging due to the complexity and heterogeneity of the disease. A key factor in cancer progression and resistance to treatment is the tumor microenvironment (TME). It is a complex ecosystem comprising cancer cells, stromal cells, immune cells, extracellular matrix (ECM), and soluble factors like cytokines and chemokines. These components interact dynamically to influence tumor growth, metastasis, immune evasion, and treatment resistance. Cancer cells drive the formation of the TME by releasing signaling molecules, while stromal cells, such as fibroblasts and endothelial cells, support tumor metabolism, angiogenesis, and invasion. Immune cells within the TME can either suppress or promote tumor progression, depending on their activation state. Additionally, the TME can promote the growth of immunosuppressive cells that aid cancer cells in evading immune surveillance, such as regulatory T-cells and myeloid-derived suppressor cells. The TME also impedes drug delivery by creating defective blood vessels, contributing to drug resistance. Recent technological advancements have deepened our understanding of the TME, revealing its role in immune modulation, metabolism, and extracellular matrix remodeling. As a result, targeting the TME has become a promising strategy to overcome treatment resistance and improve cancer therapy outcomes.
Collapse
Affiliation(s)
- Sohaila Fatima
- Pathology, College of Medicine, King Khalid University, Abha, SAU
| |
Collapse
|
20
|
Chen L, Cai B, Ni X, Lin Q, Ke R, Wan X, Huang T, Shan X, Wang B. Temozolomide monotherapy versus combination therapies in melanoma: a meta-analysis of efficacy and safety. Melanoma Res 2025; 35:87-101. [PMID: 39874124 DOI: 10.1097/cmr.0000000000001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Temozolomide is used in melanoma therapy, but the comparative efficacy and safety of monotherapy vs combination therapies are unclear. This meta-analysis evaluates temozolomide monotherapy vs combination therapies in melanoma patients. PubMed, Embase, and Cochrane Library were searched up to August 2024 for studies comparing temozolomide monotherapy with combination therapies in melanoma. Primary outcomes were 1-year survival and objective response rates (RR); secondary outcomes included hematologic and non-hematologic toxicities. Data were pooled using risk ratios with 95% confidence intervals (CIs). Seven studies were included. Combination therapies improved objective RR over temozolomide monotherapy (risk ratio 0.68, 95% CI: 0.53-0.88). One-year survival did not differ significantly between groups (risk ratio 0.81, 95% CI: 0.59-1.12). Temozolomide monotherapy was associated with reduced incidence of leukopenia (risk ratio 0.54, 95% CI: 0.30-0.95). Adding interferon-alpha (IFN-α) to temozolomide significantly improved 1-year survival (risk ratio 0.54, 95% CI: 0.35-0.84) and objective RR (risk ratio 0.57, 95% CI: 0.42-0.78) compared to temozolomide alone, without significantly increasing toxicity. Combination therapies enhance objective RR over temozolomide monotherapy, with similar 1-year survival. Temozolomide monotherapy offers a better hematologic safety profile. Combining temozolomide with IFN-α significantly improves survival and RR without increasing toxicity. Clinicians should balance efficacy and safety when choosing melanoma treatments.
Collapse
Affiliation(s)
- Lu Chen
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Beichen Cai
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xuejun Ni
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qian Lin
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ruonan Ke
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaofen Wan
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Tao Huang
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiuying Shan
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Biao Wang
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Li X, Guan R, Zhang S. Factors Contributing to the High Malignancy Level of Cholangiocarcinoma and Its Epidemiology: Literature Review and Data. BIOLOGY 2025; 14:351. [PMID: 40282217 PMCID: PMC12025278 DOI: 10.3390/biology14040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
CCA is a highly desmoplastic malignant cancer and is the second most common primary liver malignancy after hepatocellular carcinoma (HCC), accounting for approximately 15% of all primary liver tumors. CCA has a poor prognosis, with an average five-year survival rate of 9%, which is lower than that of pancreatic cancer. Although considerable efforts have been invested into the genomics, epigenetics, and risk factors, very little is known about what might have been the key causes for the high malignancy level of CCA. In this review, we analyze the incidence and mortality of CCA in different regions based on data from 1994 to 2022 obtained from the International Agency for Research on Cancer (IARC), discuss the current status of treatment of the disease, and focus on what might be the main factors contributing to the high malignancy level of CCA: alkalosis caused by the Fenton reaction, hypoxia, and the TIME. The review includes studies published from 1979 to 2024, aiming to provide an updated synthesis of basic early classical theoretical knowledge and current knowledge about CCA. By revealing the epidemiological characteristics of CCA, the potential mechanisms of high malignancy, and the current challenges of treatment, this review aims to provide new directions for future cancer research, promote the development of personalized treatment strategies, and facilitate a deeper understanding and the more effective management of CCA worldwide.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China;
| | - Renchu Guan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun 130012, China;
| | - Shuangquan Zhang
- School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
22
|
Zheng J, Wu YC, Cai X, Phan P, Gill M, Er EE, Zhao Z, Wang ZJ, Lee SSY. Correlative multiscale 3D imaging of mouse primary and metastatic tumors by sequential light sheet and confocal fluorescence microscopy. iScience 2025; 28:111934. [PMID: 40124485 PMCID: PMC11928867 DOI: 10.1016/j.isci.2025.111934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
Three-dimensional (3D) optical microscopy permits in situ interrogation of the tumor microenvironment (TME) in volumetric tumors for research while light sheet and confocal fluorescence microscopy are often used to achieve macroscopic and microscopic 3D images of tissues, respectively. Although each technique offers distinct fields of view (FOVs) and spatial resolution, the combination of the two to obtain correlative multiscale 3D images from the same tumor tissues has not yet been explored. We established a workflow that enables the tracking and 3D imaging of region of interests (ROIs) within tumor tissues through sequential light sheet and confocal fluorescence microscopy. This approach allowed for quantitative 3D spatial analysis of the immune response in the TME at multiple spatial scales and facilitated the direct localization of a metastatic lesion within a mouse brain. Our method offers an approach for correlative multiscale 3D optical microscopy with the potential to provide new insights into comprehensive research in disease mechanism or drug response.
