1
|
Weber CAM, Krönke N, Volk V, Auber B, Förster A, Trost D, Geffers R, Esmaeilzadeh M, Lalk M, Nabavi A, Samii A, Krauss JK, Feuerhake F, Hartmann C, Wiese B, Brand F, Weber RG. Rare germline variants in POLE and POLD1 encoding the catalytic subunits of DNA polymerases ε and δ in glioma families. Acta Neuropathol Commun 2023; 11:184. [PMID: 37990341 PMCID: PMC10664377 DOI: 10.1186/s40478-023-01689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023] Open
Abstract
Pathogenic germline variants in the DNA polymerase genes POLE and POLD1 cause polymerase proofreading-associated polyposis, a dominantly inherited disorder with increased risk of colorectal carcinomas and other tumors. POLE/POLD1 variants may result in high somatic mutation and neoantigen loads that confer susceptibility to immune checkpoint inhibitors (ICIs). To explore the role of POLE/POLD1 germline variants in glioma predisposition, whole-exome sequencing was applied to leukocyte DNA of glioma patients from 61 tumor families with at least one glioma case each. Rare heterozygous POLE/POLD1 missense variants predicted to be deleterious were identified in glioma patients from 10 (16%) families, co-segregating with the tumor phenotype in families with available DNA from several tumor patients. Glioblastoma patients carrying rare POLE variants had a mean overall survival of 21 months. Additionally, germline variants in POLD1, located at 19q13.33, were detected in 2/34 (6%) patients with 1p/19q-codeleted oligodendrogliomas, while POLE variants were identified in 2/4 (50%) glioblastoma patients with a spinal metastasis. In 13/15 (87%) gliomas from patients carrying POLE/POLD1 variants, features of defective polymerase proofreading, e.g. hypermutation, POLE/POLD1-associated mutational signatures, multinucleated cells, and increased intratumoral T cell response, were observed. In a CRISPR/Cas9-derived POLE-deficient LN-229 glioblastoma cell clone, a mutator phenotype and delayed S phase progression were detected compared to wildtype POLE cells. Our data provide evidence that rare POLE/POLD1 germline variants predispose to gliomas that may be susceptible to ICIs. Data compiled here suggest that glioma patients carrying POLE/POLD1 variants may be recognized by cutaneous manifestations, e.g. café-au-lait macules, and benefit from surveillance colonoscopy.
Collapse
Affiliation(s)
- Christine A M Weber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Nicole Krönke
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Valery Volk
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alisa Förster
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Michael Lalk
- Department of Neurosurgery, KRH Klinikum Nordstadt, Hannover, Germany
| | - Arya Nabavi
- Department of Neurosurgery, KRH Klinikum Nordstadt, Hannover, Germany
| | - Amir Samii
- Department of Neurosurgery, International Neuroscience Institute, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Friedrich Feuerhake
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
- Institute for Neuropathology, University Clinic Freiburg, Freiburg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Bettina Wiese
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
- Department of Neurology, Henriettenstift, Diakovere Krankenhaus gGmbH, Hannover, Germany
| | - Frank Brand
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
2
|
Aiob A, Kim YR, Kim K, Kim H, Kim YB, Kim DW, No JH, Seo SH, Suh DH, Park KU. A simplified two-marker immunohistochemistry strategy for Lynch syndrome screening in endometrial cancer patients. Obstet Gynecol Sci 2023; 66:537-544. [PMID: 37839795 PMCID: PMC10663397 DOI: 10.5468/ogs.23124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
OBJECTIVE To examine the efficacy of MSH6 and PMS2 immunohistochemistry (IHC) as a screening method for Lynch syndrome in endometrial cancer patients. METHODS Through multidisciplinary discussions, an institutional MSH6 and PMS2 IHC-initiated cascade test (MSH6, PMS2 IHC→microsatellite instability [MSI] assay→germline mismatch repair [MMR] gene sequencing) was developed to screen for Lynch syndrome in endometrial cancer patients. Testing was performed on a consecutive cohort of 218 newly diagnosed endometrial cancer patients who underwent surgery at a tertiary hospital in the Republic of Korea between August 2018 and December 2020. The number of MMR deficiencies (MSH6 or PMS2 loss in IHC) and. RESULTS of subsequent tests (MSI assay and germline MMR gene sequencing) were examined. RESULTS MMR deficiency was detected in 52 of the 218 patients (24.0%). Among these 52 patients, 34 (65.0%) underwent MSI testing, of which 31 (91.0%) exhibited high MSI. Of the 31 patients with MSI-high status, 15 (48.0%) underwent germline MMR gene sequencing. Subsequently, Lynch syndrome was diagnosed in five patients (33.0%). CONCLUSION Lynch syndrome screening using MSH6 and PMS2 IHC-initiated cascade testing is a viable strategy in the management of endometrial cancer. A simplified strategy (MSH6 and PMS2 IHC→germline MMR gene sequencing) was proposed because most women with MMR deficiencies exhibited high MSI.
