1
|
Zhang S, Wu N, Geng Y, Guan L, Niu MM, Li J, Zhu L. A combinatorial screening protocol for identifying novel and highly potent dual-target inhibitor of BRD4 and STAT3 for kidney cancer therapy. Front Pharmacol 2025; 16:1560559. [PMID: 40078291 PMCID: PMC11897524 DOI: 10.3389/fphar.2025.1560559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Concurrent inhibition of bromodomain-containing protein 4 (BRD4) and signal transductor and activator of transcription 3 (STAT3) could potentially be an effective strategy against renal cell carcinoma (RCC). Here, we successfully identified five dual-targeted BRD4/STAT3 inhibitors (BSTs 1-5) using a combinatorial screening protocol. Particularly, BST-4 was the most potent inhibitor simultaneously targeting BRD4 (IC50 = 2.45 ± 0.11 nM) and STAT3 (IC50 = 8.07 ± 0.51 nM). MD simulation indicated that BST-4 stably bound to the active sites of BRD4 and STAT3. The cytotoxicity assays exhibited that BST-4 had a significant antiproliferative activity against RCC cell lines, especially CAKI-2 cells (IC50 = 0.76 ± 0.05 μM). Moreover, in vivo experiments revealed that BST-4 more effectively inhibited the growth of xenograft tumors compared with positive controls RVX-208 and CJ-1383. Overall, these data indicated that BST-4 could be a promising candidate compound for RCC therapy.
Collapse
Affiliation(s)
- Shizhu Zhang
- Department of Nephrology, Huai’an Cancer Hospital, Huai’an, China
| | - Nan Wu
- Department of Nephrology, Huai’an Cancer Hospital, Huai’an, China
| | - Yifei Geng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Jindong Li
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Lusha Zhu
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
2
|
Ünlü İ, Özdemir İ, Tuncer MC. Napabucasin Inhibits Proliferation and Migration of Glioblastoma Cells (U87) by Regulating JAK2/STAT3 Signaling Pathway. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1715. [PMID: 39459502 PMCID: PMC11509140 DOI: 10.3390/medicina60101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Napabucasin (NP) was discovered as a natural compound that suppresses cancer stemness by inhibiting the signal transducer and activator of the transcription 3 (STAT3) signaling pathway. In this study, the anti-proliferative and apoptotic effects of NP and the chemotherapy agent doxorubicin (DX), a natural compound, on glioblastoma cells (U87) were investigated. Materials and Methods: In this study, the effects of NP and DX on cell viability on the glioblastoma U87 cell line were determined by MTT test. Expressions of Jak2/Stat3 genes were examined by qRT-PCR. Apoptosis was evaluated by Hoescht 33258 staining. Moreover, NP, its antagonistic-synergistic effects and IC50 doses of the combined treatment of DX were determined. Results: Napabucacin and doxorubicin were found to inhibit glioblastoma U87 cell proliferation. It was determined that NP applied in the range of 0.3-1 µM and its combination with DX killed almost all of the glioblastoma cells in 48 h of application. Additionally, it was observed that Jak2/Stat3 expressions downregulated. Conclusions: These results show that NP suppresses the proliferation of glioblastoma cells. It was shown that the combination of NP and DX can prevent invasion of the U87 cell line due to its Jak2/Stat3 inhibitory effect. Since it can suppress Jak2/Stat3, an important cancer cell proliferation pathway in glioblastoma, the combination of NP and DX can be used as an alternative treatment agent. But no synergistic effect of NP and DX on the U87 cells of the glioblastoma cell line was observed.
Collapse
Affiliation(s)
- İlker Ünlü
- Department of Neurosurgery, Faculty of Medicine, Beykent University, İstanbul 34398, Turkey;
| | - İlhan Özdemir
- Department of Gynecology and Obstetrics, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey;
| | - Mehmet Cudi Tuncer
- Department of Anatomy, Faculty of Medicine, Dicle University, Diyarbakır 21280, Turkey
| |
Collapse
|
3
|
Du J, Qin H. Lipid metabolism dynamics in cancer stem cells: potential targets for cancers. Front Pharmacol 2024; 15:1367981. [PMID: 38994204 PMCID: PMC11236562 DOI: 10.3389/fphar.2024.1367981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer stem cells (CSCs) represent a small subset of heterogeneous cells within tumors that possess the ability to self-renew and initiate tumorigenesis. They serve as potential drivers for tumor initiation, metastasis, recurrence, and drug resistance. Recent research has demonstrated that the stemness preservation of CSCs is heavily reliant on their unique lipid metabolism alterations, enabling them to maintain their own environmental homeostasis through various mechanisms. The primary objectives involve augmenting intracellular fatty acid (FA) content to bolster energy supply, promoting β-oxidation of FA to optimize energy utilization, and elevating the mevalonate (MVA) pathway for efficient cholesterol synthesis. Additionally, lipid droplets (LDs) can serve as alternative energy sources in the presence of glycolysis blockade in CSCs, thereby safeguarding FA from peroxidation. Furthermore, the interplay between autophagy and lipid metabolism facilitates rapid adaptation of CSCs to the harsh microenvironment induced by chemotherapy. In this review, we comprehensively review recent studies pertaining to lipid metabolism in CSCs and provide a concise overview of the indispensable role played by LDs, FA, cholesterol metabolism, and autophagy in maintaining the stemness of CSCs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| |
Collapse
|
4
|
Sánchez-Ramírez D, Mendoza-Rodríguez MG, Alemán OR, Candanedo-González FA, Rodríguez-Sosa M, Montesinos-Montesinos JJ, Salcedo M, Brito-Toledo I, Vaca-Paniagua F, Terrazas LI. Impact of STAT-signaling pathway on cancer-associated fibroblasts in colorectal cancer and its role in immunosuppression. World J Gastrointest Oncol 2024; 16:1705-1724. [PMID: 38764833 PMCID: PMC11099434 DOI: 10.4251/wjgo.v16.i5.1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed and deadliest types of cancer worldwide. CRC displays a desmoplastic reaction (DR) that has been inversely associated with poor prognosis; less DR is associated with a better prognosis. This reaction generates excessive connective tissue, in which cancer-associated fibroblasts (CAFs) are critical cells that form a part of the tumor microenvironment. CAFs are directly involved in tumorigenesis through different mechanisms. However, their role in immunosuppression in CRC is not well understood, and the precise role of signal transducers and activators of transcription (STATs) in mediating CAF activity in CRC remains unclear. Among the myriad chemical and biological factors that affect CAFs, different cytokines mediate their function by activating STAT signaling pathways. Thus, the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors. Here, we analyze the impact of different STATs on CAF activity and their immunoregulatory role.
Collapse
Affiliation(s)
- Damián Sánchez-Ramírez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Mónica G Mendoza-Rodríguez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Omar R Alemán
- Department of Biology, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fernando A Candanedo-González
- Department of Pathology, National Medical Center Century XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Mauricio Salcedo
- Unidad de Investigacion en Biomedicina y Oncologia Genomica, Instituto Mexciano del Seguro Social, Mexico City 07300, Mexico
| | - Ismael Brito-Toledo
- Servicio de Colon y Recto, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Luis I Terrazas
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| |
Collapse
|
5
|
Shao Z, Wang H, Ren H, Sun Y, Chen X. The Anticancer Effect of Napabucasin (BBI608), a Natural Naphthoquinone. Molecules 2023; 28:5678. [PMID: 37570646 PMCID: PMC10420168 DOI: 10.3390/molecules28155678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Napabucasin (also known as BBI608) is a natural naphthoquinone originally identified as a cancer cell stemness inhibitor. Accumulated in vitro and in vivo evidence demonstrated that napabucasin showed significant anticancer effects in various types of cancers. Napabucasin inhibits cancer cell proliferation, induces apoptosis and cell cycle arrest, and suppresses metastasis and relapse. Such anticancer activities of napabucasin mainly rely on the inhibition of cancer stemness by targeting signal transducer and activator of transcription 3 (STAT3) and its related gene inhibition. However, several novel molecular targets for napabucasin, such as NAD(P)H:quinone oxidoreductase 1 (NQO1) and thioredoxin reductase 1 (TrxR1), have been reported. Napabucasin represents a promising anticancer lead for multiple cancers. In this mini review, the anticancer potential and the molecular mechanism of napabucasin will be briefly highlighted.
Collapse
Affiliation(s)
- Zeyang Shao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
| | - Heng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
| | - Haiyan Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
| | - Yinxiang Sun
- Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Disease, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
6
|
Xie Y, Zhu S, Chen L, Liu H, Peng T, Ming Z, Zou Z, Hu X, Luo W, Peng K, Nie Y, Luo T, Ma D, Liu S, Luo Z. An Isoxazoloquinone Derivative Inhibits Tumor Growth by Targeting STAT3 and Triggering Its Ubiquitin-Dependent Degradation. Cancers (Basel) 2023; 15:cancers15092424. [PMID: 37173892 PMCID: PMC10177496 DOI: 10.3390/cancers15092424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, with shorter five-year survival than other breast cancer subtypes, and lacks targeted and hormonal treatment strategies. The signal transducer and activator of transcription 3 (STAT3) signaling is up-regulated in various tumors, including TNBC, and plays a vital role in regulating the expression of multiple proliferation- and apoptosis-related genes. RESULTS By combining the unique structures of the natural compounds STA-21 and Aulosirazole with antitumor activities, we synthesized a class of novel isoxazoloquinone derivatives and showed that one of these compounds, ZSW, binds to the SH2 domain of STAT3, leading to decreased STAT3 expression and activation in TNBC cells. Furthermore, ZSW promotes STAT3 ubiquitination, inhibits the proliferation of TNBC cells in vitro, and attenuates tumor growth with manageable toxicities in vivo. ZSW also decreases the mammosphere formation of breast cancer stem cells (BCSCs) by inhibiting STAT3. CONCLUSIONS We conclude that the novel isoxazoloquinone ZSW may be developed as a cancer therapeutic because it targets STAT3, thereby inhibiting the stemness of cancer cells.