Collapse
Affiliation(s)
- Jingtian Zheng
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Yi-Chien Wu
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Xiaoying Cai
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Meghna Gill
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Ekrem Emrah Er
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA
| | - Zaijie J. Wang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Steve Seung-Young Lee
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Morán-Plata FJ, Muñoz-García N, Barrena S, Yeguas A, Balanzategui A, Carretero-Domínguez S, Lécrevisse Q, González-González M, Mateos S, Silos L, Alcoceba M, Solano F, López-Parra M, Botafogo V, Orfao A, Almeida J. Altered immune cell profiles in blood of mature/peripheral T-cell leukemia/lymphoma patients: an EuroFlow study. Front Immunol 2025; 16:1561152. [PMID: 40191194 PMCID: PMC11968749 DOI: 10.3389/fimmu.2025.1561152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction The interactions between T-cell chronic lymphoproliferative disorder (T-CLPD) tumor cells and the bystander immune cells may play a critical role in the failure of immune surveillance and disease progression, but the altered blood immune profiles of T-CLPD remain unknown. Methods Here we analyzed the distribution of residual non-tumoral immune cells in blood of 47 T-CLPD patients -14 T-prolymphocytic leukemia (T-PLL), 7 Sézary syndrome/mycosis fungoides (SS/MF) and 26 T-large granular lymphocytic leukemia (T-LGLL)-, as tumor models of neoplastic T-cells that resemble naive/central memory (N/CM), memory and terminal effector T-cells, respectively, compared to 110 age- and sex-matched healthy donors, using spectral flow cytometry. Results Overall, our results showed deeply altered immune cell profiles in T-PLL, characterized by significantly increased counts of monocytes, dendritic cells, B-cells, NK-cells and innate lymphoid cells (ILC) -particularly ILC3-, together with reduced normal T-cells. In contrast, SS/MF showed neutrophilia, associated with decreased numbers of dendritic cells and NK-cells, potentially reflecting their increased migration from blood to the skin. In turn, T-LGLL displayed the mildest immune impairment, dependent on the TCD4+ vs. TCD8+ nature of the clonal T-cells and presence of STAT3 mutations among TαβCD8+ T-LGLL cases. Further dissection of the normal T-cell compartment showed a significant reduction of the earliest T-cell maturation compartments (N/CM) in T-PLL and SS/MF, whereas T-cells remained within normal ranges in T-LGLL, with only a minor reduction of N/CM T-cells. Conclusion These findings point out the existence of differentially altered innate and adaptive immune cell profiles in the distinct diagnostic subtypes of T-CLPD, with progressively less pronounced alterations from T-PLL and SS/MF to T-LGLL.
Collapse
Affiliation(s)
- F. Javier Morán-Plata
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Noemí Muñoz-García
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Susana Barrena
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ana Yeguas
- Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Ana Balanzategui
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Carretero-Domínguez
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Quentin Lécrevisse
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - María González-González
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Sheila Mateos
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Silos
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
| | - Miguel Alcoceba
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miriam López-Parra
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Vitor Botafogo
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julia Almeida
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC – University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (Departamento de Medicina, Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Niture S, Ghosh S, Jaboin J, Seneviratne D. Tumor Microenvironment Dynamics of Triple-Negative Breast Cancer Under Radiation Therapy. Int J Mol Sci 2025; 26:2795. [PMID: 40141437 PMCID: PMC11943269 DOI: 10.3390/ijms26062795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of estrogen receptors (ER), progesterone receptors (PR), and HER2 expression. While TNBC is relatively less common, accounting for only 10-15% of initial breast cancer diagnosis, due to its aggressive nature, it carries a worse prognosis in comparison to its hormone receptor-positive counterparts. Despite significant advancements in the screening, diagnosis, and treatment of breast cancer, TNBC remains an important public health burden. Following treatment with chemotherapy, surgery, and radiation, over 40% of TNBC patients experience relapse within 3 years and achieve the least benefit from post-mastectomy radiation. The tumor microenvironment environment (TME) is pivotal in TNBC initiation, progression, immune evasion, treatment resistance, and tumor prognosis. TME is a complex network that consists of immune cells, non-immune cells, and soluble factors located in the region adjacent to the tumor that modulates the therapeutic response differentially between hormone receptor-positive breast cancer and TNBC. While the mechanisms underlying the radiation resistance of TNBC remain unclear, the immunosuppressive TME of TNBC has been implicated in chemotherapeutic resistance. Radiation therapy (RT) is known to alter the TME; however, immune changes elicited by radiation are poorly characterized to date, and whether these immune changes contribute to radiation resistance remains unknown. This review delves into the distinct characteristics of the TNBC TME, explores how RT influences TME dynamics, and examines mechanisms underlying tumor radiosensitization, radioresistance, and immune responses.
Collapse
Affiliation(s)
- Suryakant Niture
- Department of Radiation Oncology, Stephenson Cancer Center, Oklahoma University, Oklahoma City, OK 73104, USA
| | | | | | - Danushka Seneviratne
- Department of Radiation Oncology, Stephenson Cancer Center, Oklahoma University, Oklahoma City, OK 73104, USA
| |
Collapse
|
25
|
Quintavalle C, Ingenito F, Roscigno G, Pattanayak B, Esposito CL, Affinito A, Fiore D, Petrillo G, Nuzzo S, Della Ventura B, D'Aria F, Giancola C, Mitola S, Grillo E, Pirozzi M, Donati G, Di Leva FS, Marinelli L, Minic Z, De Micco F, Thomas G, Berezovski MV, Condorelli G. Ex.50.T aptamer impairs tumor-stroma cross-talk in breast cancer by targeting gremlin-1. Cell Death Discov 2025; 11:94. [PMID: 40069570 PMCID: PMC11897156 DOI: 10.1038/s41420-025-02363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/19/2024] [Accepted: 02/14/2025] [Indexed: 03/15/2025] Open
Abstract
The tumor microenvironment profoundly influences tumor complexity, particularly in breast cancer, where cancer-associated fibroblasts play pivotal roles in tumor progression and therapy resistance. Extracellular vesicles are involved in mediating communication within the TME, specifically highlighting their role in promoting the transformation of normal fibroblasts into cancer-associated fibroblasts. Recently, we identified an RNA aptamer, namely ex.50.T, that binds with remarkable affinity to extracellular vesicles shed from triple-negative breast cancer cells. Here, through in vitro assays and computational analyses, we demonstrate that the binding of ex.50.T to extracellular vesicles and parental breast cancer cells is mediated by recognition of gremlin-1 (GREM1), a bone morphogenic protein antagonist implicated in breast cancer aggressiveness and metastasis. Functionally, we uncover the role of ex.50.T as an innovative therapeutic agent in the process of tumor microenvironment re-modeling, impeding GREM1 signaling, blocking triple-negative breast cancer extracellular vesicles internalization in recipient cells, and counteracting the transformation of normal fibroblasts into cancer-associated fibroblasts. Altogether, our findings highlight ex.50.T as a novel therapeutical avenue for breast cancer and potentially other GREM1-dependent malignancies, offering insights into disrupting TME dynamics and enhancing cancer treatment strategies.
Collapse
Affiliation(s)
- Cristina Quintavalle
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| | - Francesco Ingenito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Birlipta Pattanayak
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carla Lucia Esposito
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- AKA Biotech S.r.l, Naples, Italy
| | - Danilo Fiore
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | | | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marinella Pirozzi
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Greta Donati
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Zoran Minic
- Department of Chemistry and Biomolecular Sciences and John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences and John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON, Canada
| | - Gerolama Condorelli
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
26
|
Khurana S, Sharma S, Goyal PK. Tumor microenvironment as a target for developing anticancer hydrogels. Drug Dev Ind Pharm 2025; 51:157-168. [PMID: 39829011 DOI: 10.1080/03639045.2025.2455424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/28/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE It has been reported that cancer cells get protected by a complex and rich multicellular environment i.e. the tumor microenvironment (TME) consisting of varying immune cells, endothelial cells, dendritic cells, fibroblasts, etc. This manuscript is aimed at the characteristic features of TME considered as potential target(s) for developing smart anticancer hydrogels. SIGNIFICANCE The stimuli-specific drug delivery systems especially hydrogels that can respond to the characteristic features of TME are fabricated for treating cancer. For developing anticancer formulations, TME targeting can be considered an alternative way as it enhances the cytotoxic potential and reduces the unwanted effects. This manuscript shall be of quite interest to academicians, researchers, and clinicians engaged in oncology. METHODS The manuscript was prepared by using the data available in the public domain in online resources such as Google Scholar, PubMed, Science Direct, Scopus, Web of Science, Research Gate, etc. RESULTS Smart hydrogels, sensitive to some specific features of TME such as low pH, high concentration of glutathione, specific enzymes, etc., are promising anticancer formulations as these improve the efficacy and lower the side effects of chemotherapy. CONCLUSION The stimuli-responsive hydrogels have been gaining more attention for delivering cytotoxic drugs to the TME in response to specific stimuli. The stimuli-responsive hydrogels, comprising of cytotoxic drug(s) and specific polymers have some special features such as similarity with biological matrix, ability to respond to various internal as well as external stimuli, improved permeability, porosity, biocompatibility, resemblance with soft living tissues, etc.; and are considered as the promising anticancer candidates.