Collapse
Affiliation(s)
- Ala Aiob
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya, Azrieli Faculty of Medicine, Bar Ilan University, Safed,
Israel
| | - Yeo Rae Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Hyojin Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Yong Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Duck Woo Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| |
Collapse
|
3
|
Chambuso R, Robertson B, Ramesar R. A Scoring Model and Protocol to Adapt Universal Screening for Lynch Syndrome to Identify Germline Pathogenic Variants by Next Generation Sequencing from Colorectal Cancer Patients and Cascade Screening. Cancers (Basel) 2022; 14:cancers14122901. [PMID: 35740566 PMCID: PMC9220991 DOI: 10.3390/cancers14122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Lynch syndrome (LS) is an autosomal-dominantly inherited form of cancer predisposition dominated by colorectal cancer (CRC). LS is caused by germline pathogenic variants (PV) occurring in known mismatch repair genes. For effective cascade screening, it is critical to identify PV for LS predisposition. When limited resources are available, next generation sequencing (NGS) of an entire cohort of colorectal cancer (CRC) patients, even those under 50 or 60 years of age, places a huge burden on the system. Here, we present an innovative LS ascertainment and follow-up program that includes LS molecular analysis, PV screening with NGS technology, and cascade screening. The goal is to improve LS ascertainment in light of the growing burden of early-onset CRC, particularly in low- and middle-income countries. Abstract Identification of germline pathogenic variants (PV) predisposing to Lynch syndrome (LS) is an important step for effective use of cascade screening of extended at-risk lineages, leading to reduced morbidity and mortality due to colorectal cancer (CRC). As a general rule, however, next generation sequencing (NGS, either of gene panels or whole exomes) is relatively expensive and unaffordable for general clinical use. In resource-poor settings, performing NGS testing on an entire cohort of CRC patients, even if limited to those under 50 or 60 years of age, still places an enormous burden on limited resources. Although family history can be a good indicator for LS testing, identifying at-risk family members and offering cascade screening may not benefit many patients/probands without an obvious family history. This article presents a novel program called Modified Ascertainment and follow-up Program (MAP) with a scoring model for LS ascertainment and molecular screening by NGS with diagnosis confirmation of PV and cascade screening. The goal is to improve LS ascertainment in light of the growing burden of early-onset CRC, particularly in low- and middle-income countries. Through MAP, judiciously applied molecular genetics will improve identification of PV predisposing to LS and cascade screening.
Collapse
Affiliation(s)
- Ramadhani Chambuso
- Colorectal Cancer Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7701, South Africa;
- MRC Unit for Genomic and Precision Medicine, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7701, South Africa
- Correspondence:
| | - Barbara Robertson
- Division of Radiation Oncology, Department of Radiation Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town 7945, South Africa;
| | - Raj Ramesar
- Colorectal Cancer Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7701, South Africa;
- MRC Unit for Genomic and Precision Medicine, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7701, South Africa
| |
Collapse
|
4
|
Tieng FYF, Abu N, Lee LH, Ab Mutalib NS. Microsatellite Instability in Colorectal Cancer Liquid Biopsy-Current Updates on Its Potential in Non-Invasive Detection, Prognosis and as a Predictive Marker. Diagnostics (Basel) 2021; 11:544. [PMID: 33803882 PMCID: PMC8003257 DOI: 10.3390/diagnostics11030544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly-diagnosed cancer in the world and ranked second for cancer-related mortality in humans. Microsatellite instability (MSI) is an indicator for Lynch syndrome (LS), an inherited cancer predisposition, and a prognostic marker which predicts the response to immunotherapy. A recent trend in immunotherapy has transformed cancer treatment to provide medical alternatives that have not existed before. It is believed that MSI-high (MSI-H) CRC patients would benefit from immunotherapy due to their increased immune infiltration and higher neo-antigenic loads. MSI testing such as immunohistochemistry (IHC) and PCR MSI assay has historically been a tissue-based procedure that involves the testing of adequate tissue with a high concentration of cancer cells, in addition to the requirement for paired normal tissues. The invasive nature and specific prerequisite of such tests might hinder its application when surgery is not an option or when the tissues are insufficient. The application of next-generation sequencing, which is highly sensitive, in combination with liquid biopsy, therefore, presents an interesting possibility worth exploring. This review aimed to discuss the current body of evidence supporting the potential of liquid biopsy as a tool for MSI testing in CRC.
Collapse
Affiliation(s)
- Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.)
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor 47500, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.)
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor 47500, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
5
|
Kim JC, Kim JH, Ha YJ, Kim CW, Tak KH, Yoon YS, Kwon YH, Roh SA, Cho DH, Kim SK, Kim SY, Kim YS. Analysis of genomic pathogenesis according to the revised Bethesda guidelines and additional criteria. J Cancer Res Clin Oncol 2021; 147:117-128. [PMID: 32960359 DOI: 10.1007/s00432-020-03391-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE As few genotype-phenotype correlations are available for nonsyndromic hereditary colorectal cancer (CRC), we implemented genomic analysis on the basis of the revised Bethesda guideline (RBG) and extended (12 items) to verify possible subtypes. METHODS Patients with sporadic CRC (n = 249) were enrolled, stratified according to the revised Bethesda guidelines (RBG+ and RBG- groups) plus additional criteria. Exome/transcriptome analyses (n = 98) and cell-based functional assays were conducted. RESULTS We detected 469 somatic and 830 germline gene mutations differing significantly between the positive and negative groups, associated with 12 RBG items/additional criteria. Twenty-one genes had significantly higher mutation rates in left, relative to right, colon cancer, while USP40, HCFC1, and HSPG2 mutation rates were higher in rectal than colon cancer. FAT4 mutation rates were lower in early-onset CRC, in contrast to increased rates in microsatellite instability (MSI)-positive tumors, potentially defining an early-onset microsatellite-stable subtype. The mutation rates of COL6A5 and MGAM2 were significantly and SETD5 was assumably, associated CRC pedigree with concurrent gastric cancer (GC). The predicted deleterious/damaging germline variants, SH2D4A rs35647122, was associated with synchronous/metachronous CRC with related tumors, while NUP160 rs381660 and KRTAP27-1 rs2244485 were potentially associated with a GC pedigree and less strictly defined hereditary CRC, respectively. SH2D4A and NUP160 acted as oncogenic facilitators. CONCLUSION Our limited genomic analysis for RBG and additional items suggested that specific somatic alterations in the respective items may enlighten relevant pathogenesis along with the knowledge of germline mutations. Further validation is needed to indicate appropriate surveillance in suspected individuals.