Collapse
Affiliation(s)
- Yuanzhu Xie
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Shuaiwen Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Ling Chen
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Hongdou Liu
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Ting Peng
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Zhengnan Ming
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Zizheng Zou
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Xiyuan Hu
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Wensong Luo
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Kunjian Peng
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Yuan Nie
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Tiao Luo
- Hunan Key Laboratory of Oral Health Research, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Dayou Ma
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Suyou Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhiyong Luo
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha 410008, China
| |
Collapse
|
7
|
Zhou Y, Li T, Jia M, Dai R, Wang R. The Molecular Biology of Prostate Cancer Stem Cells: From the Past to the Future. Int J Mol Sci 2023; 24:ijms24087482. [PMID: 37108647 PMCID: PMC10140972 DOI: 10.3390/ijms24087482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Prostate cancer (PCa) continues to rank as the second leading cause of cancer-related mortality in western countries, despite the golden treatment using androgen deprivation therapy (ADT) or anti-androgen therapy. With decades of research, scientists have gradually realized that the existence of prostate cancer stem cells (PCSCs) successfully explains tumor recurrence, metastasis and therapeutic failure of PCa. Theoretically, eradication of this small population may improve the efficacy of current therapeutic approaches and prolong PCa survival. However, several characteristics of PCSCs make their diminishment extremely challenging: inherent resistance to anti-androgen and chemotherapy treatment, over-activation of the survival pathway, adaptation to tumor micro-environments, escape from immune attack and being easier to metastasize. For this end, a better understanding of PCSC biology at the molecular level will definitely inspire us to develop PCSC targeted approaches. In this review, we comprehensively summarize signaling pathways responsible for homeostatic regulation of PCSCs and discuss how to eliminate these fractional cells in clinical practice. Overall, this study deeply pinpoints PCSC biology at the molecular level and provides us some research perspectives.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
8
|
Chaudhary A, Raza SS, Haque R. Transcriptional factors targeting in cancer stem cells for tumor modulation. Semin Cancer Biol 2023; 88:123-137. [PMID: 36603792 DOI: 10.1016/j.semcancer.2022.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Cancer Stem Cells (CSCs) are now considered the primary "seeds" for the onset, development, metastasis, and recurrence of tumors. Despite therapeutic breakthroughs, cancer remains the leading cause of death worldwide. This is because the tumor microenvironment contains a key population of cells known as CSCs, which promote tumor aggression. CSCs are self-renewing cells that aid tumor recurrence by promoting tumor growth and persisting in patients after many traditional cancer treatments. According to reports, numerous transcription factors (TF) play a key role in maintaining CSC pluripotency and its self-renewal property. The understanding of the functions, structures, and interactional dynamics of these transcription factors with DNA has modified the hypothesis, paving the way for novel transcription factor-targeted therapies. These TFs, which are crucial and are required by cancer cells, play a vital function in the etiology of human cancer. Such CSC TFs will help with gene expression profiling, which provides crucial data for predicting the prognosis of patients. To overcome anti-cancer medication resistance and completely eradicate cancer, a potent therapy combining TFs-based CSC targets with traditional chemotherapy may be developed. In order to develop therapies that could eliminate CSCs, we here concentrated on the effect of TFs and other components of signalling pathways on cancer stemness.
Collapse
Affiliation(s)
- Archana Chaudhary
- Department of Biotechnology, School of Earth Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Rizwanul Haque
- Department of Biotechnology, School of Earth Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
9
|
Li JM, Hsu PC, Kuan FC, Shi CS, Yang CT. The cancer stemness inhibitor napabucasin suppresses small cell lung cancer growth through SOX2 expression. Am J Cancer Res 2022; 12:4637-4651. [PMID: 36381330 PMCID: PMC9641396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023] Open
Abstract
Small cell lung cancer (SCLC) is a high-grade malignancy of neuroendocrine origin characterized by aggressive cell growth and a poor survival rate of patients. Currently, the treatment options for SCLC remain limited despite platinum-based chemotherapy. Systemic chemotherapy is effective for SCLC, but most patients eventually acquire drug resistance, which leads to treatment failure. Stemness-high cancer cells show characteristics of advanced tumorigenesis and metastasis and have high potential in promoting treatment resistance and disease relapse. Napabucasin (BBI608), a novel small-molecule drug targeting on signal transducer and activator of transcription 3 (STAT3), was shown to suppress the progression and metastasis of stemness-high cancer stem cells in various cancers. Here, we demonstrated that napabucasin significantly decreased viability and colony formation and induced the arrest of S-phase cell cycle and apoptosis in cisplatin-resistant SCLC cells. Findings from mechanistic studies further indicated that napabucasin directly downregulated the expression of SOX2 in cisplatin-resistant SCLC cells; however, dysfunctional SOX2 expression in SCLC cells was associated with interference in the napabucasin-mediated reduction of cell viability. In contrast, napabucasin-induced viability reduction was restored in these cells when SOX2 expression was upregulated. Furthermore, napabucasin significantly inhibited cisplatin-resistant SCLC cell xenograft growth in vivo by downregulating SOX2 and inducing apoptosis. These data demonstrate that napabucasin may be a novel drug for the clinical treatment of cisplatin-resistant SCLC.
Collapse
Affiliation(s)
- Jhy-Ming Li
- Department of Animal Science, National Chiayi UniversityChiayi, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial HospitalChiayi, Taiwan
| | - Ping-Chih Hsu
- Department of Thoracic Medicine, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Feng-Che Kuan
- Department of Hematology and Oncology, Chang Gung Memorial HospitalChiayi, Taiwan
| | - Chung-Sheng Shi
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial HospitalChiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Cheng-Ta Yang
- Department of Thoracic Medicine, Chang Gung Memorial HospitalTaoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung UniversityTaoyuan, Taiwan
- Division of Thoracic Medicine, Taoyuan Chang Gung Memorial HospitalTaoyuan, Taiwan
| |
Collapse
|
10
|
Petsri K, Thongsom S, Racha S, Chamni S, Jindapol S, Kaekratoke N, Zou H, Chanvorachote P. Novel mechanism of napabucasin, a naturally derived furanonaphthoquinone: apoptosis and autophagy induction in lung cancer cells through direct targeting on Akt/mTOR proteins. BMC Complement Med Ther 2022; 22:250. [PMID: 36180880 PMCID: PMC9524025 DOI: 10.1186/s12906-022-03727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background Akt and mTOR are aberrantly activated in cancers and targeting these proteins are interesting for cancer drug discovery. Napabucasin (NB), a phytochemical compound, has been reported as potential anti-cancer agent, however, Akt and mTOR targeting mechanisms remain unclear. Method Apoptosis induction was investigated by Hoechst 33342/PI double staining and annexin V/PI staining with flowcytometry. Autophagy was evaluated by monodansylcadaverine staining and Western blot analysis. Binding affinity of NB and essential signaling proteins (PI3K, Akt, and mTOR) was investigated using molecular docking and confirmed by Western blot analysis. Result A structure modification from changing methyl moiety of acetyl group of NB to hydroxyl moiety of carboxyl group of NB derivative (napabucasin-acid or NB-acid) greatly affected the compound activities. NB showed more potent anti-cancer activity. NB reduced cell viability with an approximately 20 times lower IC50 and inhibited the colony formation capacity much more than NB-acid treated cells. NB induced cell apoptosis, which was accompanied by decrease Bcl‑2 and Mcl-1 and clevage of PARP, while NB-acid show lesser effect on Mcl-1. NB was found to strongly induce autophagy indicated by acidic vesicle staining and the LC3B conversion. Interestingly, computational molecular docking analysis further demonstrated that NB directly bound to Akt and mTOR (complex 1 and 2) proteins at their critical sites indicating that NB targets the upstream regulators of apoptosis and autophagy. The docking results were confirmed by decrease of p-Akt/Akt, p-mTOR/mTOR, and c-Myc a downstream target of Akt protein levels. Conclusion Results show for the first time that NB exerts an anti-cancer activity through the direct interaction to Akt and mTOR proteins. The methyl moiety of acetyl group of NB is required for its potent anti-cancer activities. These data encourage further development of NB compounds for Akt and mTOR driven cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03727-6.