Collapse
Affiliation(s)
- Suman Khurana
- Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, India
| | - Shrestha Sharma
- Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Parveen Kumar Goyal
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, India
| |
Collapse
|
27
|
Xu J, Zhang H, Yang L. Rab3B Proteins: Cellular Functions, Regulatory Mechanisms, and Potential as a Cancer Therapy Target. Cell Biochem Biophys 2025; 83:263-277. [PMID: 39320613 DOI: 10.1007/s12013-024-01549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
RAB3 proteins, a pivotal subgroup within the Rab protein family, are known to be highly expressed in brain and endocrine gland tissues, with detectable levels also observed in exocrine glands, adipose tissue, and other peripheral tissues. They play an indispensable role in the trafficking of cellular products from the endoplasmic reticulum (ER) to the Golgi apparatus and ultimately to secretory vesicles, participating in vesicle transport, mediating cell membrane adhesion, and facilitating membrane fusion during exocytosis. Among these, Rab3B, a specific subtype of RAB3, is a low-molecular-weight (approximately 25 kD) GTP-binding protein (GTPase) characterized by its typical GTPase fold, composed of seven β-strands (six parallel and one antiparallel) surrounded by six α-helices. Previous studies have proved the significant roles of Rab3B in vesicle transport and hormone trafficking. However, its involvement in cancer remains largely unexplored. This review aims to dig into the potential mechanisms of Rab3B in various cancers, including hepatocellular cancer, lung adenocarcinoma, pancreatic cancer, breast cancer, prostate cancer, neuroblastoma and cervical cancer. Given its pivotal functions and underexplored status in oncology, Rab3B stands out as a promising target for both diagnosis and therapy in cancer treatment, with investigations into its biological mechanisms in tumorigenesis offering significant potential to advance future diagnostic and therapeutic strategies across various malignancies.
Collapse
Affiliation(s)
- Jiayi Xu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
28
|
Kundu S, Jit BP, Sharma A. Pan-cancer TCGA analysis reveals the potential involvement of B-type lamins in dysregulating chromosome segregation in human cancer. Mamm Genome 2025; 36:230-249. [PMID: 39592474 DOI: 10.1007/s00335-024-10086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Lamins play a crucial role in maintaining nuclear structure and function. Our study investigates the expression patterns and clinical implications of B-type lamins with a special focus on lamin B2 across various cancer types using comprehensive RNA sequencing datasets. We found that high expression levels of lamin B1 and lamin B2 are associated with decreased overall and disease-free survival in cancer. This association is further pronounced when both lamins are co-expressed, indicating a compounded negative impact on patient prognosis. Additionally, we highlighted the relationship between B-type lamins and the tumor microenvironment. Lamin B1 mRNA expression shows a strong positive correlation with activated CD4+ T-cells and type 2 T-helper cells (Th2), suggesting its role in immune cell infiltration and response within tumors. Lamin B2 expression also correlates moderately with these immune cells, indicating a potential but lesser role in modulating the immune landscape. Notably, the epigenetic state of lamin B1 significantly affects the tumor microenvironment, suggesting a dual role in structural integrity and immune modulation. We have identified 9 lamin B2 interacting proteins that are co-expressed with B-type lamins in cancerous conditions and modulate cytokinesis and cell division pathways during tumorigenesis. Furthermore, we have identified specific molecular targets of B-type lamins that co-express with them in a range of human cancers and are potentially involved in dysregulating chromosome segregation and mRNA binding. Overexpression of these targets alongside B-type lamins correlates with poor prognosis in multiple cancers. These findings underscore the potential of B-type lamins as biomarkers for poor prognosis and as targets for cancer therapies.
Collapse
Affiliation(s)
- Subhadip Kundu
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bimal Prasad Jit
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ashok Sharma
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
- National Cancer Institute, All India Institute of Medical Sciences, Jhajjar, Haryana, India.
| |
Collapse
|
29
|
Aravantinou-Fatorou A, Georgakopoulou VE, Dimopoulos MA, Liontos M. Precision medicine in gynecological cancer (Review). Biomed Rep 2025; 22:43. [PMID: 39810899 PMCID: PMC11729136 DOI: 10.3892/br.2025.1921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/05/2024] [Indexed: 01/16/2025] Open
Abstract
The advent of personalized and precision medicine has revolutionized oncology and treatment of gynecological cancer. These innovative approaches tailor treatments to individual patient profiles beyond genetic markers considering environmental and lifestyle factors, thereby optimizing therapeutic efficacy and minimizing adverse effects. Precision medicine uses advanced genomic technologies such as next-generation sequencing to perform comprehensive tumor profiling. This allows identification of distinct genetic mutations, expression patterns and signaling pathway alterations, revealing the complex molecular landscape of gynecological cancer such as ovarian, cervical and uterine cancer. A major challenge in treating these cancers is their inherent molecular heterogeneity, which can influence tumor behavior, therapy response and prognosis. Precision medicine aims to overcome this by identifying biomarkers and molecular drivers for targeted therapy selection. For example, the identification of breast cancer (BRCA) gene mutations in ovarian cancer has guided the use of poly (ADP-ribose) polymerase inhibitors, leading to more effective treatments with fewer side effects. Similar targeted therapies and immunotherapies have also been developed for cervical and uterine cancer, marking progress toward personalized care. Future directions in gynecological oncology emphasize the importance of molecular profiling and development of targeted therapies. By understanding the unique molecular features of each patient, clinicians can select the most effective personalized treatment strategies to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Aikaterini Aravantinou-Fatorou
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
30
|
Moura T, Laranjeira P, Caramelo O, Gil AM, Paiva A. Breast Cancer and Tumor Microenvironment: The Crucial Role of Immune Cells. Curr Oncol 2025; 32:143. [PMID: 40136347 PMCID: PMC11941043 DOI: 10.3390/curroncol32030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Breast cancer is the most common type of cancer in women and the second leading cause of death by cancer. Despite recent advances, the mortality rate remains high, underlining the need to develop new therapeutic approaches. The complex interaction between cancer cells and the tumor microenvironment (TME) is crucial in determining tumor progression, therapy response, and patient prognosis. Understanding the role of immune cells in carcinogenesis and tumor progression can help improve targeted therapeutic options, increasing the likelihood of a favorable prognosis. Therefore, this review aims to critically analyze the complex interaction between tumor cells and immune cells, emphasizing the clinical and therapeutic implications. Additionally, we explore advances in immunotherapies, with a focus on immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Tânia Moura
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal; (T.M.); (P.L.)
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal; (T.M.); (P.L.)
- Group of Environmental Genetics of Oncobiology (CIMAGO), Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Center of Neurosciences and Cell (CNC), University of Coimbra, 3000-504 Coimbra, Portugal
| | - Olga Caramelo
- Gynecology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-075 Coimbra, Portugal;
| | - Ana M. Gil
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal; (T.M.); (P.L.)