Collapse
Affiliation(s)
- Jin Cheon Kim
- Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
- Institute of Innovative Cancer Research, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Korea.
| | - Jong Hwan Kim
- Institute of Innovative Cancer Research, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Korea
- Personalized Genomic Medicine Research Center, Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 52 Eoeun-dong Yuseong-gu, Daejeon, 34141, Korea
| | - Ye Jin Ha
- Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
- Institute of Innovative Cancer Research, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Korea
| | - Chan Wook Kim
- Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
- Institute of Innovative Cancer Research, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Korea
| | - Ka Hee Tak
- Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
- Institute of Innovative Cancer Research, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Korea
| | - Yong Sik Yoon
- Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
- Institute of Innovative Cancer Research, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Korea
| | - Yi Hong Kwon
- Institute of Innovative Cancer Research, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Korea
| | - Seon Ae Roh
- Institute of Innovative Cancer Research, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Korea
| | - Dong-Hyung Cho
- School of Life Science, Kyungpook National University, Daegu, 41566, Korea
| | - Seon-Kyu Kim
- Institute of Innovative Cancer Research, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Korea
- Personalized Genomic Medicine Research Center, Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 52 Eoeun-dong Yuseong-gu, Daejeon, 34141, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 52 Eoeun-dong Yuseong-gu, Daejeon, 34141, Korea.
| | - Yong Sung Kim
- Institute of Innovative Cancer Research, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Korea
- Personalized Genomic Medicine Research Center, Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 52 Eoeun-dong Yuseong-gu, Daejeon, 34141, Korea
| |
Collapse
|
6
|
Dhooge M, Baert-Desurmont S, Corsini C, Caron O, Andrieu N, Berthet P, Bonadona V, Cohen-Haguenauer O, De Pauw A, Delnatte C, Dussart S, Lasset C, Leroux D, Maugard C, Moretta-Serra J, Popovici C, Buecher B, Colas C, Noguès C. National recommendations of the French Genetics and Cancer Group - Unicancer on the modalities of multi-genes panel analyses in hereditary predispositions to tumors of the digestive tract. Eur J Med Genet 2020; 63:104080. [PMID: 33039684 DOI: 10.1016/j.ejmg.2020.104080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
In case of suspected hereditary predisposition to digestive cancers, next-generation sequencing can analyze simultaneously several genes associated with an increased risk of developing these tumors. Thus, "Gastro Intestinal" (GI) gene panels are commonly used in French molecular genetic laboratories. Lack of international recommendations led to disparities in the composition of these panels and in the management of patients. To harmonize practices, the Genetics and Cancer Group (GGC)-Unicancer set up a working group who carried out a review of the literature for 31 genes of interest in this context and established a list of genes for which the estimated risks associated with pathogenic variant seemed sufficiently reliable and high for clinical use. Pancreatic cancer susceptibility genes have been excluded. This expertise defined a panel of 14 genes of confirmed clinical interest and relevant for genetic counseling: APC, BMPR1A, CDH1, EPCAM, MLH1, MSH2, MSH6, MUTYH, PMS2, POLD1, POLE, PTEN, SMAD4 and STK11. The reasons for the exclusion of the others 23 genes have been discussed. The paucity of estimates of the associated tumor risks led to the exclusion of genes, in particular CTNNA1, MSH3 and NTHL1, despite their implication in the molecular pathways involved in the pathophysiology of GI cancers. A regular update of the literature is planned to up-grade this panel of genes in case of new data on candidate genes. Genetic and epidemiological studies and international collaborations are needed to better estimate the risks associated with the pathogenic variants of these genes either selected or not in the current panel.
Collapse
Affiliation(s)
- Marion Dhooge
- APHP.Centre (Cochin Hospital), Paris University, Paris, France.
| | - Stéphanie Baert-Desurmont
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Carole Corsini
- Arnaud de Villeneuve University Hospital, Montpellier, France
| | - Olivier Caron
- Gustave-Roussy University Hospital, Villejuif, France
| | - Nadine Andrieu
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France; Unité Inserm, Institut Curie, Paris, France
| | | | | | | | - Antoine De Pauw
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | | | | | | | - Dominique Leroux
- Grenoble University Hospital, Couple-Enfant Hospital, Grenoble, France
| | | | - Jessica Moretta-Serra
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Cornel Popovici
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | - Bruno Buecher
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | - Chrystelle Colas
- Institut Curie, PSL Research University, Department of Tumor Biology, Paris, France
| | - Catherine Noguès
- Institut Paoli-Calmettes, Department of Clinical Cancer Genetics, Aix Marseille Univ, INSERM, IRD, SESSTIM, Marseille, France
| | | |
Collapse
|
7
|
Sobocińska J, Kolenda T, Teresiak A, Badziąg-Leśniak N, Kopczyńska M, Guglas K, Przybyła A, Filas V, Bogajewska-Ryłko E, Lamperska K, Mackiewicz A. Diagnostics of Mutations in MMR/ EPCAM Genes and Their Role in the Treatment and Care of Patients with Lynch Syndrome. Diagnostics (Basel) 2020; 10:diagnostics10100786. [PMID: 33027913 PMCID: PMC7600989 DOI: 10.3390/diagnostics10100786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer (HNPCC), is a disorder caused by an autosomal dominant heterozygous germline mutation in one of the DNA mismatch repair (MMR) genes. Individuals with LS are at an increased risk of developing colorectal and extracolonic cancers, such as endometrial, small bowel, or ovarian. In this review, the mutations involved with LS and their diagnostic methods are described and compared, as are their current uses in clinical decision making. Nowadays, LS diagnosis is based on a review of family medical history, and when necessary, microsatellite instability (MSI) or/and immunohistochemistry (IHC) analyses should be performed. In the case of a lack of MMR protein expression (dMMR) or MSI-H (MSI-High) detection in tumor tissue, molecular genetic testing can be undertaken. More and more genetic testing for LS is based mainly on next-generation sequencing (NGS) and multiplex ligation-dependent probe amplification (MLPA), which provide better and quicker information about the molecular profile of patients as well as individuals at risk. Testing based on these two methods should be the standard and commonly used. The identification of individuals with mutations provides opportunities for the detection of cancer at an early stage as well as the introduction of proper, more effective treatment, which will result in increased patient survival and reduced costs of medical care.