Collapse
|
11
|
Deng L, Mo J, Zhang Y, Peng K, Li H, Ouyang S, Feng Z, Fang W, Wei J, Rong D, Zhang X, Wang Y. Boronic Acid: A Novel Pharmacophore Targeting Src Homology 2 (SH2) Domain of STAT3. J Med Chem 2022; 65:13094-13111. [PMID: 36170649 DOI: 10.1021/acs.jmedchem.2c00940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SH2 domains have been recognized as promising targets for various human diseases. However, targeting SH2 domains with phosphopeptides or small-molecule inhibitors derived from bioisosteres of the phosphate group is still challenging. Identifying novel bioisosteres of the phosphate group to achieve favorable in vivo potency is urgently needed. Here, we report the feasibility of targeting the STAT3-SH2 domain with a boronic acid group and the identification of a highly potent inhibitor compound 7 by replacing the carboxylic acid of compound 4 with a boronic acid. Compound 7 shows higher binding affinity, better cellular potency, more favorable PK profiles, and higher in vivo antitumor activity than 4. The stronger anticancer effect of 7 partially stems from its covalent binding mode with the SH2 domain, verified by the washout experiments. The relatively high level of sequence conservation among SH2 domains makes the results presented here of general significance.
Collapse
Affiliation(s)
- Lin Deng
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianshan Mo
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Zhang
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Keren Peng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huaxuan Li
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shumin Ouyang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zongbo Feng
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wei Fang
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianwei Wei
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deqin Rong
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory (BBDDL), School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.,National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Masola V, Franchi M, Zaza G, Atsina FM, Gambaro G, Onisto M. Heparanase regulates EMT and cancer stem cell properties in prostate tumors. Front Oncol 2022; 12:918419. [PMID: 35965510 PMCID: PMC9363836 DOI: 10.3389/fonc.2022.918419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer displays a certain phenotypic plasticity that allows for the transition of cells from the epithelial to the mesenchymal state. This process, known as epithelial–mesenchymal transition (EMT), is one of the factors that give the tumor cells greater invasive and migratory capacity with subsequent formation of metastases. In addition, many cancers, including prostate cancer, are derived from a cell population that shows the properties of stem cells. These cells, called cancer stem cells (CSCs) or tumor-initiating cells, not only initiate the tumor process and growth but are also able to mediate metastasis and drug resistance. However, the impact of EMT and CSCs in prostate cancer progression and patient survival is still far from fully understood. Heparanase (HPSE), the sole mammalian endoglycosidase capable of degrading heparan sulfate (HS), is also involved in prostate cancer progression. We had previously proved that HPSE regulates EMT in non-cancerous pathologies. Two prostate cancer cell lines (DU145 and PC3) were silenced and overexpressed for HPSE. Expression of EMT and stemness markers was evaluated. Results showed that the expression of several EMT markers are modified by HPSE expression in both the prostate cancer cell lines analyzed. In the same way, the stemness markers and features are also modulated by HPSE expression. Taken together, the present findings seem to prove a new mechanism of action of HPSE in sustaining prostate cancer growth and diffusion. As for other tumors, these results highlight the importance of HPSE as a potential pharmacological target in prostate cancer treatment.
Collapse
Affiliation(s)
- Valentina Masola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- *Correspondence: Maurizio Onisto, ; Valentina Masola,
| | - Marco Franchi
- Department of Life Quality Sciences, University of Bologna, Rimini, Italy
| | - Gianluigi Zaza
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Giovanni Gambaro
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- *Correspondence: Maurizio Onisto, ; Valentina Masola,
| |
Collapse
|
13
|
Gao W, Wang Y, Yu S, Wang Z, Ma T, Chan AML, Chiu PKF, Ng CF, Wu D, Chan FL. Endothelial nitric oxide synthase (eNOS)-NO signaling axis functions to promote the growth of prostate cancer stem-like cells. Stem Cell Res Ther 2022; 13:188. [PMID: 35526071 PMCID: PMC9080127 DOI: 10.1186/s13287-022-02864-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/24/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Accumulating evidence supports that prostate cancer stem-like cells (PCSCs) play significant roles in therapy resistance and metastasis of prostate cancer. Many studies also show that nitric oxide (NO) synthesized by NO synthases can function to promote tumor progression. However, the exact roles of NOSs and NO signaling in the growth regulation of PCSCs and castration-resistant prostate cancer (CRPC) are still not fully understood. METHODS The regulatory functions of NOS-NO signaling were evaluated in prostate cancer cells, especially in PCSCs enriched by 3D spheroid culture and CD133/CD44 cell sorting. The molecular mechanisms of NOS-NO signaling in PCSCs growth regulation and tumor metastasis were investigated in PCSCs and mice orthotopic prostate tumor model. RESULTS Endothelial NOS (eNOS) exhibited a significant upregulation in high-grade prostate cancer and metastatic CRPC. Xenograft models of CRPC exhibited notable increased eNOS expression and higher intracellular NO levels. PCSCs isolated from various models displayed significant enhanced eNOS-NO signaling. Functional analyses demonstrated that increased eNOS expression could promote in vivo tumorigenicity and metastatic potential of prostate cancer cells. Characterization of eNOS-NO involved downstream pathway which confirmed that enhanced eNOS signaling could promote the growth of PCSCs and antiandrogen-resistant prostate cancer cells via an activated downstream NO-sGC-cGMP-PKG effector signaling pathway. Interestingly, eNOS expression could be co-targeted by nuclear receptor ERRα and transcription factor ERG in prostate cancer cells and PCSCs. CONCLUSIONS Enhanced eNOS-NO signaling could function to promote the growth of PCSCs and also the development of metastatic CRPC. Besides eNOS-NO as potential targets, targeting its upstream regulators (ERRα and ERG) of eNOS-NO signaling could also be the therapeutic strategy for the management of advanced prostate cancer, particularly the aggressive cancer carrying with the TMPRSS2:ERG fusion gene.
Collapse
Affiliation(s)
- Weijie Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yuliang Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shan Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhu Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Taiyang Ma
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Andrew Man-Lok Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Peter Ka-Fung Chiu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Fai Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dinglan Wu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Franky Leung Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
14
|
Su X, Li C, Xu K, Su W, Mao X, Zou Y, Li B. The Effect of Prostate Cancer-Targeting Doxorubicin Nanomicelles Combined with Photothermal Therapy on Castration-Resistant Prostate Cancer. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study investigated a combination of prostate cancer-targeting doxorubicin (DOX) nanomicelles with photothermal therapy of castration-resistant prostate cancer (CRPC) in vitro and in vivo. Nanomicelles formed by the self-assembly of superparamagnetic ferrite,
polyethyleneimine, and polyethylene glycol were used as the carriers, and the chemotherapy drug DOX was embedded in the nanomicelles. The photothermal properties of the nanomicelles and the toxic effects of prostate cancer-targeting nanomicelles were evaluated. The therapeutic effects in the
BP@PGE, BP@PGE+NIR, BP@PGE-dox, and BP@PGE-dox+NIR groups were compared. Prostate cancer-targeting DOX nanomicelles were successfully formed. The drug release was stable, and the cytotoxicity and blood compatibility tests demonstrated that the prostate cancer-targeting DOX nanomicelles were
safe for normal cells. The temperature of BP@PEG was increased to 52 °C upon a laser irradiation of 808 nm at a power density of 1.5 W/cm2; however, the temperature of BP-DOX was increased to 48 °C within 5 min. DOX loading did not influence the photothermal performance
of the nanomaterials. The in vitro and in vivo studies showed that the prostate cancer-targeting DOX nanomicelles combined with photothermal therapy were an effective treatment for CRPC. Prostate cancer-targeting DOX nanomicelles had no systemic toxicity to the organism and ensured
safe biological application of these agents.
Collapse
Affiliation(s)
- Xiaohong Su
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People’s Republic of China
| | - Chuanyin Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People’s Republic of China
| | - Kai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People’s Republic of China
| | - Wei Su
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People’s Republic of China
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People’s Republic of China
| | - Yong Zou
- Department of Urology, Huizhou Municipal Center Hospital, Huizhou City, 516008, People’s Republic of China
| | - Bingkun Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People’s Republic of China
| |
Collapse
|
15
|
Chen Q, Zheng Y, Chen X, Ge P, Wang P, Wu B. Upregulation of miR-216a-5p by Lentinan Targeted Inhibition of JAK2/STAT3 Signaling Pathway to Reduce Lung Adenocarcinoma Cell Stemness, Promote Apoptosis, and Slow Down the Lung Adenocarcinoma Mechanisms. Front Oncol 2021; 11:778096. [PMID: 34900727 PMCID: PMC8656221 DOI: 10.3389/fonc.2021.778096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
To investigate the effect of Lentinan (LNT) on lung adenocarcinoma (LUAD) cell stemness and its mechanism. In this study, we founded that LNT significantly reduce the cell proliferation, activity, migration, invasion, and stemness of LUAD cells, and promote their apoptosis compared with the control group in vitro. Moreover, LNT significantly inhibited the volume and weight of tumors of nude mice in vivo. At the same time, LNT can significantly up-regulate miR-216a-5p levels and reduce the protein expression of phospho-JAK2 (Y1007/1008) and phospho-STAT3 (Tyr705), thereby inhibiting the JAK2/STAT3 signaling pathway. Interfering with miR-216a-5p expression and activating the JAK2/STAT3 signaling pathway can significantly reverse LNT inhibitory effects on LUAD. Collectively, LNT can inhibit the JAK2/STAT3 signaling pathway by up-regulating miR-216a-5p, reducing stemness, and promoting LUAD cells apoptosis, then slow down LUAD occurrence and development, providing concepts and experimental foundation treating patients with LUAD.