- Group of Environmental Genetics of Oncobiology (CIMAGO), Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, Instituto Politécnico de Coimbra, ESTESC—Coimbra Health School, 3046-854 Coimbra, Portugal
| |
Collapse
|
31
|
Yang Z, Ha B, Wu Q, Ren F, Yin Z, Zhang H. Expanding the horizon of CAR T cell therapy: from cancer treatment to autoimmune diseases and beyond. Front Immunol 2025; 16:1544532. [PMID: 40046061 PMCID: PMC11880241 DOI: 10.3389/fimmu.2025.1544532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has garnered significant attention for its transformative impact on the treatment of hematologic malignancies such as leukemia and lymphoma. Despite its remarkable success, challenges such as resistance, limited efficacy in solid tumors, and adverse side effects remain prominent. This review consolidates recent advancements in CAR-T-cell therapy and explores innovative engineering techniques and strategies to overcome the immunosuppressive tumor microenvironment (TME). We also discuss emerging applications beyond cancer, including autoimmune diseases and chronic infections. Future perspectives highlight the development of more potent CAR-T cells with increased specificity and persistence and reduced toxicity, providing a roadmap for next-generation immunotherapies.
Collapse
Affiliation(s)
- Zishan Yang
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bingjun Ha
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
| | - Qinhan Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Hongru Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
- Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, Guangdong, China
| |
Collapse
|
32
|
Alqarni SS, Khan NU. Integrating alternative therapies in overcoming chemotherapy resistance in tumors. Mol Biol Rep 2025; 52:239. [PMID: 39961936 DOI: 10.1007/s11033-025-10361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/11/2025] [Indexed: 05/09/2025]
Abstract
Chemotherapy-resistant tumors present a significant challenge in oncology, often leading to treatment failures owing to mechanisms such as genetic mutations, drug efflux, altered metabolism, and adaptations within the tumor microenvironment. These factors limit the effectiveness of treatment and contribute to tumor resistance. This review highlights the role of alternative therapies aimed at overcoming resistance mechanisms. Several alternative strategies with high efficacy rate against tumor resistance are being explored, including targeted therapies (58-64%), immunotherapy (80%), hormone therapy (22-61%), and emerging approaches such as herbal therapies (90%), probiotics (34-90%), metabolic therapies (> 50%), epigenetic therapies (51-89%), microbiome-based therapies (50%), gene therapy (67-80%), photodynamic therapy/hypothermia (86-99%), and nanotechnology (50-67%). Integrating these alternative strategies with conventional treatments has the potent-al to augment the therapeutic efficacy and patient outcomes. Despite this progress, limitations in cancer therapeutics include the lack of predictive biomarkers, resistance mechanisms, and tumor heterogeneity, all of which contribute to treatment failure and relapse. To address these limitations, advancements in molecular diagnostics, as well as early detection through liquid biopsies, and the use of biomarkers to monitor resistance and guide treatment are crucial. Additionally, expanding clinical trials is essential to validate new therapies and improve patient outcomes.
Collapse
Affiliation(s)
- Sana S Alqarni
- Department of Clinical Laboratory Science, College of Applied Medical Science, King Saud University, 11421, Riyadh, Saudi Arabia
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan.
| |
Collapse
|
33
|
Kowalczyk A, Wrzecińska M, Gałęska E, Czerniawska-Piątkowska E, Camiña M, Araujo JP, Dobrzański Z. Exosomal ncRNAs in reproductive cancers†. Biol Reprod 2025; 112:225-244. [PMID: 39561105 PMCID: PMC11833474 DOI: 10.1093/biolre/ioae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Extracellular vesicles, particularly exosomes, play a pivotal role in the cellular mechanisms underlying cancer. This review explores the various functions of exosomes in the progression, growth, and metastasis of cancers affecting the male and female reproductive systems. Exosomes are identified as key mediators in intercellular communication, capable of transferring bioactive molecules such as microRNAs, proteins, and other nucleic acids that influence cancer cell behavior and tumor microenvironment interactions. It has been shown that non-coding RNAs transported by exosomes play an important role in tumor growth processes. Significant molecules that may serve as biomarkers in the development and progression of male reproductive cancers include miR-125a-5p, miR-21, miR-375, the miR-371 ~ 373 cluster, and miR-145-5p. For female reproductive cancers, significant microRNAs include miR-26a-5p, miR-148b, miR-205, and miRNA-423-3p. This review highlights the potential of these noncoding RNAs as biomarkers and prognostics in tumor diagnostics. Understanding the diverse roles of exosomes may hold promise for developing new therapeutic strategies and improving treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Alicja Kowalczyk
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marcjanna Wrzecińska
- Department of Ruminant Science, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Elżbieta Gałęska
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Mercedes Camiña
- Department of Physiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose P Araujo
- Mountain Research Centre (CIMO), Instituto Politécnico de Viana do Castelo, Ponte de Lima, Portugal
| | - Zbigniew Dobrzański
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
34
|
Ha H, Choi Y, Kim NH, Kim J, Jang J, Niepa THR, Tanaka M, Lee HY, Choi J. Lipid Nanoparticle Delivery System for Normalization of Tumor Microenvironment and Tumor Vascular Structure. Biomater Res 2025; 29:0144. [PMID: 39935791 PMCID: PMC11811622 DOI: 10.34133/bmr.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 02/13/2025] Open
Abstract
Tumors grow by receiving oxygen and nutrients from the surrounding blood vessels, leading to rapid angiogenesis. This results in functionally and structurally abnormal vasculature characterized by high permeability and irregular blood flow, causing hypoxia within the tumor microenvironment (TME). Hypoxia exacerbates the secretion of pro-angiogenic factors such as vascular endothelial growth factor (VEGF), further perpetuating abnormal vessel formation. This environment compromises the efficacy of radiotherapy, immunotherapy, and chemotherapy. In this study, we developed a pH-sensitive liposome (PSL) system, termed OD_PSL@AKB, to co-deliver oxygen (OD) and razuprotafib (AKB-9778) to tumors. This system rapidly responds to the acidic TME to alleviate hypoxia and inhibit VEGF secretion, restoring VE-cadherin expression in hypoxic endothelial cell/cancer cell cocultures. Our findings highlight the potential of OD_PSL@AKB in normalizing tumor vasculature and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Heejin Ha
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Chemical Science and Engineering,
Institute of Science Tokyo, Kanagawa 226-8503, Japan
| | - Na-Hyeon Kim
- Department of Chemical Engineering,
Kumoh National Institute of Technology, Gumi 39177, Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jaehee Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tagbo H. R. Niepa
- Department of Chemical Engineering,
Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering,
Carnegie Mellon University, Pittsburgh, PA, USA
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering,
Institute of Science Tokyo, Kanagawa 226-8503, Japan
| | - Hee-Young Lee
- Department of Chemical Engineering,
Kumoh National Institute of Technology, Gumi 39177, Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| |
Collapse
|
35
|
Suri C, Pande B, Suhasini Sahithi L, Swarnkar S, Khelkar T, Verma HK. Metabolic crossroads: unravelling immune cell dynamics in gastrointestinal cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:7. [PMID: 40051496 PMCID: PMC11883236 DOI: 10.20517/cdr.2024.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/09/2025]