Collapse
Affiliation(s)
- Joanna Sobocińska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (T.K.); (M.K.); (A.P.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
- Correspondence:
| | - Tomasz Kolenda
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (T.K.); (M.K.); (A.P.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland; (A.T.); (K.G.); (K.L.)
| | - Natalia Badziąg-Leśniak
- Oncological Genetics Clinic, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland;
| | - Magda Kopczyńska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (T.K.); (M.K.); (A.P.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland; (A.T.); (K.G.); (K.L.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Przybyła
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (T.K.); (M.K.); (A.P.); (A.M.)
| | - Violetta Filas
- Department of Tumor Pathology and Prophylaxis, Poznan University of Medical Sciences, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland; (V.F.); (E.B.-R.)
- Department of Cancer Pathology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Elżbieta Bogajewska-Ryłko
- Department of Tumor Pathology and Prophylaxis, Poznan University of Medical Sciences, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland; (V.F.); (E.B.-R.)
- Department of Cancer Pathology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland; (A.T.); (K.G.); (K.L.)
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (T.K.); (M.K.); (A.P.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| |
Collapse
|
8
|
Djursby M, Madsen MB, Frederiksen JH, Berchtold LA, Therkildsen C, Willemoe GL, Hasselby JP, Wikman F, Okkels H, Skytte AB, Nilbert M, Wadt K, Gerdes AM, van Overeem Hansen T. New Pathogenic Germline Variants in Very Early Onset and Familial Colorectal Cancer Patients. Front Genet 2020; 11:566266. [PMID: 33193653 PMCID: PMC7541943 DOI: 10.3389/fgene.2020.566266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
A genetic diagnosis facilitates personalized cancer treatment and clinical care of relatives at risk, however, although 25% of colorectal cancer cases are familial, around 95% of the families are genetically unresolved. In this study, we performed gene panel analysis on germline DNA of 32 established or candidate colorectal cancer predisposing genes in 149 individuals from either families with an accumulation of colorectal cancers or families with only one sporadic case of very early onset colorectal cancer (≤40 years at diagnosis). We identified pathogenic or likely pathogenic genetic variants in 10.1% of the participants in genes such as APC, POLE, MSH2 or PMS2. The MSH2 variant, c.2168C>T, p.(Ser723Phe) was previously described as a variant of unknown significance, but we have now reclassified it to be likely pathogenic. The POLE variant, c.1089C>A, p.(Asn363Lys) was identified in a patient with three metachronous colorectal cancers from age 28 and turned out to be de novo. One pathogenic PMS2 variant was novel. We also identified a number of highly interesting variants of unknown significance in APC, BUB1, TP53 and RPS20. The RPS20 variant is novel and was found in a large Amsterdam I positive family with a multi tumor phenotype including 12 cases of CRC from as early as age 24. This variant was found to segregate with cancer in the family and multiple in silico tools predict it to be pathogenic. Our data further support the shift from phenotypic-based cancer panels to large panels including all established genes involved in hereditary cancer syndromes or (targeted) whole genome sequencing. Additionally, identification of a likely disease-predisposing variant in RPS20 expands the phenotypic spectrum of RPS20-related cancers and emphasize that this gene is relevant to include in colorectal cancer gene panels.