Collapse
Affiliation(s)
- Quan Chen
- Department of Thoracic Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Yiming Zheng
- Department of Thoracic Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Xia Chen
- Department of Thoracic Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Pengfei Ge
- Department of Thoracic Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Pengcheng Wang
- Department of Thoracic Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Bingbing Wu
- Department of Thoracic Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| |
Collapse
|
16
|
Li WZ, Xi HZ, Wang YJ, Ma HB, Cheng ZQ, Yang Y, Wu ML, Liu TM, Yang W, Wang Q, Liao MY, Xia Y, Zhang YW. Design, synthesis, and biological evaluation of benzo[b]thiophene 1,1-dioxide derivatives as potent STAT3 inhibitors. Chem Biol Drug Des 2021; 98:835-849. [PMID: 34416096 DOI: 10.1111/cbdd.13939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/06/2021] [Accepted: 07/23/2021] [Indexed: 02/05/2023]
Abstract
As a member of the signal transducer and activator of transcription (STAT) family, STAT3 plays a critical role in several biological pathways such as cell proliferation, migration, survival, and differentiation. Due to abnormal continuous activation in tumors, inhibition of STAT3 has emerged as an attractive approach for the treatment of various cancer cells. Herein, we report a series of novel STAT3 inhibitors based on benzo[b]thiophene 1,1-dioxide scaffold and evaluated their anticancer potency. Among them, compound 8b exhibited the best activity against cancer cells. Compound 8b induced apoptosis and blocked the cell cycle. Meanwhile, 8b reduced intracellular ROS content and caused the loss of mitochondrial membrane potential. Further research revealed that 8b significantly blocked STAT3 phosphorylation and STAT3-dependent dual-luciferase reporter gene experiments showed that compound 8b has a marked inhibition of STAT3-mediated Firefly luciferase activity. Molecular modeling studies revealed compound 8b occupied the pocket well with the SH2 domain in a favorable conformation.
Collapse
Affiliation(s)
- Wen-Zhen Li
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hui-Zhi Xi
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Jie Wang
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong-Bo Ma
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhi-Qiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Yang
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Meng-Ling Wu
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Mei Liu
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Yang
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Wang
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Meng-Ya Liao
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xia
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Wen Zhang
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Catara G, Spano D. Combinatorial Strategies to Target Molecular and Signaling Pathways to Disarm Cancer Stem Cells. Front Oncol 2021; 11:689131. [PMID: 34381714 PMCID: PMC8352560 DOI: 10.3389/fonc.2021.689131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is an urgent public health issue with a very huge number of cases all over the world expected to increase by 2040. Despite improved diagnosis and therapeutic protocols, it remains the main leading cause of death in the world. Cancer stem cells (CSCs) constitute a tumor subpopulation defined by ability to self-renewal and to generate the heterogeneous and differentiated cell lineages that form the tumor bulk. These cells represent a major concern in cancer treatment due to resistance to conventional protocols of radiotherapy, chemotherapy and molecular targeted therapy. In fact, although partial or complete tumor regression can be achieved in patients, these responses are often followed by cancer relapse due to the expansion of CSCs population. The aberrant activation of developmental and oncogenic signaling pathways plays a relevant role in promoting CSCs therapy resistance. Although several targeted approaches relying on monotherapy have been developed to affect these pathways, they have shown limited efficacy. Therefore, an urgent need to design alternative combinatorial strategies to replace conventional regimens exists. This review summarizes the preclinical studies which provide a proof of concept of therapeutic efficacy of combinatorial approaches targeting the CSCs.
Collapse
Affiliation(s)
- Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
18
|
Phase I study of napabucasin in combination with FOLFIRI + bevacizumab in Japanese patients with metastatic colorectal cancer. Int J Clin Oncol 2021; 26:2017-2024. [PMID: 34291369 PMCID: PMC8520863 DOI: 10.1007/s10147-021-01987-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/04/2021] [Indexed: 11/11/2022]
Abstract
Background Napabucasin is an oral NAD(P)H:quinone oxidoreductase 1 bioactivatable agent that generates reactive oxygen species, is hypothesised to affect multiple oncogenic cellular pathways, including STAT-3, and is expected to result in cancer cell death. This phase I study investigated the safety, tolerability, and pharmacokinetics of napabucasin co-administered with fluorouracil, l-leucovorin, and irinotecan (FOLFIRI) chemotherapy plus bevacizumab in Japanese patients with metastatic colorectal cancer (CRC). Methods Patients with histologically confirmed unresectable stage IV CRC received oral napabucasin 240 mg twice daily (BID). Intravenous FOLFIRI and bevacizumab therapy was initiated on day 3 at approved doses. Unacceptable toxicity was evaluated over the first 30 days of treatment, after which treatment continued in 14-day cycles until toxicity or disease progression. Endpoints included safety, pharmacokinetics, and tumour response based on RECIST v1.1. Results Four patients received treatment; three were evaluable during the unacceptable toxicity period. All four patients experienced diarrhoea and decreased appetite (considered napabucasin-related in four and two patients, respectively), and three patients experienced neutrophil count decreased. No unacceptable toxicity was reported during the 30-day evaluation period. No grade 4 events, deaths, or serious adverse events were reported. The addition of FOLFIRI and bevacizumab to napabucasin did not significantly change the pharmacokinetic profile of napabucasin; however, results were variable among patients. The best overall response was stable disease in two patients (50.0%). Conclusions Napabucasin 240 mg BID in combination with FOLFIRI and bevacizumab was tolerated, with a manageable safety profile in Japanese patients with metastatic CRC. Supplementary Information The online version contains supplementary material available at 10.1007/s10147-021-01987-9.
Collapse
|
19
|
Interplay of Epidermal Growth Factor Receptor and Signal Transducer and Activator of Transcription 3 in Prostate Cancer: Beyond Androgen Receptor Transactivation. Cancers (Basel) 2021; 13:cancers13143452. [PMID: 34298665 PMCID: PMC8307975 DOI: 10.3390/cancers13143452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in the world and causes thousands of deaths every year. Conventional therapy for PCa includes surgery and androgen deprivation therapy (ADT). However, about 10-20% of all PCa cases relapse; there is also the further development of castration resistant adenocarcinoma (CRPC-Adeno) or neuroendocrine (NE) PCa (CRPC-NE). Due to their androgen-insensitive properties, both CRPC-Adeno and CRPC-NE have limited therapeutic options. Accordingly, this study reveals the inductive mechanisms of CRPC (for both CRPC-Adeno and CRPC-NE) and fulfils an urgent need for the treatment of PCa patients. Although previous studies have illustrated the emerging roles of epidermal growth factor receptors (EGFR), signal transducer, and activator of transcription 3 (STAT3) signaling in the development of CRPC, the regulatory mechanisms of this interaction between EGFR and STAT3 is still unclear. Our recent studies have shown that crosstalk between EGFR and STAT3 is critical for NE differentiation of PCa. In this review, we have collected recent findings with regard to the involvement of EGFR and STAT3 in malignancy progression and discussed their interactions during the development of therapeutic resistance for PCa.
Collapse
|
20
|
Huang X, Jin A, Wang X, Gao X, Xu H, Chung M, Dai Q, Yang Y, Jiang L. Napabucasin Induces Mouse Bone Loss by Impairing Bone Formation via STAT3. Front Cell Dev Biol 2021; 9:648866. [PMID: 33816498 PMCID: PMC8014090 DOI: 10.3389/fcell.2021.648866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
The novel small molecule Napabucasin (also known as BBI608) was shown to inhibit gene transcription driven by Signal Transducer and Activator of Transcription 3 (STAT3), which is considered a promising anticancer target. Many preclinical studies have been conducted in cancer patients examining the selective targeting of cancer stem cells by Napabucasin, but few studies have examined side effects of Napabucasin in the skeleton system. In the present study, we found treating bone marrow mesenchymal stem cells (BMSCs) with Napabucasin in vitro impaired their osteogenic differentiation. In terms of mechanisms, Napabucasin disrupted differentiation of BMSCs by inhibiting the transcription of osteogenic gene osteocalcin (Ocn) through STAT3. Moreover, through micro-CT analysis we found 4 weeks of Napabucasin injections induced mouse bone loss. Histological analysis revealed that Napabucasin-induced bone loss in mice was the result of impaired osteogenesis. In conclusion, this study provided evidence for the effect of Napabucasin on mouse bone homeostasis and revealed its underlying mechanisms in vivo and in vitro.