Abstract
Metabolic reprogramming within the tumor microenvironment (TME) plays a critical role in driving drug resistance in gastrointestinal cancers (GI), particularly through the pathways of fatty acid oxidation and glycolysis. Cancer cells often rewire their metabolism to sustain growth and reshape the TME, creating conditions such as nutrient depletion, hypoxia, and acidity that impair antitumor immune responses. Immune cells within the TME also undergo metabolic alterations, frequently adopting immunosuppressive phenotypes that promote tumor progression and reduce the efficacy of therapies. The competition for essential nutrients, particularly glucose, between cancer and immune cells compromises the antitumor functions of effector immune cells, such as T cells. Additionally, metabolic by-products like lactate and kynurenine further suppress immune activity and promote immunosuppressive populations, including regulatory T cells and M2 macrophages. Targeting metabolic pathways such as fatty acid oxidation and glycolysis presents new opportunities to overcome drug resistance and improve therapeutic outcomes in GI cancers. Modulating these key pathways has the potential to reinvigorate exhausted immune cells, shift immunosuppressive cells toward antitumor phenotypes, and enhance the effectiveness of immunotherapies and other treatments. Future strategies will require continued research into TME metabolism, the development of novel metabolic inhibitors, and clinical trials evaluating combination therapies. Identifying and validating metabolic biomarkers will also be crucial for patient stratification and treatment monitoring. Insights into metabolic reprogramming in GI cancers may have broader implications across multiple cancer types, offering new avenues for improving cancer treatment.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton AB T6G 1Z2, Canada
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India
| | | | | | - Tuneer Khelkar
- Department of Botany and Biotechnology, Govt. Kaktiya P G College, Jagdalpur 494001, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Munich 85764, Germany
| |
Collapse
|
36
|
Puzzo M, De Santo M, Morelli C, Leggio A, Catalano S, Pasqua L. Colorectal Cancer: Current and Future Therapeutic Approaches and Related Technologies Addressing Multidrug Strategies Against Multiple Level Resistance Mechanisms. Int J Mol Sci 2025; 26:1313. [PMID: 39941081 PMCID: PMC11818749 DOI: 10.3390/ijms26031313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and is associated with a poor prognosis. The mutation profile and related involved pathways of CRC have been, in broad terms, analyzed. The main current therapeutic approaches have been comprehensively reviewed here, and future possible therapeu-tic options and related technologies have been perspectively presented. The complex scenario represented by the multiple-level resistance mechanism in the epidermal growth factor receptor (EGFR) pathway, including mutations in KRAS, NRAS, and BRAF V600E, is discussed. Examples of engineered therapeutic approaches from the literature along with a drug combination tested in clinical trials are discussed. The encouraging results observed with the latter combination (the BEACON clinical trial), totally free from chemotherapy, prompted the authors to imagine a future possible nanotechnology-assisted therapeutic approach for bypassing multiple-level resistance mechanisms, hopefully allowing, in principle, a complete biological cancer remission.
Collapse
Affiliation(s)
- Marianna Puzzo
- Laboratory of Clinical, Biomolecular and Genetic Analyses Unit, Annunziata Hospital, 87100 Cosenza, Italy; (M.P.); (S.C.)
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Stefania Catalano
- Laboratory of Clinical, Biomolecular and Genetic Analyses Unit, Annunziata Hospital, 87100 Cosenza, Italy; (M.P.); (S.C.)
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (M.D.S.); (C.M.); (A.L.)
| | - Luigi Pasqua
- NanoSiliCal Devices s.r.l., University of Calabria, 87036 Arcavacata di Rende, Italy
- Department of Environmental Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
37
|
Desai SA, Patel VP, Bhosle KP, Nagare SD, Thombare KC. The tumor microenvironment: shaping cancer progression and treatment response. J Chemother 2025; 37:15-44. [PMID: 38179655 DOI: 10.1080/1120009x.2023.2300224] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and treatment response. It comprises a complex network of stromal cells, immune cells, extracellular matrix, and blood vessels, all of which interact with cancer cells and influence tumor behaviour. This review article provides an in-depth examination of the TME, focusing on stromal cells, blood vessels, signaling molecules, and ECM, along with commonly available therapeutic compounds that target these components. Moreover, we explore the TME as a novel strategy for discovering new anti-tumor drugs. The dynamic and adaptive nature of the TME offers opportunities for targeting specific cellular interactions and signaling pathways. We discuss emerging approaches, such as combination therapies that simultaneously target cancer cells and modulate the TME. Finally, we address the challenges and future prospects in targeting the TME. Overcoming drug resistance, improving drug delivery, and identifying new therapeutic targets within the TME are among the challenges discussed. We also highlight the potential of personalized medicine and the integration of emerging technologies, such as immunotherapy and nanotechnology, in TME-targeted therapies. This comprehensive review provides insights into the TME and its therapeutic implications. Understanding the TME's complexity and targeting its components offer promising avenues for the development of novel anti-tumor therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kunal P Bhosle
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Sandip D Nagare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kirti C Thombare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| |
Collapse
|
38
|
Wan W, Zhu K, Ran Z, Zhu X, Wang D. Development of a Nomogram-Integrated Model Incorporating Intra-tumoral and Peri-tumoral Ultrasound Radiomics Alongside Clinical Parameters for the Prediction of Histological Grading in Invasive Breast Cancer. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:262-272. [PMID: 39477745 DOI: 10.1016/j.ultrasmedbio.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE To develop a comprehensive nomogram to predict the histological grading of breast cancer and further examine its clinical significance by integrating both intra-tumoral and peri-tumoral ultrasound radiomics features. METHODS In a retrospective study 468 female breast cancer patients were analyzed from 2017 to 2020 at the Second Affiliated Hospital of Harbin Medical University. Patients were grouped into high-grade (n = 215) and low-grade (n = 253) categories based on pathological evaluation. Tumor regions of interest were defined and expanded automatically to peri-tumor regions of interest. Ultrasound radiomics features were extracted independently. To ensure rigor, cases were randomly divided into 80% training and 20% test sets. Optimal features were selected using statistical and machine learning methods. Intra-tumor, peri-tumor, and combined radiomics models were constructed. To determine the best predictors of breast cancer histological grading, we screened the features using single- and multi-factor logistic regression analyses. Finally, a nomogram was developed and evaluated for its predictive value in this context. RESULTS By applying logistic regression, we integrated ultrasound, clinicopathologic, and radiomics features to generate a nomogram. The combined model outperformed others, achieving areas under the curve of 0.934 and 0.812 in training and test sets. Calibration curves also showed high accuracy and reliability. CONCLUSION A nomogram constructed through the integration of combined intra-tumor-peri-tumor ultrasound radiomics features along with clinicopathologic characteristics exhibited remarkable performance in distinguishing the histologic grades of invasive breast cancer.