Collapse
Affiliation(s)
- Malene Djursby
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Majbritt B Madsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane H Frederiksen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lukas A Berchtold
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina Therkildsen
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Gro L Willemoe
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane P Hasselby
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Friedrik Wikman
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Okkels
- Section of Molecular Diagnostics, Department of Clinical Chemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Anne-Bine Skytte
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Mef Nilbert
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
9
|
Singh AK, Talseth-Palmer B, McPhillips M, Lavik LAS, Xavier A, Drabløs F, Sjursen W. Targeted sequencing of genes associated with the mismatch repair pathway in patients with endometrial cancer. PLoS One 2020; 15:e0235613. [PMID: 32634176 PMCID: PMC7340288 DOI: 10.1371/journal.pone.0235613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/19/2020] [Indexed: 01/28/2023] Open
Abstract
Germline variants inactivating the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause Lynch syndrome that implies an increased cancer risk, where colon and endometrial cancer are the most frequent. Identification of these pathogenic variants is important to identify endometrial cancer patients with inherited increased risk of new cancers, in order to offer them lifesaving surveillance. However, several other genes are also part of the MMR pathway. It is therefore relevant to search for variants in additional genes that may be associated with cancer risk by including all known genes involved in the MMR pathway. Next-generation sequencing was used to screen 22 genes involved in the MMR pathway in constitutional DNA extracted from full blood from 199 unselected endometrial cancer patients. Bioinformatic pipelines were developed for identification and functional annotation of variants, using several different software tools and custom programs. This facilitated identification of 22 exonic, 4 UTR and 9 intronic variants that could be classified according to pathogenicity. This study has identified several germline variants in genes of the MMR pathway that potentially may be associated with an increased risk for cancer, in particular endometrial cancer, and therefore are relevant for further investigation. We have also developed bioinformatics strategies to analyse targeted sequencing data, including low quality data and genomic regions outside of the protein coding exons of the relevant genes.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU—Norwegian University of Science and Technology, Trondheim, Norway
| | - Bente Talseth-Palmer
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Department of Research and Development, Møre og Romsdal Hospital Trust, Molde, Norway
| | - Mary McPhillips
- NSW Health Pathology, Molecular Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | | | - Alexandre Xavier
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Finn Drabløs
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU—Norwegian University of Science and Technology, Trondheim, Norway
| | - Wenche Sjursen
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU—Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
10
|
Chao X, Li L, Wu M, Ma S, Tan X, Zhong S, Bi Y, Lang J. Comparison of screening strategies for Lynch syndrome in patients with newly diagnosed endometrial cancer: a prospective cohort study in China. Cancer Commun (Lond) 2019; 39:42. [PMID: 31307542 PMCID: PMC6628486 DOI: 10.1186/s40880-019-0388-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
Background The prevalence of Lynch syndrome and screening strategies for this disorder in Chinese patients with endometrial cancer have seldom been investigated. Such data would be essential for the screening, prevention, genetic counseling, and treatment of Lynch syndrome. The purpose of this prospective study was to determine the accuracy of the mismatch repair (MMR) protein immunohistochemistry (IHC), microsatellite instability (MSI) test, and clinical diagnostic criteria in screening for Lynch syndrome-associated endometrial cancer (LS-EC) in a prospective Chinese cohort. Methods All patients with newly diagnosed endometrial cancer (EC) were evaluated using clinical diagnostic criteria (Amsterdam II criteria and the revised Bethesda guidelines), MSI test, and IHC of MMR proteins in tumor tissues. For all patients, the screening results were compared with results of germline sequencing for pathogenic variants of MMR genes. Results Between December 2017 and August 2018, a total of 111 unselected patients with newly diagnosed EC were enrolled. Six patients (5.4%) harbored a pathogenic germline mutation of MMR genes: 1 had a mutation in MutL homolog 1 (MLH1), 2 in MutS homolog 2 (MSH2), and 3 in MutS homolog 6 (MSH6). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for identifying LS-EC were 33.3%, 88.6%, 14.3%, and 95.9%, for the clinical criteria, 66.7%, 75.0%, 14.3%, and 97.3% for IHC of MMR proteins, 100%, 89.9%, 33.3%, and 100% for MSI test, and 100%, 72.4%, 20.0% and 100% for combined IHC and MSI test, respectively. The combination of IHC and MSI test had higher sensitivity and PPV than the clinical criteria (p = 0.030). MSI test and IHC were highly concordant for LS-EC screening (73/77, 94.8%). Conclusion The accuracy of the combination of IHC of MMR proteins and MSI test for screening LS among Chinese patients with EC was superior to that of the clinical criteria. Trial registration NCT03291106. Registered on September 25, 2017
Collapse
Affiliation(s)
- Xiaopei Chao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, P.R. China
| | - Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, P.R. China.
| | - Ming Wu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, P.R. China
| | - Shuiqing Ma
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, P.R. China
| | - Xianjie Tan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, P.R. China
| | - Sen Zhong
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, P.R. China
| | - Yalan Bi
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, P.R. China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, P.R. China
| |
Collapse
|
11
|
Xavier A, Olsen MF, Lavik LA, Johansen J, Singh AK, Sjursen W, Scott RJ, Talseth‐Palmer BA. Comprehensive mismatch repair gene panel identifies variants in patients with Lynch-like syndrome. Mol Genet Genomic Med 2019; 7:e850. [PMID: 31297992 PMCID: PMC6687620 DOI: 10.1002/mgg3.850] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Background Lynch‐like syndrome (LLS) represents around 50% of the patients fulfilling the Amsterdam Criteria II/revised Bethesda Guidelines, characterized by a strong family history of Lynch Syndrome (LS) associated cancer, where a causative variant was not identified during genetic testing for LS. Methods Using data extracted from a larger gene panel, we have analyzed next‐generation sequencing data from 22 mismatch repair (MMR) genes (MSH3, PMS1, MLH3, EXO1, POLD1, POLD3 RFC1, RFC2, RFC3, RFC4, RFC5, PCNA, LIG1, RPA1, RPA2, RPA3, POLD2, POLD4, MLH1, MSH2, MSH6, and PMS2) in 274 LLS patients. Detected variants were annotated and filtered using ANNOVAR and FILTUS software. Results Thirteen variants were revealed in MLH1, MSH2, and MSH6, all genes previously linked to LS. Five additional genes (EXO1, POLD1, RFC1, RPA1, and MLH3) were found to harbor 11 variants of unknown significance in our sample cohort, two of them being frameshift variants. Conclusion We have shown that other genes associated with the process of DNA MMR have a high probability of being associated with LLS families. These findings indicate that the spectrum of genes that should be tested when considering an entity like Lynch‐like syndrome should be expanded so that a more inclusive definition of this entity can be developed.