Collapse
Affiliation(s)
- Xiangru Huang
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral and Cranio-maxillofacial Surgery, National Clinical Research Center of Stomatology, Center of Craniofacial Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anting Jin
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral and Cranio-maxillofacial Surgery, National Clinical Research Center of Stomatology, Center of Craniofacial Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xijun Wang
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral and Cranio-maxillofacial Surgery, National Clinical Research Center of Stomatology, Center of Craniofacial Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Gao
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral and Cranio-maxillofacial Surgery, National Clinical Research Center of Stomatology, Center of Craniofacial Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyuan Xu
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral and Cranio-maxillofacial Surgery, National Clinical Research Center of Stomatology, Center of Craniofacial Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miri Chung
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral and Cranio-maxillofacial Surgery, National Clinical Research Center of Stomatology, Center of Craniofacial Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinggang Dai
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, The 2nd Dental Center, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiling Yang
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral and Cranio-maxillofacial Surgery, National Clinical Research Center of Stomatology, Center of Craniofacial Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyong Jiang
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral and Cranio-maxillofacial Surgery, National Clinical Research Center of Stomatology, Center of Craniofacial Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Gampala S, Shah F, Zhang C, Rhodes SD, Babb O, Grimard M, Wireman RS, Rad E, Calver B, Bai RY, Staedtke V, Hulsey EL, Saadatzadeh MR, Pollok KE, Tong Y, Smith AE, Clapp DW, Tee AR, Kelley MR, Fishel ML. Exploring transcriptional regulators Ref-1 and STAT3 as therapeutic targets in malignant peripheral nerve sheath tumours. Br J Cancer 2021; 124:1566-1580. [PMID: 33658640 PMCID: PMC8076291 DOI: 10.1038/s41416-021-01270-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND MPNST is a rare soft-tissue sarcoma that can arise from patients with NF1. Existing chemotherapeutic and targeted agents have been unsuccessful in MPNST treatment, and recent findings implicate STAT3 and HIF1-α in driving MPNST. The DNA-binding and transcriptional activity of both STAT3 and HIF1-α is regulated by Redox factor-1 (Ref-1) redox function. A first-generation Ref-1 inhibitor, APX3330, is being tested in cancer clinical trials and could be applied to MPNST. METHODS We characterised Ref-1 and p-STAT3 expression in various MPNST models. Tumour growth, as well as biomarkers of apoptosis and signalling pathways, were measured by qPCR and western blot following treatment with inhibitors of Ref-1 or STAT3. RESULTS MPNSTs from Nf1-Arfflox/floxPostnCre mice exhibit significantly increased positivity of p-STAT3 and Ref-1 expression when malignant transformation occurs. Inhibition of Ref-1 or STAT3 impairs MPNST growth in vitro and in vivo and induces apoptosis. Genes highly expressed in MPNST patients are downregulated following inhibition of Ref-1 or STAT3. Several biomarkers downstream of Ref-1 or STAT3 were also downregulated following Ref-1 or STAT3 inhibition. CONCLUSIONS Our findings implicate a unique therapeutic approach to target important MPNST signalling nodes in sarcomas using new first-in-class small molecules for potential translation to the clinic.
Collapse
Affiliation(s)
- Silpa Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Fenil Shah
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN, USA.,Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Steven D Rhodes
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Olivia Babb
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Michelle Grimard
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Randall S Wireman
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Ellie Rad
- Division of Cancer and Genetics, Cardiff University, Cardiff, Wales, UK
| | - Brian Calver
- Division of Cancer and Genetics, Cardiff University, Cardiff, Wales, UK
| | - Ren-Yuan Bai
- Neurosurgery and Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Verena Staedtke
- Neurosurgery and Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Emily L Hulsey
- Department of Pathology and Laboratory Medicine, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - M Reza Saadatzadeh
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Karen E Pollok
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Yan Tong
- Department of Biostatistics and Data Management, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Abbi E Smith
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - D Wade Clapp
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Andrew R Tee
- Division of Cancer and Genetics, Cardiff University, Cardiff, Wales, UK
| | - Mark R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Melissa L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, Indianapolis, IN, USA. .,Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
22
|
Caston RA, Shah F, Starcher CL, Wireman R, Babb O, Grimard M, McGeown J, Armstrong L, Tong Y, Pili R, Rupert J, Zimmers TA, Elmi AN, Pollok KE, Motea EA, Kelley MR, Fishel ML. Combined inhibition of Ref-1 and STAT3 leads to synergistic tumour inhibition in multiple cancers using 3D and in vivo tumour co-culture models. J Cell Mol Med 2021; 25:784-800. [PMID: 33274592 PMCID: PMC7812272 DOI: 10.1111/jcmm.16132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
With a plethora of molecularly targeted agents under investigation in cancer, a clear need exists to understand which pathways can be targeted simultaneously with multiple agents to elicit a maximal killing effect on the tumour. Combination therapy provides the most promise in difficult to treat cancers such as pancreatic. Ref-1 is a multifunctional protein with a role in redox signalling that activates transcription factors such as NF-κB, AP-1, HIF-1α and STAT3. Formerly, we have demonstrated that dual targeting of Ref-1 (redox factor-1) and STAT3 is synergistic and decreases cell viability in pancreatic cancer cells. Data presented here extensively expands upon this work and provides further insights into the relationship of STAT3 and Ref-1 in multiple cancer types. Using targeted small molecule inhibitors, Ref-1 redox signalling was blocked along with STAT3 activation, and tumour growth evaluated in the presence and absence of the relevant tumour microenvironment. Our study utilized qPCR, cytotoxicity and in vivo analysis of tumour and cancer-associated fibroblasts (CAF) response to determine the synergy of Ref-1 and STAT3 inhibitors. Overall, pancreatic tumours grown in the presence of CAFs were sensitized to the combination of STAT3 and Ref-1 inhibition in vivo. In vitro bladder and pancreatic cancer demonstrated the most synergistic responses. By disabling both of these important pathways, this combination therapy has the capacity to hinder crosstalk between the tumour and its microenvironment, leading to improved tumour response.
Collapse
Affiliation(s)
- Rachel A. Caston
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Fenil Shah
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Colton L. Starcher
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
| | - Randall Wireman
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Olivia Babb
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Michelle Grimard
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Jack McGeown
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Lee Armstrong
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Yan Tong
- Department of BiostatisticsIndiana University School of MedicineIndianapolisINUSA
| | - Roberto Pili
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Department of UrologyIndiana University School of MedicineIndianapolisINUSA
- Department of Hematology and OncologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Joseph Rupert
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Teresa A. Zimmers
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- Richard L. Roudebush Veterans Administration Medical CenterIndianapolisINUSA
| | - Adily N. Elmi
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Karen E. Pollok
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Edward A. Motea
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Mark R. Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Melissa L. Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
23
|
Wang J, Li Q, Cheng X, Zhang B, Lin J, Tang Y, Li F, Yang CS, Wang TC, Tu S. Bone Marrow-Derived Myofibroblasts Promote Gastric Cancer Metastasis by Activating TGF-β1 and IL-6/STAT3 Signalling Loop. Onco Targets Ther 2020; 13:10567-10580. [PMID: 33116635 PMCID: PMC7585554 DOI: 10.2147/ott.s266506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background Murine bone marrow-derived myofibroblasts (BMFs) have previously been shown to promote gastric cancer growth. However, whether BMFs promote gastric cancer cell metastasis remains largely unknown. Methods Wound healing assay, Transwell invasion and migration assay and 3D organotypic co-culture systems were conducted to study the effects of BMFs on invasion and migration of gastric cancer cells and the invasion and migration ability of gastric cancer stem cell-like cells (CSC-LCs) induced by BMFs. We employed two animal model to study the role of BMFs on the in vivo metastasis of gastric cancer cells and the metastatic ability of gastric BMF-induced CSC-LCs. A human gastric cancer tissue microarray and TCGA gastric cancer database were analysed to study the relationship between the expression of IL-6 and TGF-β1 and clinicopathological characteristics and survival in gastric cancer. Results We found that BMFs promoted the in vitro migration and invasion of gastric cancer cells. BMFs promoted liver, lung, subcutaneous, and splenic metastases of MKN28 cells in the spleen injection liver metastasis model and co-injection of caudal vein (IOCV) mouse model. BMFs reprogrammed non-gastric cancer stem cell (CSC) to CSC-LCs and enhanced CSC-LC migration and metastasis. BMF-derived IL-6 and gastric cancer cell-secreted TGF-β1 mediated the interaction between BMFs and gastric cancer cells, promoting tumour metastasis. BMFs enhanced the expressions of STAT3 and p-STAT3 in co-cultured gastric cancer cells. A combination of Napabucasin and Galunisertib exhibited the strongest inhibition of cell migration compared to when administered alone. Gastric cancer tissue array and TCGA database indicated that the overexpression of IL-6 and TGF-β1 was associated with gastric cancer metastasis. Conclusion Our results demonstrated that BMFs promote gastric cancer metastasis through the activation of the TGF-β1 and IL-6/STAT3 signalling pathways. Targeting the inhibition of these interactions may be a potent therapeutic strategy for addressing gastric cancer metastasis.
Collapse
Affiliation(s)
- Jianzheng Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| | - Qingli Li
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| | - Xiaojiao Cheng
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| | - Baiwen Zhang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| | - Jiacheng Lin
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| | - Yao Tang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| | - Fuli Li
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Timothy C Wang
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Shuiping Tu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, People's Republic of China
| |
Collapse
|
24
|
Babaei A, Soleimanjahi H, Soleimani M, Arefian E. The synergistic anticancer effects of ReoT3D, CPT-11, and BBI608 on murine colorectal cancer cells. ACTA ACUST UNITED AC 2020; 28:555-565. [PMID: 32803686 DOI: 10.1007/s40199-020-00361-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/23/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Many types of oncolytic viruses (OVs) were enrolled in clinical trials. Recently, an OV named Talimogene laherparepvec approved for the treatment of melanoma. This achievement highlighted the clinical application of OVs. Scientists focus on using these anticancer agents in combination with the current or/and new anticancer chemotherapeutics. They aim to increase the oncolytic effect of a new approach for the treatment of cancer cells. OBJECTIVES The present study aimed to assess the anticancer impacts of ReoT3D, irinotecan (CPT-11), and napabucasin (BBI608) against murine colorectal cancer cells (CT26). They are assessed alone and in combination with each other. METHODS Here, oncolytic reovirus was propagated and titrated. Then MTT assay was carried out to assess the toxicity of this OV and chemotherapeutics effect on CT26 cells. The anticancer effects of ReoT3D, CPT-11, and BBI608, alone and simultaneously, on CT26 cell line, were assessed by the induction of apoptosis, cell cycle arrest, colony-forming, migration, and real-time PCR experiments. RESULTS Alone treatment with ReoT3D, CPT-11, and BBI608 led to effectively inducing of apoptosis, cell cycle arrest, and apoptotic genes expression level and significantly reduce of colony-forming, migration, and anti-apoptotic genes expression rate. Importantly, the maximum anticancer effect against CT26 cell line was seen upon combination ReoT3D, CPT-11, and BBI608 treatment. CONCLUSION The present study highlights that combination of ReoT3D, CPT-11, and BBI560 showed synergistic anticancer activity against CT26 cell line. This modality might be considered as a new approach against colorectal cancer (CRC) in the in vivo and clinical trial investigations.