Collapse
Affiliation(s)
- Wenjia Wan
- Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Kai Zhu
- Radiology Department, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhicheng Ran
- Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xinyu Zhu
- Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dongmo Wang
- Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
39
|
Almangush A, Jouhi L, Haglund C, Hagström J, Mäkitie AA, Leivo I. Tumor Microenvironment-Based Risk Stratification of Oropharyngeal Squamous Cell Carcinoma. Head Neck 2025; 47:599-605. [PMID: 39340223 PMCID: PMC11717971 DOI: 10.1002/hed.27945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Evaluation of the prognostic impact of tumor microenvironment (TME) has received attention in recent years. We introduce a TME-based risk stratification for oropharyngeal squamous cell carcinoma (OPSCC). MATERIAL AND METHODS A total of 182 patients treated for OPSCC at the Helsinki University Hospital were included. TME-based risk stratification was designed combining tumor-stroma ratio and stromal tumor-infiltrating lymphocytes assessed in hematoxylin and eosin-stained sections. RESULTS In multivariable analysis, TME-based risk stratification associated with poor disease-free survival with a hazard ratio (HR) of 2.68 (95% CI 1.11-6.48, p = 0.029). In addition, the proposed risk stratification was associated with poor disease-specific survival (HR 2.687, 95% CI 1.28-5.66, p = 0.009) and poor overall survival (HR 2.21, 95% CI 1.23-3.99, p = 0.008). CONCLUSION Our TME-based risk stratification provides a powerful prognostic tool that can be used in daily treatment planning of OPSCC together with tumor-related prognostic markers.
Collapse
Affiliation(s)
- Alhadi Almangush
- Department of PathologyUniversity of HelsinkiHelsinkiFinland
- Research Program in Systems Oncology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of PathologyUniversity of TurkuTurkuFinland
- Faculty of DentistryMisurata UniversityMisurataLibya
| | - Lauri Jouhi
- Department of Otorhinolaryngology – Head and Neck SurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer MedicineUniversity of HelsinkiHelsinkiFinland
- Department of SurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Jaana Hagström
- Department of PathologyUniversity of HelsinkiHelsinkiFinland
- Research Programs Unit, Translational Cancer MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Oral Pathology and Radiology, University of TurkuTurku University HospitalTurkuFinland
| | - Antti A. Mäkitie
- Research Program in Systems Oncology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology – Head and Neck SurgeryUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and TechnologyKarolinska Institutet and Karolinska University HospitalStockholmSweden
| | - Ilmo Leivo
- Institute of Biomedicine, PathologyUniversity of TurkuTurkuFinland
- Turku University Central HospitalTurkuFinland
| |
Collapse
|
40
|
Rinaldi L, Senatore E, Feliciello S, Chiuso F, Insabato L, Feliciello A. Kidney cancer: From tumor biology to innovative therapeutics. Biochim Biophys Acta Rev Cancer 2025; 1880:189240. [PMID: 39674419 DOI: 10.1016/j.bbcan.2024.189240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Renal cell carcinoma (RCC) constitutes the most frequent kidney cancer of the adult population and one of the most lethal malignant tumors worldwide. RCC often presents without early symptoms, leading to late diagnosis. Prognosis varies widely based on the stage of cancer at diagnosis. In the early-stage, localized RCC has a relatively good prognosis, while advanced or metastatic RCC has a poor outcome. Obesity, smoking, genetic mutations and family history are all considered risk factors for RCC, while inherited disorders, such as Tuberous Sclerosis and von Hippel-Lindau syndrome, are causally associated with RCC development. Genetic screening, deep sequencing analysis, quantitative proteomics and immunostaining analysis on RCC tissues, biological fluids and blood samples have been employed to identify novel biomarkers, predisposing factors and therapeutic targets for RCC with important clinical implications for patient treatment. Combined approaches of gene-targeting strategies coupled to a deep functional analysis of cancer cell biology, both in vitro and in appropriate animal models of RCC, significantly contributed to identify and characterize relevant pathogenic mechanisms underlying development and progression of RCC. These studies provided also important cues for the generation of novel target-specific therapeutics that selectively restore deranged cancer cell signalling and dysfunctional immune checkpoints, positively impacting on the survival rate of treated RCC patients. In this review, we will describe the recent discoveries concerning the most relevant pathogenic mechanisms of RCC and will highlight novel therapeutic strategies that interrupt oncogenic pathways and restore immune defences in RCC patients.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Stella Feliciello
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University Hospital Federico II, Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
41
|
Orefice NS, Petrillo G, Pignataro C, Mascolo M, De Luca G, Verde S, Pentimalli F, Condorelli G, Quintavalle C. Extracellular vesicles and microRNAs in cancer progression. Adv Clin Chem 2025; 125:23-54. [PMID: 39988407 DOI: 10.1016/bs.acc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication in cancer. These membranous structures, secreted by normal and cancerous cells, carry a cargo of bioactive molecules including microRNAs (miRNAs) that modulate various cellular processes. miRNAs are small non-coding RNAs that play pivotal roles in post-transcriptional gene regulation and have been implicated in cancer initiation, progression, and metastasis. In cancer, tumor-derived EVs transport specific miRNAs to recipient cells, modulating tumorigenesis, growth, angiogenesis, and metastasis. Dysregulation of miRNA expression profiles within EVs contributes to the acquisition of cancer hallmarks that include increased proliferation, survival, and migration. EV miRNAs influence the tumor microenvironment, promoting immune evasion, remodeling the extracellular matrix, and establishing pre-metastatic niches. Understanding the complex interplay between EVs, miRNAs, and cancer holds significant promise for developing novel diagnostic and therapeutic strategies. This chapter provides insights into the role of EV-mediated miRNA signaling in cancer pathogenesis, highlighting its potential as a biomarker for cancer detection, prognosis, and treatment response assessment.
Collapse
Affiliation(s)
- Nicola S Orefice
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Claudia Pignataro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Martina Mascolo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Giada De Luca
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| | - Sara Verde
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Aka biotech S.r.l., Napoli, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe DeGennaro", Bari, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy; Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy.
| | - Cristina Quintavalle
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| |
Collapse
|
42
|
Jackson GA, Adamson DC. Similarities in Mechanisms of Ovarian Cancer Metastasis and Brain Glioblastoma Multiforme Invasion Suggest Common Therapeutic Targets. Cells 2025; 14:171. [PMID: 39936963 PMCID: PMC11816616 DOI: 10.3390/cells14030171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a critical process in malignant ovarian cancer metastasis. EMT involves the conversion of epithelial cells to mesenchymal cells, conferring enhanced migratory and invasive capabilities. Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor and exhibits an aggressive invasive phenotype that mimics some steps of EMT but does not undergo true metastasis, i.e., the invasion of other organ systems. This study conducts a comparative genomic analysis of EMT in ovarian cancer and invasion in GBM-two malignancies characterized by poor prognosis and limited therapies. Investigating the molecular biology in ovarian cancer and GBM demonstrates shared mechanisms of tumor progression, such as similar genetic and molecular pathways influencing cell plasticity, invasion, and resistance to therapy. The comparative analysis reveals commonalities and differences in the regulatory networks and gene expression profiles associated with EMT and invasion in these cancers. Key findings include the identification of core EMT regulators, such as TWIST1, SNAIL, and ZEB1, which are upregulated in both ovarian cancer and GBM, promoting mesenchymal phenotypes and metastasis. Additionally, the analysis uncovers EMT-related pathways, such as the PI3K/AKT and TGF-β signaling, which are critical in both cancers but exhibit distinct regulatory dynamics. Understanding the intricacies of EMT in ovarian cancer and invasion in GBM provides valuable insights into their aggressive behavior and identifies potential common therapeutic targets. The findings stress the importance of targeting EMT/invasion transitions to develop effective treatments to halt progression and improve patient outcomes in these malignancies.