Collapse
Affiliation(s)
- Alexandre Xavier
- University of Newcastle Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Maren Fridtjofsen Olsen
- Faculty of Medicine and Health Sciences, Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Medical GeneticsSaint Olavs Hospital University HospitalTrondheimNorway
| | - Liss A. Lavik
- Department of Medical GeneticsSaint Olavs Hospital University HospitalTrondheimNorway
| | - Jostein Johansen
- Faculty of Medicine and Health Sciences, Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Ashish Kumar Singh
- Department of Medical GeneticsSaint Olavs Hospital University HospitalTrondheimNorway
| | - Wenche Sjursen
- Faculty of Medicine and Health Sciences, Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Medical GeneticsSaint Olavs Hospital University HospitalTrondheimNorway
| | - Rodney J. Scott
- University of Newcastle Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Pathology NorthHunter New England HealthNewcastleNew South WalesAustralia
| | - Bente A. Talseth‐Palmer
- University of Newcastle Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Møre and Romsdal Hospital Trust, Clinic Research and DevelopmentMoldeNorway
| |
Collapse
|
12
|
McCarthy RL, Thomas CL, Isaacs F. Multiple benign adnexal tumours: Anything but benign. Australas J Dermatol 2019; 60:234-236. [PMID: 30671930 DOI: 10.1111/ajd.12989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
Abstract
Muir Torre syndrome is an autosomal dominant disorder characterised by germline mutations in mismatch repair genes involved in DNA repair, leading to microsatellite instability and a propensity to tumour formation. We report a case of a 67-year-old gentleman who underwent biopsy of a smooth nodular lesion on the nasal tip, histopathologically consistent with sebaceous adenoma. Immunohistochemistry suggested a loss of MSH6. Subsequent colonoscopy identified a poorly differentiated adenocarcinoma, with loss of staining for MSH6 and a germline mutation identified on genetic analysis. These findings were consistent with a diagnosis of Muir Torre syndrome. Whilst there is controversy in the literature regarding universal screening for Muir Torre syndrome, the early detection of visceral neoplasms is crucial. The authors strongly support screening for Muir Torre syndrome (with patient consent) upon discovery of a cutaneous sebaceous neoplasm, even in the absence of a personal or family history of visceral malignancy.
Collapse
Affiliation(s)
| | - Charlotte L Thomas
- St Vincent's Hospital, Sydney, New South Wales, Australia.,The Skin Hospital, Sydney, New South Wales, Australia
| | - Frank Isaacs
- St Vincent's Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Liu Q, Tan YQ. Advances in Identification of Susceptibility Gene Defects of Hereditary Colorectal Cancer. J Cancer 2019; 10:643-653. [PMID: 30719162 PMCID: PMC6360424 DOI: 10.7150/jca.28542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/08/2018] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system worldwide, associated with hereditary genetic features. CRC with a Mendelian genetic predisposition accounts for approximately 5-10% of total CRC cases, mainly caused by a single germline mutation of a CRC susceptibility gene. The main subtypes of hereditary CRC are hereditary non-polyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP). With the rapid development of genetic testing methods, especially next-generation sequencing technology, multiple genes have now been confirmed to be pathogenic, including DNA repair or DNA mismatch repair genes such as APC, MLH1, and MSH2. Since familial CRC patients have poor clinical outcomes, timely clinical diagnosis and mutation screening of susceptibility genes will aid clinicians in establishing appropriate risk assessment and treatment interventions at a personal level. Here, we systematically summarize the susceptibility genes identified to date and the potential pathogenic mechanism of HNPCC and FAP development. Moreover, clinical recommendations for susceptibility gene screening, diagnosis, and treatment of HNPCC and FAP are discussed.
Collapse
Affiliation(s)
- Qiang Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan cancer Hospital and The Affiliated Cancer of Xiangya School of Medicine, Central South University, Changsha, China.,Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
14
|
Assessment of DNA repair susceptibility genes identified by whole exome sequencing in head and neck cancer. DNA Repair (Amst) 2018; 66-67:50-63. [PMID: 29747023 DOI: 10.1016/j.dnarep.2018.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
Head and neck cancer (HNC), the sixth most common cancer globally, stands second in India. In Northeast (NE) India, it is the sixth most common cause of death in males and seventh in females. Prolonged tobacco and alcohol consumption constitute the major etiological factors for HNC development, which induce DNA damage. Therefore, DNA repair pathway is a crucial system in maintaining genomic integrity and preventing carcinogenesis. The present work was aimed to predict the consequence of significant germline variants of the DNA repair genes in disease predisposition. Whole exome sequencing was performed in Ion Proton™ platform on 15 case-control samples from the HNC-prevalent states of Manipur, Mizoram, and Nagaland. Variant annotation was done in Ion Reporter™ as well as wANNOVAR. Subsequent statistical and bioinformatics analysis identified significant exonic and intronic variants associated with HNC. Amongst our observed variants, 78.6% occurred in ExAC, 94% reported in dbSNP and 5.8% & 9.3% variants were present in ClinVar and HGMD, respectively. The total variants were dispersed among 199 genes with DSBR and FA pathway being the most mutated pathways. The allelic association test suggested that the intronic variants in HLTF and RAD52 gene significantly associated (P < 0.05) with the risk (OR > 5), while intronic variants in PARP4, RECQL5, EXO1 and PER1 genes and exonic variant in TDP2 gene showed protection (OR < 1) for HNC. MDR analysis proposed the exonic variants in MSH6, BRCA2, PALB2 and TP53 genes and intronic variant in RECQL5 genetic region working together during certain phase of DNA repair mechanism for HNC causation. In addition, other intronic and 3'UTR variations caused modifications in the transcription factor binding sites and miRNA target sites associated with HNC. Large-scale validation in NE Indian population, in-depth structure prediction and subsequent simulation of our recognized polymorphisms is necessary to identify true causal variants related to HNC.