Collapse
Affiliation(s)
- Abouzar Babaei
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology and cell therapy, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
25
|
Li X, Wei Y, Wei X. Napabucasin, a novel inhibitor of STAT3, inhibits growth and synergises with doxorubicin in diffuse large B-cell lymphoma. Cancer Lett 2020; 491:146-161. [PMID: 32798587 DOI: 10.1016/j.canlet.2020.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common type of aggressive non-Hodgkin lymphoma (NHL), has highly heterogeneous molecular characteristics. Although some patients initially respond to standard R-CHOP therapy, 30-40% develop refractory disease or suffer relapse. Signal transducer and activator of transcription 3 (STAT3), which regulates multiple oncogenic processes, has been found to be constitutively activated in various cancers, including DLBCL, suggesting its potential as a therapeutic target. In this study, we determined that 34% (23/69) of DLBCL patients expressed pSTAT3 (Y705) in tumour tissues. Napabucasin, a novel STAT3 inhibitor, exhibited potent cytotoxicity against NHL cell lines in a dose-dependent manner. Mechanistic studies demonstrated that napabucasin induced intrinsic and extrinsic cell apoptosis, downregulated the expression of STAT3 target genes, including the antiapoptotic protein Mcl-1, and regulated the ROS-mediated mitogen-activated protein kinase (MAPK) pathway. Most importantly, in vivo studies revealed the suppressive efficacy of napabucasin as a monotherapy without obvious toxicity. Furthermore, preliminary combination studies of napabucasin with doxorubicin showed significant synergism both in vitro and in vivo. Thus, our studies provide evidence that napabucasin alone or in combination is a promising therapeutic candidate for DLBCL patients.
Collapse
Affiliation(s)
- Xue Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
26
|
Confeld MI, Mamnoon B, Feng L, Jensen-Smith H, Ray P, Froberg J, Kim J, Hollingsworth MA, Quadir M, Choi Y, Mallik S. Targeting the Tumor Core: Hypoxia-Responsive Nanoparticles for the Delivery of Chemotherapy to Pancreatic Tumors. Mol Pharm 2020; 17:2849-2863. [PMID: 32521162 DOI: 10.1021/acs.molpharmaceut.0c00247] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), early onset of hypoxia triggers remodeling of the extracellular matrix, epithelial-to-mesenchymal transition, increased cell survival, the formation of cancer stem cells, and drug resistance. Hypoxia in PDAC is also associated with the development of collagen-rich, fibrous extracellular stroma (desmoplasia), resulting in severely impaired drug penetration. To overcome these daunting challenges, we created polymer nanoparticles (polymersomes) that target and penetrate pancreatic tumors, reach the hypoxic niches, undergo rapid structural destabilization, and release the encapsulated drugs. In vitro studies indicated a high cellular uptake of the polymersomes and increased cytotoxicity of the drugs under hypoxia compared to unencapsulated drugs. The polymersomes decreased tumor growth by nearly 250% and significantly increased necrosis within the tumors by 60% in mice compared to untreated controls. We anticipate that these polymer nanoparticles possess a considerable translational potential for delivering drugs to solid hypoxic tumors.
Collapse
Affiliation(s)
- Matthew I Confeld
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Babak Mamnoon
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Li Feng
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Heather Jensen-Smith
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Priyanka Ray
- Coatings and Polymeric Materials Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - James Froberg
- Physics Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Jiha Kim
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Michael A Hollingsworth
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mohiuddin Quadir
- Coatings and Polymeric Materials Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Yongki Choi
- Physics Department, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Sanku Mallik
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
27
|
Pádua D, Figueira P, Ribeiro I, Almeida R, Mesquita P. The Relevance of Transcription Factors in Gastric and Colorectal Cancer Stem Cells Identification and Eradication. Front Cell Dev Biol 2020; 8:442. [PMID: 32626705 PMCID: PMC7314965 DOI: 10.3389/fcell.2020.00442] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric and colorectal cancers have a high incidence and mortality worldwide. The presence of cancer stem cells (CSCs) within the tumor mass has been indicated as the main reason for tumor relapse, metastasis and therapy resistance, leading to poor overall survival. Thus, the elimination of CSCs became a crucial goal for cancer treatment. The identification of these cells has been performed by using cell-surface markers, a reliable approach, however it lacks specificity and usually differs among tumor type and in some cases even within the same type. In theory, the ideal CSC markers are those that are required to maintain their stemness features. The knowledge that CSCs exhibit characteristics comparable to normal stem cells that could be associated with the expression of similar transcription factors (TFs) including SOX2, OCT4, NANOG, KLF4 and c-Myc, and signaling pathways such as the Wnt/β-catenin, Hedgehog (Hh), Notch and PI3K/AKT/mTOR directed the attention to the use of these similarities to identify and target CSCs in different tumor types. Several studies have demonstrated that the abnormal expression of some TFs and the dysregulation of signaling pathways are associated with tumorigenesis and CSC phenotype. The disclosure of common and appropriate biomarkers for CSCs will provide an incredible tool for cancer prognosis and treatment. Therefore, this review aims to gather the new insights in gastric and colorectal CSC identification specially by using TFs as biomarkers and divulge promising drugs that have been found and tested for targeting these cells.
Collapse
Affiliation(s)
- Diana Pádua
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Paula Figueira
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Inês Ribeiro
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Raquel Almeida
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Patrícia Mesquita
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| |
Collapse
|
28
|
Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells. Theranostics 2020; 10:7053-7069. [PMID: 32641978 PMCID: PMC7330842 DOI: 10.7150/thno.41388] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Lipids, the basic components of the cell membrane, execute fundamental roles in almost all the cell activities including cell-cell recognition, signalling transduction and energy supplies. Lipid metabolism is elementary for life sustentation that balances activity between synthesis and degradation. An accumulating amount of data has indicated abnormal lipid metabolism in cancer stem cells (CSCs), and that the alteration of lipid metabolism exerts a great impact on CSCs' properties such as the capability of self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. CSCs' formation and maintenance cannot do without the regulation of fatty acids and cholesterol. In normal cells and embryonic development, fatty acids and cholesterol metabolism are regulated by some important signalling pathways (such as Hedgehog, Notch, Wnt signalling pathways); these signalling pathways also play crucial roles in initiating and/or maintaining CSCs' properties, and such signalling is shown to be commonly modulated by the abnormal lipid metabolism in CSCs; on the other hand, the altered lipid metabolism in turn modifies the cell signalling and generates additional impacts on CSCs. Metabolic rewiring is considered as an ideal hallmark of CSCs, and metabolic alterations would be promising therapeutic targets of CSCs for aggressive tumors. In this review, we summarize the most updated findings of lipid metabolic abnormalities in CSCs and prospect the potential applications of targeting lipid metabolism for anticancer treatment.
Collapse
|
29
|
Kawazoe A, Kuboki Y, Bando H, Fukuoka S, Kojima T, Naito Y, Iino S, Yodo Y, Doi T, Shitara K, Yoshino T. Phase 1 study of napabucasin, a cancer stemness inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2020; 85:855-862. [PMID: 32236642 PMCID: PMC7188713 DOI: 10.1007/s00280-020-04059-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/12/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE Napabucasin is a cancer stemness inhibitor that targets a number of oncogenic pathways, including signal transducer and activator of transcription 3 (STAT3). Phase 1/2 studies suggest tolerability and anti-tumor activity in various types of cancer; a Phase 3 study of napabucasin plus standard therapy in colorectal cancer is ongoing. This is a Phase 1 dose-escalation study in patients with advanced solid tumors, and the first study of napabucasin in Japanese patients. METHODS Patients received napabucasin 480, 960, or 1440 mg daily in 28-day cycles until disease progression or intolerable toxicity. Primary objectives were to determine dose-limiting toxicities (DLTs), maximum tolerated dose (MTD), and the pharmacokinetic (PK) profile of napabucasin. Blood samples were taken for PK analysis on Days 1, 2, 8, and 15 of Cycle 1, and Days 29 and 30 of Cycle 2. Secondary objectives were to assess napabucasin antitumor activity, and the relationship between biomarkers and antitumor activity. JapicCTI-No: JapicCTI-132152. RESULTS Enrolled were 14 patients (480 mg [n = 3], 960 mg [n = 4], 1440 mg [n = 7]). One patient experienced a DLT (Grade 3, anorexia). MTD was 1440 mg/day. Most common drug-related adverse events were diarrhea (n = 9), nausea (n = 4), vomiting (n = 3), and anorexia (n = 3). Napabucasin showed a similar PK profile to previous studies and no abnormal accumulation was observed. Following treatment, two patients had stable disease; the remaining 12 had progressive disease. CONCLUSION Napabucasin was well-tolerated at doses up to 1440 mg/day in Japanese patients with advanced solid tumors; the PK profile was comparable to that reported previously.