Collapse
Affiliation(s)
| | - David Cory Adamson
- Neurosurgery Section, Atlanta VA Healthcare System, School of Medicine, Mercer University, Georgia Neurosurgical Institute, Macon, GA 31207, USA;
| |
Collapse
|
43
|
Franco LS, Arunachalam S, Chauhan A, Kareff SA, Hallenbeck PL. Elevated expression of ANTXR1 gene in tumors is a poor prognostic biomarker for patients with bladder cancer. Front Mol Biosci 2025; 11:1520223. [PMID: 39917181 PMCID: PMC11798775 DOI: 10.3389/fmolb.2024.1520223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/27/2024] [Indexed: 02/09/2025] Open
Abstract
The TEM8 protein coded by the ANTXR1 gene represents an emerging biomarker in solid tumors. In addition to the various roles TEM8 plays in oncogenesis, including angiogenesis, epithelial-to-mesenchymal transition, and cell migration, it has also been shown that the overexpression of the ANTXR1 gene in solid tumors correlates with poor prognostic indicators in several solid tumor histologies. As such, TEM8 has been identified as the target of novel oncologic therapies. It is especially attractive given its selective expression on the surface of solid tumor cells and associated stromal cells, such as cancer stem cells, invasive cancer cells, and immune cells, such as macrophages, angiogenic endothelial cells, pericytes, and cancer-associated fibroblasts. Furthermore, TEM8 plays this unique role as a mostly non-mutated gene in solid cancers. Here, we demonstrate that elevated expression of ANTXR1 in bladder cancer showed a statistical difference not only in overall survival (OS) but in progression-free survival (PFS), confirming the prognostic biomarker power of ANTXR1 expression.
Collapse
Affiliation(s)
- L. S. Franco
- Seneca Therapeutics, Inc., Blue Bell, PA, United States
| | | | - A. Chauhan
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, United States
| | - S. A. Kareff
- Lynn Cancer Institute, Boca Raton Regional Hospital, Boca Raton, FL, United States
| | | |
Collapse
|
44
|
Juodžiukynienė N, Lasienė K, Savickienė N, Aniulienė A. Mast Cell Density in Squamous Cell Carcinoma of Skin in Dogs and Cats. Animals (Basel) 2025; 15:316. [PMID: 39943085 PMCID: PMC11816034 DOI: 10.3390/ani15030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
The purpose of the present study was to evaluate mast cell density in squamous cell carcinoma tissues of dogs and cats to assess species differences. Skin squamous cell carcinoma tissues from dogs (n = 15: n = 10 from body sites and n = 5 nail bed specimens) and cats (n = 15, n = 10 from ears and n = 5 nasal planum specimens) were examined. Intratumoral mast cell density (IMCD), peritumoral mast cell density (PMCD) and total mast cells density (TMCD) as a sum of IMCD and PMCD were calculated from Giemsa-stained slides at high magnification in 1 mm2 using an Olympus microscope (Olympus BX41, Tokyo, Japan) equipped with a digital Olympus DP72 image camera and CellSensDimension software V1.16). Both intratumoral and peritumoral tissues of the squa.mous cell carcinoma were divided into two categories: (1) loose, well-vascularized, rich in lymphocytes and plasmocytes, macrophages and neutrophils; and (2) fibrous, with few or no lymphocytes, plasmocytes, macrophages and neutrophils (the presence of neutrophils can be associated with actinic keratosis, mechanical irritation of the tumor in some anatomical areas during scratching with teeth, but, in general, neutrophils are associated with more invasive squamous cell carcinoma). In cats, a markedly higher total number of mast cells was found, and the number was also higher in intratumoral and peritumoral tissues. A similar tendency was found in both dogs and cats-a markedly higher number of mastocytes was found in both peritumoral and intratumoral loose, well-vascularized connective tissue. Conversely, lower numbers of mast cells were found in both intratumoral and peritumoral compact fibrous tissue in both animal species.
Collapse
Affiliation(s)
- Nomeda Juodžiukynienė
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, A.Mickevičius Str. 9, LT-44307 Kaunas, Lithuania;
| | - Kristina Lasienė
- Deparment of Histology and Embryology, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, A.Mickevičius Str. 9, LT-44307 Kaunas, Lithuania;
| | - Nijolė Savickienė
- Department of Pharmacognosy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, A.Mickevičius Str. 9, LT-44307 Kaunas, Lithuania;
| | - Albina Aniulienė
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Veterinary Academy, Lithuanian University of Health Sciences, A.Mickevičius Str. 9, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
45
|
Mitriashkin A, Yap JYY, Fernando EAK, Iyer NG, Grenci G, Fong ELS. Cell confinement by micropatterning induces phenotypic changes in cancer-associated fibroblasts. Acta Biomater 2025; 192:61-76. [PMID: 39637956 DOI: 10.1016/j.actbio.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Recent advances in single-cell studies have revealed the vast transcriptomic heterogeneity of cancer-associated fibroblasts (CAFs), with each subset likely having unique roles in the tumor microenvironment. However, it is still unclear how different CAF subsets should be cultured in vitro to recapitulate their in vivo phenotype. The inherent plasticity of CAFs, or their ability to dynamically change their phenotype in response to different environmental stimuli, makes it highly challenging to induce and maintain a specific CAF state in vitro. In this study, we investigated how cell shape and confinement on two-dimensional culture substrates with different stiffnesses influence CAF transcriptomic profile and phenotype. Using micropatterning of polyacrylamide hydrogels to induce shape- and confinement-dependent changes in cell morphology, we observed that micropatterned CAFs exhibited phenotypic shifts towards more desmoplastic and inflammatory CAF subsets. Additionally, micropatterning enabled control over a range of CAF-specific markers and pathways. Lastly, we report how micropatterned and non-micropatterned CAFs respond differently to anti-cancer drugs, highlighting the importance of phenotype-oriented therapy that considers for CAF plasticity and regulatory networks. Control over CAF morphology offers a unique opportunity to establish highly robust CAF phenotypes in vitro, facilitating deeper understanding of CAF plasticity, heterogeneity, and development of novel therapeutic targets. STATEMENT OF SIGNIFICANCE: Cancer-associated fibroblasts (CAFs) are the dominant stromal cell type in many cancers, and recent studies have revealed that they are highly heterogeneous and comprise several subpopulations. It is still unclear how different subsets of CAFs should be cultured in vitro to recapitulate their in vivo phenotype. In this study, we investigated how cell shape and confinement affect CAF transcriptomic profile and phenotype. We report that micropatterned CAFs resemble desmoplastic and inflammatory CAF subsets observed in vivo and respond differently to anti-cancer drugs as compared to non-patterned CAFs. Control over CAF morphology enables the generation of highly robust CAF phenotypes in vitro, facilitating deeper understanding of CAF plasticity and heterogeneity.
Collapse
Affiliation(s)
- Aleksandr Mitriashkin
- Translational Tumor Engineering Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Josephine Yu Yan Yap
- Translational Tumor Engineering Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore
| | - Elekuttige Anton Kanishka Fernando
- Translational Tumor Engineering Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre Singapore, Singapore 168583, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Eliza Li Shan Fong
- Translational Tumor Engineering Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 119276, Singapore; Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
46
|
Wadhonkar K, Das S, Subramanian R, Sk MH, Singh Y, Baig MS. The effect of cancer cell-derived exosomal proteins on macrophage polarization: An in-depth review. Exp Cell Res 2025; 444:114393. [PMID: 39710293 DOI: 10.1016/j.yexcr.2024.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Cancer is characterized by unregulated cell proliferation, enabling it to invade and spread to different organs and tissues in the body. Cancer progression is intricately influenced by the complex dynamics within the tumor microenvironment (TME). The TME is a composite and dynamic network comprising cancer cells and various immune cells, including tumor-associated macrophages. Exosomes facilitate the communication between different cancer cells as well as other types of cells. This review particularly focuses on exosomal proteins derived from different cancer cells in mounting the complex crosstalk between cells of cancer and macrophages within the TME. Most cancer-derived exosomal proteins polarize macrophages towards M2 phenotype, promoting cancer aggressiveness, while a few have role switching towards the M1 phenotype, inhibiting cancer proliferation, respectively. In this review, we summarize, for the first time, the dual impact of cancer cell-derived exosomal proteins on macrophage polarization and the associated signaling pathways, offering valuable insights for developing innovative therapeutic strategies against diverse cancer types.