Collapse
|
15
|
Santos LS, Silva SN, Gil OM, Ferreira TC, Limbert E, Rueff J. Mismatch repair single nucleotide polymorphisms and thyroid cancer susceptibility. Oncol Lett 2018; 15:6715-6726. [PMID: 29616133 DOI: 10.3892/ol.2018.8103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy and its incidence continues to rise worldwide. Ionizing radiation exposure is the best established etiological factor. Heritability is high; however, despite valuable contribution from recent genome-wide association studies, the current understanding of genetic susceptibility to TC remains limited. Several studies suggest that altered function or expression of the DNA mismatch repair (MMR) system may contribute to TC pathogenesis. Therefore, the present study aimed to evaluate the potential role of a panel of MMR single nucleotide polymorphisms (SNPs) on the individual susceptibility to well-differentiated TC (DTC). A case-control study was performed involving 106 DTC patients and 212 age- and gender-matched controls, who were all Caucasian Portuguese. Six SNPs present in distinct MMR genes (MLH1 rs1799977, MSH3 rs26279, MSH4 rs5745325, PMS1 rs5742933, MLH3 rs175080 and MSH6 rs1042821) were genotyped through TaqMan® assays and genotype-associated risk estimates were calculated. An increased risk was observed in MSH6 rs1042821 variant homozygotes [adjusted odds ratio (OR)=3.42, 95% CI: 1.04-11.24, P=0.04, under the co-dominant model; adjusted OR=3.84, 95% CI: 1.18-12.44, P=0.03, under the recessive model]. The association was especially evident for the follicular histotype and female sex. The association was also apparent when MSH6 was analysed in combination with other MMR SNPs such as MSH3 rs26279. Interestingly, two other SNP combinations, both containing the MSH6 heterozygous genotype, were associated with a risk reduction, suggesting a protective effect for these genotype combinations. These data support the idea that MMR SNPs such as MSH6 rs1042821, alone or in combination, may contribute to DTC susceptibility. This is coherent with the limited evidence available. Nevertheless, further studies are needed to validate these findings and to establish the usefulness of these SNPs as genetic susceptibility biomarkers for DTC so that, in the near future, cancer prevention policies may be optimized under a personalized medicine perspective.
Collapse
Affiliation(s)
- Luís S Santos
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.,Centre for Interdisciplinary Research in Health (CIIS), Health Sciences Institute (ICS), Universidade Católica Portuguesa, 3504-505 Viseu, Portugal
| | - Susana N Silva
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Octávia M Gil
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.,Center for Nuclear Sciences and Technologies (CTN), Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Teresa C Ferreira
- Department of Nuclear Medicine, Instituto Português de Oncologia de Lisboa, 1099-023 Lisboa, Portugal
| | - Edward Limbert
- Department of Nuclear Medicine, Instituto Português de Oncologia de Lisboa, 1099-023 Lisboa, Portugal
| | - José Rueff
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
16
|
Del Vecchio F, Mastroiaco V, Di Marco A, Compagnoni C, Capece D, Zazzeroni F, Capalbo C, Alesse E, Tessitore A. Next-generation sequencing: recent applications to the analysis of colorectal cancer. J Transl Med 2017; 15:246. [PMID: 29221448 PMCID: PMC5723063 DOI: 10.1186/s12967-017-1353-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Since the establishment of the Sanger sequencing method, scientists around the world focused their efforts to progress in the field to produce the utmost technology. The introduction of next-generation sequencing (NGS) represents a revolutionary step and promises to lead to massive improvements in our understanding on the role of nucleic acids functions. Cancer research began to use this innovative and highly performing method, and interesting results started to appear in colorectal cancer (CRC) analysis. Several studies produced high-quality data in terms of mutation discovery, especially about actionable or less frequently mutated genes, epigenetics, transcriptomics. Analysis of results is unveiling relevant perspectives aiding to evaluate the response to therapies. Novel evidences have been presented also in other directions such as gut microbiota or CRC circulating tumor cells. However, despite its unquestioned potential, NGS poses some issues calling for additional studies. This review intends to offer a view of the state of the art of NGS applications to CRC through examination of the most important technologies and discussion of recent published results.
Collapse
Affiliation(s)
- Filippo Del Vecchio
- Division of Cancer Sciences, University of Southampton, Southampton, Hampshire, SO16 6YD UK
| | - Valentina Mastroiaco
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Antinisca Di Marco
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Daria Capece
- Department of Medicine, Centre for Cell Signaling and Inflammation, Imperial College London, London, W12 0NN UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, La Sapienza University, Rome, 00161 Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| |
Collapse
|
17
|
Screening for germline mutations in mismatch repair genes in patients with Lynch syndrome by next generation sequencing. Fam Cancer 2017; 17:387-394. [DOI: 10.1007/s10689-017-0043-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Liccardo R, De Rosa M, Rossi GB, Carlomagno N, Izzo P, Duraturo F. Incomplete Segregation of MSH6 Frameshift Variants with Phenotype of Lynch Syndrome. Int J Mol Sci 2017; 18:ijms18050999. [PMID: 28481244 PMCID: PMC5454912 DOI: 10.3390/ijms18050999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 12/23/2022] Open
Abstract
Lynch syndrome (LS), the most frequent form of hereditary colorectal cancer, involves mutations in mismatch repair genes. The aim of this study was to identify mutations in MSH6 from 97 subjects negative for mutations in MLH1 and MSH2. By direct sequencing, we identified 27 MSH6 variants, of which, nine were novel. To verify the pathogenicity of these novel variants, we performed in silico and segregation analyses. Three novel variants were predicted by in silico analysis as damaging mutations and segregated with the disease phenotype; while a novel frameshift deletion variant that was predicted to yield a premature stop codon did not segregate with the LS phenotype in three of four cases in the family. Interestingly, another frame-shift variant identified in this study, already described in the literature, also did not segregate with the LS phenotype in one of two affected subjects in the family. In all affected subjects of both families, no mutation was detected in other MMR genes. Therefore, it is expected that within these families, other genetic factors contribute to the disease either alone or in combination with MSH6 variants. We conclude that caution should be exercised in counseling for MSH6-associated LS family members.