Collapse
Affiliation(s)
- Akihito Kawazoe
- Department of Gastroenterology and Gastrointestinal Oncology Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yasutoshi Kuboki
- Department of Gastroenterology and Gastrointestinal Oncology Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shota Fukuoka
- Department of Gastroenterology and Gastrointestinal Oncology Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoichi Naito
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | | | | | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology Division, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
30
|
Guo G, Gao Z, Tong M, Zhan D, Wang G, Wang Y, Qin J. NQO1 is a determinant for cellular sensitivity to anti-tumor agent Napabucasin. Am J Cancer Res 2020; 10:1442-1454. [PMID: 32509390 PMCID: PMC7269777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023] Open
Abstract
Napabucasin (NAPA) is thought to be a potent cancer stemness inhibitor in different types of cancer cell lines. While it has shown promising activity in early phase clinical trials, two recent phase III NAPA clinical trials failed to meet the primary endpoint of overall survival. The reason for the failure is not clear, but a possible way to revive the clinical trial is to stratify patients with biomarkers that could predict NAPA response. Here, we report the identification of NAD(P)H dehydrogenase 1 (NQO1) as a major determinant of NAPA efficacy. A proteomic profiling of cancer cell lines revealed that NQO1 abundance is negatively correlated with IC50; in vitro assays showed that NAPA is a substrate for NQO1, which mediates the generation of ROS that leads to cell death. Furthermore, activation of an NQO1 transcription factor NRF2 by chemicals, including an FDA approved drug, can increase the NAPA cytotoxicity. Our findings suggest a potential use of NQO1 expression as a companion diagnostic test to identify patients in future NAPA trials and a combination strategy to expand the application of NAPA-based regimens for cancer therapy.
Collapse
Affiliation(s)
- Gaigai Guo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijing 102206, China
| | - Zhouyong Gao
- Joint Center for Translational Medical Medicine, Baodi HospitalTianjin 301800, China
| | - Mengsha Tong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijing 102206, China
- School of Life Sciences, Tsinghua UniversityBeijing 100084, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijing 102206, China
- Center for Bioinformatics, East China Normal UniversityShanghai 200241, China
| | - Guangshun Wang
- Joint Center for Translational Medical Medicine, Baodi HospitalTianjin 301800, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijing 102206, China
- Joint Center for Translational Medical Medicine, Baodi HospitalTianjin 301800, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijing 102206, China
- Joint Center for Translational Medical Medicine, Baodi HospitalTianjin 301800, China
| |
Collapse
|
31
|
Qiao Z, Dai H, Zhang Y, Li Q, Zhao M, Yue T. LncRNA NCK1-AS1 Promotes Cancer Cell Proliferation and Increase Cell Stemness in Urinary Bladder Cancer Patients by Downregulating miR-143. Cancer Manag Res 2020; 12:1661-1668. [PMID: 32184669 PMCID: PMC7064288 DOI: 10.2147/cmar.s223172] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 01/22/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play critical and complex roles in regulating various biological processes of cancers. Our study aimed to investigate the involvement of lncRNA NCK1-AS1 in urinary bladder cancer (UBC). METHODS qRT-PCR was used to detect the expression of lncRNA NCK1-AS1 and miR-143 in UBC tissues and cells. The dual-luciferase reporter system assays were used to confirm the interaction between NCK1-AS1 and miR-143, and flow cytometry assays were applied to examine the behavioral changes in HT-1376 and HT-1197 cell lines. RESULTS It was observed that NCK1-AS1 was up-regulated, while miR-143 was down-regulated in tumor tissues than in adjacent healthy tissues of urinary bladder cancer (UBC) patients. A 5-year survival analysis showed that the survival rate of patients with high NCK1-AS1 level or low miR-143 level in tumor tissues appears relatively low. Correlation analysis revealed a significant inverse correlation between NCK1-AS1 and miR-143 in tumor tissues. Over-expression NCK1-AS1 reduced the expression level of miR-143, while elevating the level of miR-143 failed to affect NCK1-AS1 expression. NCK1-AS1 over-expression led to promoted proliferation and increased percentage of CD133+ (stemness) cells. CONCLUSION Therefore, NCK1-AS1 promotes cancer cell proliferation and increases cell stemness in UBC patients by down-regulating miR-143.
Collapse
Affiliation(s)
- Zhongjie Qiao
- Urology Department, The Affiliated Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang150081, People’s Republic of China
| | - Hongshuang Dai
- Urology Department, The Affiliated Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang150081, People’s Republic of China
| | - Yunzhu Zhang
- The 1st Nephrology Department, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang150036, People’s Republic of China
| | - Qiang Li
- Urology Department, The Affiliated Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang150081, People’s Republic of China
| | - Meng Zhao
- Urology Department, The 1st Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang150040, People’s Republic of China
| | - Tongyun Yue
- Interventional Department, The Affiliated Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang150081, People’s Republic of China
| |
Collapse
|
32
|
STAT3 inhibitory activity of naphthoquinones isolated from Tabebuia avellanedae. Bioorg Med Chem 2020; 28:115347. [DOI: 10.1016/j.bmc.2020.115347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022]
|
33
|
Agarwal G, Carcache PJB, Addo EM, Kinghorn AD. Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnol Adv 2020; 38:107337. [PMID: 30633954 PMCID: PMC6614024 DOI: 10.1016/j.biotechadv.2019.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
Higher plant constituents have afforded clinically available anticancer drugs. These include both chemically unmodified small molecules and their synthetic derivatives currently used or those in clinical trials as antineoplastic agents, and an updated summary is provided. In addition, botanical dietary supplements, exemplified by mangosteen and noni constituents, are also covered as potential cancer chemotherapeutic agents. Approaches to metabolite purification, rapid dereplication, and biological evaluation including analytical hyphenated techniques, molecular networking, and advanced cellular and animal models are discussed. Further, enhanced and targeted drug delivery systems for phytochemicals, including micelles, nanoparticles and antibody drug conjugates (ADCs) are described herein.
Collapse
Affiliation(s)
- Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Peter J Blanco Carcache
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Ermias Mekuria Addo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
34
|
Li H, Qian Y, Wang X, Pi R, Zhao X, Wei X. Targeted activation of Stat3 in combination with paclitaxel results in increased apoptosis in epithelial ovarian cancer cells and a reduced tumour burden. Cell Prolif 2019; 53:e12719. [PMID: 31778258 PMCID: PMC6985655 DOI: 10.1111/cpr.12719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives Stat3 is persistently activated in ovarian cancer cells, with a crucial role in tumour onset and progression. In this study, we examined the anti‐tumour effect of a small‐molecule inhibitor napabucasin (BBI608) on epithelial ovarian cancer (EOC) in vitro and in vivo, and investigated the underlying molecular mechanism of this drug in combination with paclitaxel. Materials and Methods A total of 156 ovarian cancer patient samples were analysed to determine the correlation between pStat3 expression in tumour cells and the prognosis of EOC patients. The anti‐tumour effect of BBI608 and/or paclitaxel on ovarian cancer in vitro was evaluated by CCK‐8, flow cytometry, Western blot and transwell assays. An in vivo intraperitoneal model was performed to confirm the effect of BBI608 on pStat3‐mediated peritoneal metastasis when combined with paclitaxel. Results Patients with high expression of pStat3 had poorer overall survival and progression‐free survival than those with low pStat3 expression. The synergy of BBI608 in combination with paclitaxel exerted dramatic growth inhibition and induced apoptosis in EOC cell lines. In vivo, the combination of two drugs significantly decreased intraperitoneal tumour burden and ascites volume, prolonged survival of tumour‐bearing mice compared with each monotherapy; these results were associated with downregulation of phospho‐Stat3 and activation of apoptosis pathway. Conclusions Targeting the activation of Stat3 may be a potential therapeutic approach for EOC by acting synergistically with paclitaxel.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yanping Qian
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xi Wang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Ruyu Pi
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| |
Collapse
|
35
|
Huang Q, Zhong Y, Dong H, Zheng Q, Shi S, Zhu K, Qu X, Hu W, Zhang X, Wang Y. Revisiting signal transducer and activator of transcription 3 (STAT3) as an anticancer target and its inhibitor discovery: Where are we and where should we go? Eur J Med Chem 2019; 187:111922. [PMID: 31810784 DOI: 10.1016/j.ejmech.2019.111922] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022]
Abstract
As a transcription factor, STAT3 protein transduces extracellular signals to the nucleus and then activates transcription of target genes. STAT3 has been well validated as an attractive anticancer target due to its important roles in cancer initiation and progression. Identification of specific and potent STAT3 inhibitors has attracted much attention, while there has been no STAT3 targeted drug approved for clinical application. In this review, we will briefly introduce STAT3 protein and review its role in multiple aspects of cancer, and systematically summarize the recent advances in discovery of STAT3 inhibitors, especially the ones discovered in the past five years. In the last part of the review, we will discuss the possible new strategies to overcome the difficulties of developing potent and specific STAT3 inhibitors and hope to shed light on future drug design and inhibitor optimization.