Collapse
Affiliation(s)
- Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Soumalya Das
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | | | - Mobbassar Hassan Sk
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK; Institute for Energy and Environmental Flows, University of Cambridge, Cambridge, UK
| | - Yashi Singh
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India.
| |
Collapse
|
47
|
Mendoza EN, Ciriolo MR, Ciccarone F. Hypoxia-Induced Reactive Oxygen Species: Their Role in Cancer Resistance and Emerging Therapies to Overcome It. Antioxidants (Basel) 2025; 14:94. [PMID: 39857427 PMCID: PMC11762716 DOI: 10.3390/antiox14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Normal tissues typically maintain partial oxygen pressure within a range of 3-10% oxygen, ensuring homeostasis through a well-regulated oxygen supply and responsive vascular network. However, in solid tumors, rapid growth often outpaces angiogenesis, creating a hypoxic microenvironment that fosters tumor progression, altered metabolism and resistance to therapy. Hypoxic tumor regions experience uneven oxygen distribution with severe hypoxia in the core due to poor vascularization and high metabolic oxygen consumption. Cancer cells adapt to these conditions through metabolic shifts, predominantly relying on glycolysis, and by upregulating antioxidant defenses to mitigate reactive oxygen species (ROS)-induced oxidative damage. Hypoxia-induced ROS, resulting from mitochondrial dysfunction and enzyme activation, exacerbates genomic instability, tumor aggressiveness, and therapy resistance. Overcoming hypoxia-induced ROS cancer resistance requires a multifaceted approach that targets various aspects of tumor biology. Emerging therapeutic strategies target hypoxia-induced resistance, focusing on hypoxia-inducible factors, ROS levels, and tumor microenvironment subpopulations. Combining innovative therapies with existing treatments holds promise for improving cancer outcomes and overcoming resistance mechanisms.
Collapse
|
48
|
Meng Q, Wang W, Wang H, Tao Y, Anastassova N, Sun T, Sun Y, Wang L. Photothermal and enhanced chemodynamic reinforced anti-tumor therapy based on PDA@POM nanocomposites. J Colloid Interface Sci 2025; 678:796-803. [PMID: 39312868 DOI: 10.1016/j.jcis.2024.09.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
Chemodynamic therapy (CDT) and photothermal therapy (PTT) have both demonstrated considerable efficacy in the tumor treatment individually, owing to their non-invasive nature and excellent selectivity. However, due to the propensity of tumors for metastasis and recurrence, a singular therapeutic approach falls short of achieving optimal treatment outcomes. Polydopamine (PDA) has excellent photothermal conversion ability and polyoxometalates (POMs) possess diverse enzymatic activities. Here, we synthesized PDA@POM nanospheres comprising polydopamine-coated Tungsten-based polyoxometalate (W-POM). These nanospheres leverage dual enzymatic activities that synergistically enhance both chemodynamic and photothermal therapies for tumor treatment. The PDA-mediated PTT effect enables precise tumor cell destruction, while the W-POM nanozymes catalyzes the generation of highly toxic reactive oxygen species (ROS) from hydrogen peroxide within tumor cells through a Fenton-like reaction, which mitigates tumor hypoxia and induces tumor cell death. This synergistic photothermal catalytic therapy shows enhanced efficacy in tumor suppression, providing a promising new approach for tumor treatment.
Collapse
Affiliation(s)
- Qingyao Meng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Wenxin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Haozhe Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ying Tao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria; University of Chemical Technology and Metallurgy, Department of Organic Chemistry, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
49
|
Gunaratne GS, Gallant JP, Ott KL, Broome PL, Celada S, West JL, Mixdorf JC, Aluicio-Sarduy E, Engle JW, Boros E, Meimetis L, Lang JM, Zhao SG, Hernandez R, Kosoff D, LeBeau AM. Development of FAP-targeted theranostics discovered by next-generation sequencing-augmented mining of a novel immunized VNAR library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632555. [PMID: 39868181 PMCID: PMC11761682 DOI: 10.1101/2025.01.13.632555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cancer-associated fibroblasts (CAFs) in the stroma of solid tumors promote an immunosuppressive tumor microenvironment (TME) that drives resistance to therapies. The expression of the protease fibroblast activation protein (FAP) on the surface of CAFs has made FAP a target for development of therapies to dampen immunosuppression. Relatively few biologics have been developed for FAP and none have been developed that exploit the unique engagement properties of Variable New Antigen Receptors (VNARs) from shark antibodies. As the smallest binding domain in nature, VNARs cleverage unique geometries and recognize epitopes conventional antibodies cannot. By directly immunizing a nurse shark with FAP, we created a large anti-FAP VNAR phage display library. This library allowed us to identify a suite of anti-FAP VNARs through traditional biopanning and also by an in silico approach that did not require any prior affinity-based enrichment in vitro. We investigated four VNAR-Fc fusion proteins for theranostic properties and found that all four recognized FAP with high affinity and were rapidly internalized by FAP-positive cells. As a result, the VNAR-Fc constructs were effective antibody-drug conjugates in vitro and were able to localize to FAP-positive xenografts in vivo. Our findings establish VNAR-Fc constructs as a versatile platform for theranostic development that could yield innovative cancer therapies targeting the TME.
Collapse
Affiliation(s)
- Gihan S. Gunaratne
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Joseph P. Gallant
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kendahl L. Ott
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Payson L. Broome
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sasha Celada
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cellular and Molecular Pathology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jayden L. West
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jason C. Mixdorf
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jonathan W. Engle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Labros Meimetis
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Joshua M. Lang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Shuang G. Zhao
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - David Kosoff
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S Middleton Memorial Veterans’ Hospital, Madison, Wisconsin
| | - Aaron M. LeBeau
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
50
|
Munyayi TA, Crous A. Advancing Cancer Drug Delivery with Nanoparticles: Challenges and Prospects in Mathematical Modeling for In Vivo and In Vitro Systems. Cancers (Basel) 2025; 17:198. [PMID: 39857980 PMCID: PMC11763932 DOI: 10.3390/cancers17020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Mathematical models are crucial for predicting the behavior of drug conjugate nanoparticles and optimizing drug delivery systems in cancer therapy. These models simulate interactions among nanoparticle properties, tumor characteristics, and physiological conditions, including drug resistance and targeting specificity. However, they often rely on assumptions that may not accurately reflect in vivo conditions. In vitro studies, while useful, may not fully capture the complexities of the in vivo environment, leading to an overestimation of nanoparticle-based therapy effectiveness. Advancements in mathematical modeling, supported by preclinical data and artificial intelligence, are vital for refining nanoparticle-based therapies and improving their translation into effective clinical treatments.
Collapse
Affiliation(s)
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|