Collapse
Affiliation(s)
- Raffaella Liccardo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, 80131 Naples, Italy.
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, 80131 Naples, Italy.
| | - Giovanni Battista Rossi
- Endoscopy Unit, Fondazione Pascale National Institute for Study and Care of Tumors, 80131 Naples, Italy.
| | - Nicola Carlomagno
- General Surgery Unit-Advanced Biomedical Science Department, Federico II University Medical School, 80131 Naples, Italy.
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate, 80145 Naples, Italy.
| | - Francesca Duraturo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, 80131 Naples, Italy.
| |
Collapse
|
19
|
Novel Implications in Molecular Diagnosis of Lynch Syndrome. Gastroenterol Res Pract 2017; 2017:2595098. [PMID: 28250766 PMCID: PMC5303590 DOI: 10.1155/2017/2595098] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023] Open
Abstract
About 10% of total colorectal cancers are associated with known Mendelian inheritance, as Familial Adenomatous Polyposis (FAP) and Lynch syndrome (LS). In these cancer types the clinical manifestations of disease are due to mutations in high-risk alleles, with a penetrance at least of 70%. The LS is associated with germline mutations in the DNA mismatch repair (MMR) genes. However, the mutation detection analysis of these genes does not always provide informative results for genetic counseling of LS patients. Very often, the molecular analysis reveals the presence of variants of unknown significance (VUSs) whose interpretation is not easy and requires the combination of different analytical strategies to get a proper assessment of their pathogenicity. In some cases, these VUSs may make a more substantial overall contribution to cancer risk than the well-assessed severe Mendelian variants. Moreover, it could also be possible that the simultaneous presence of these genetic variants in several MMR genes that behave as low risk alleles might contribute in a cooperative manner to increase the risk of hereditary cancer. In this paper, through a review of the recent literature, we have speculated a novel inheritance model in the Lynch syndrome; this could pave the way toward new diagnostic perspectives.
Collapse
|
20
|
Talseth-Palmer BA, Bauer DC, Sjursen W, Evans TJ, McPhillips M, Proietto A, Otton G, Spigelman AD, Scott RJ. Targeted next-generation sequencing of 22 mismatch repair genes identifies Lynch syndrome families. Cancer Med 2016; 5:929-41. [PMID: 26811195 PMCID: PMC4864822 DOI: 10.1002/cam4.628] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/09/2015] [Accepted: 11/30/2015] [Indexed: 01/04/2023] Open
Abstract
Causative germline mutations in mismatch repair (MMR) genes can only be identified in ~50% of families with a clinical diagnosis of the inherited colorectal cancer (CRC) syndrome hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome (LS). Identification of these patients are critical as they are at substantially increased risk of developing multiple primary tumors, mainly colorectal and endometrial cancer (EC), occurring at a young age. This demonstrates the need to develop new and/or more thorough mutation detection approaches. Next‐generation sequencing (NGS) was used to screen 22 genes involved in the DNA MMR pathway in constitutional DNA from 14 HNPCC and 12 sporadic EC patients, plus 2 positive controls. Several softwares were used for analysis and functional annotation. We identified 5 exonic indel variants, 42 exonic nonsynonymous single‐nucleotide variants (SNVs) and 1 intronic variant of significance. Three of these variants were class 5 (pathogenic) or class 4 (likely pathogenic), 5 were class 3 (uncertain clinical relevance) and 40 were classified as variants of unknown clinical significance. In conclusion, we have identified two LS families from the sporadic EC patients, one without a family history of cancer, supporting the notion for universal MMR screening of EC patients. In addition, we have detected three novel class 3 variants in EC cases. We have, in addition discovered a polygenic interaction which is the most likely cause of cancer development in a HNPCC patient that could explain previous inconsistent results reported on an intronic EXO1 variant.
Collapse
Affiliation(s)
- Bente A Talseth-Palmer
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Denis C Bauer
- CSIRO Digital Productivity, Sydney, New South Wales, Australia
| | - Wenche Sjursen
- Department of Laboratory Medicine Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pathology and Medical Genetics, St Olavs University Hospital, Trondheim, Norway
| | - Tiffany J Evans
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Mary McPhillips
- Hunter Area Pathology Service, Pathology North, Hunter New England Area Health, Newcastle, New South Wales, Australia
| | - Anthony Proietto
- Hunter Centre for Gynaecological Cancer, Hunter New England Area Health, Newcastle, New South Wales, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, New South Wales, Australia
| | - Geoffrey Otton
- Hunter Centre for Gynaecological Cancer, Hunter New England Area Health, Newcastle, New South Wales, Australia.,School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, New South Wales, Australia
| | - Allan D Spigelman
- Hunter Family Cancer Service, Hunter New England Area Health, Newcastle, New South Wales, Australia.,St Vincent's Hospital Clinical School, University of NSW and Hospital Cancer Genetics Clinic, The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Centre for Information-Based Medicine, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Hunter Area Pathology Service, Pathology North, Hunter New England Area Health, Newcastle, New South Wales, Australia
| |
Collapse
|