Collapse
Affiliation(s)
- Qiuyao Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yan Zhong
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qiyao Zheng
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuo Shi
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kai Zhu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinming Qu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaolei Zhang
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Yuanxiang Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
36
|
Chen X, Gao D, Wang D, Xu T, Liu W, Tian P, Tong X. Access to Aryl‐Naphthaquinone Atropisomers by Phosphine‐Catalyzed Atroposelective (4+2) Annulations of δ‐Acetoxy Allenoates with 2‐Hydroxyquinone Derivatives. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xin Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road Changzhou 213164 China
| | - Dingding Gao
- The Research Center of Chiral Drugs Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Dong Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road Changzhou 213164 China
| | - Tong Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road Changzhou 213164 China
| | - Wei Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road Changzhou 213164 China
| | - Ping Tian
- The Research Center of Chiral Drugs Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Xiaofeng Tong
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology School of Petrochemical Engineering Changzhou University 1 Gehu Road Changzhou 213164 China
| |
Collapse
|
37
|
Du FY, Zhou QF, Sun WJ, Chen GL. Targeting cancer stem cells in drug discovery: Current state and future perspectives. World J Stem Cells 2019; 11:398-420. [PMID: 31396368 PMCID: PMC6682504 DOI: 10.4252/wjsc.v11.i7.398] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, cancer stem cells (CSCs) have been increasingly identified in many malignancies. CSC-related signaling pathways and their functions provide new strategies for treating cancer. The aberrant activation of related signaling pathways (e.g., Wnt, Notch, and Hedgehog pathways) has been linked to multiple types of malignant tumors, which makes these pathways attractive targets for cancer therapy. CSCs display many characteristic features, such as self-renewal, differentiation, high tumorigenicity, and drug resistance. Therefore, there is an urgent need to develop new therapeutic strategies to target these pathways to control stem cell replication, survival, and differentiation. Notable crosstalk occurs among different signaling pathways and potentially leads to compensatory escape. Therefore, multitarget inhibitors will be one of the main methods to overcome the drug resistance of CSCs. Many small molecule inhibitors of components of signaling pathways in CSCs have entered clinical trials, and some inhibitors, such as vismodegib, sonidegib, and glasdegib, have been approved. Tumor cells are susceptible to sonidegib and vismodegib resistance due to mutations in the Smo protein. The signal transducers and activators of transcription 3 (STAT3) inhibitor BBI608 is being evaluated in a phase III trial for a variety of cancers. Structural derivatives of BBI608 are the main focus of STAT3 inhibitor development, which is another strategy for CSC therapy. In addition to the potential pharmacological inhibitors targeting CSC-related signaling pathways, other methods of targeting CSCs are available, such as nano-drug delivery systems, mitochondrion targeting, autophagy, hyperthermia, immunotherapy, and CSC microenvironment targeting. In addition, we summarize the latest advances in the clinical development of agents targeting CSC-related signaling pathways and other methods of targeting CSCs.
Collapse
Affiliation(s)
- Fang-Yu Du
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Qi-Fan Zhou
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Wen-Jiao Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| | - Guo-Liang Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, China
| |
Collapse
|
38
|
Han D, Yu T, Dong N, Wang B, Sun F, Jiang D. Napabucasin, a novel STAT3 inhibitor suppresses proliferation, invasion and stemness of glioblastoma cells. J Exp Clin Cancer Res 2019; 38:289. [PMID: 31277685 PMCID: PMC6612138 DOI: 10.1186/s13046-019-1289-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) cells with stem cell-like properties are called glioma stem cells (GSCs). GSCs display highly treatment resistance and are responsible for tumor recurrence. Napabucasin (BBI608), a novel small molecule inhibitor of STAT3, has been identified to eliminate stemness-like tumor cells in some cancers. However, the influence of Napabucasin on GBM cells, especially on GSCs, is currently unclear. In this study, we explored the influence and underlying mechanisms of Napabucasin on GBM cells. METHODS STAT3 expression and its correlation with the glioma grade and patient survival were analyzed using CGGA and TCGA glioma databases. The influence of Napabucasin on proliferation, stemness, the cell cycle, apoptosis, and invasion of human GBM cell lines U87MG and LN229 was tested by CCK8, EdU incorporation, colony formation, Transwell invasion, and three-dimensional spheroid assays as well as flow cytometry, qPCR, and western blot analysis. The ability of Napabucasin to inhibit cell proliferation of U87MG tumor xenografts in mice was assessed using a live animal bioluminescence imaging system and immunohistochemistry. RESULTS Napabucasin suppressed the proliferation, colony formation, and invasion of U87MG and LN229 cells. Furthermore, Napabucasin induced cell cycle arrest and apoptosis. More importantly, Napabucasin treatment obviously inhibited expression of stemness-associated genes including STAT3 and suppressed the spheroid formation of glioma cells in vitro. Napabucasin also disrupted the NF-κB signaling pathway via downregulation of RelA (p65). Finally, glioma growth was effectively impaired by Napabucasin in nude mice bearing intracranial glioma xenografts. CONCLUSIONS Napabucasin treatment may be a novel approach for the treatment of GBM, particularly GSCs.
Collapse
Affiliation(s)
- Dongfeng Han
- 0000 0004 1758 0558grid.452207.6Department of Neurosurgery, Xuzhou Central Hospital, 199 Jie Fang Nan Road, Xuzhou, 221009 China
| | - Tianfu Yu
- 0000 0001 2314 964Xgrid.41156.37Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Zhongshan Road 321, Nanjing, 210008 China
- 0000 0004 1799 0784grid.412676.0Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029 China
| | - Nan Dong
- 0000 0004 1758 0558grid.452207.6Department of Neurosurgery, Xuzhou Central Hospital, 199 Jie Fang Nan Road, Xuzhou, 221009 China
| | - Bo Wang
- 0000 0004 1758 0558grid.452207.6Department of Neurosurgery, Xuzhou Central Hospital, 199 Jie Fang Nan Road, Xuzhou, 221009 China
| | - Fei Sun
- 0000 0004 1758 0558grid.452207.6Department of Neurosurgery, Xuzhou Central Hospital, 199 Jie Fang Nan Road, Xuzhou, 221009 China
| | - Dehua Jiang
- 0000 0004 1758 0558grid.452207.6Department of Neurosurgery, Xuzhou Central Hospital, 199 Jie Fang Nan Road, Xuzhou, 221009 China
| |
Collapse
|
39
|
Kettner NM, Vijayaraghavan S, Durak MG, Bui T, Kohansal M, Ha MJ, Liu B, Rao X, Wang J, Yi M, Carey JPW, Chen X, Eckols TK, Raghavendra AS, Ibrahim NK, Karuturi MS, Watowich SS, Sahin A, Tweardy DJ, Hunt KK, Tripathy D, Keyomarsi K. Combined Inhibition of STAT3 and DNA Repair in Palbociclib-Resistant ER-Positive Breast Cancer. Clin Cancer Res 2019; 25:3996-4013. [PMID: 30867218 PMCID: PMC6606366 DOI: 10.1158/1078-0432.ccr-18-3274] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/03/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are currently used in combination with endocrine therapy to treat advanced hormone receptor-positive, HER2-negative breast cancer. Although this treatment doubles time to progression compared with endocrine therapy alone, about 25%-35% of patients do not respond, and almost all patients eventually acquire resistance. Discerning the mechanisms of resistance to CDK4/6 inhibition is crucial in devising alternative treatment strategies. EXPERIMENTAL DESIGN Palbociclib-resistant cells (MCF-7 and T47D) were generated in a step-wise dose-escalading fashion. Whole-exome sequencing, genome-wide expression analysis, and proteomic analysis were performed in both resistant and parental (sensitive) cells. Pathway alteration was assessed mechanistically and pharmacologically. Biomarkers of altered pathways were examined in tumor samples from patients with palbociclib-treated breast cancer whose disease progressed while on treatment. RESULTS Palbociclib-resistant cells are cross-resistant to other CDK4/6 inhibitors and are also resistant to endocrine therapy (estrogen receptor downregulation). IL6/STAT3 pathway is induced, whereas DNA repair and estrogen receptor pathways are downregulated in the resistant cells. Combined inhibition of STAT3 and PARP significantly increased cell death in the resistant cells. Matched tumor samples from patients with breast cancer who progressed on palbociclib were examined for deregulation of estrogen receptor, DNA repair, and IL6/STAT3 signaling, and results revealed that these pathways are all altered as compared with the pretreatment tumor samples. CONCLUSIONS Palbociclib resistance induces endocrine resistance, estrogen receptor downregulation, and alteration of IL6/STAT3 and DNA damage response pathways in cell lines and patient samples. Targeting IL6/STAT3 activity and DNA repair deficiency using a specific STAT3 inhibitor combined with a PARP inhibitor could effectively treat acquired resistance to palbociclib.
Collapse
Affiliation(s)
- Nicole M Kettner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Smruthi Vijayaraghavan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Merih Guray Durak
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tuyen Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mehrnoosh Kohansal
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Department of Human Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Yi
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason P W Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xian Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - T Kris Eckols
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Akshara S Raghavendra
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nuhad K Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Meghan Sri Karuturi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
40
|
Linher-Melville K, Sharma M, Nakhla P, Kum E, Ungard R, Park J, Rosa D, Gunning P, Singh G. Inhibiting STAT3 in a murine model of human breast cancer-induced bone pain delays the onset of nociception. Mol Pain 2019; 15:1744806918823477. [PMID: 30799695 PMCID: PMC6329039 DOI: 10.1177/1744806918823477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aggressive breast cancer subtypes utilize system xc-, a membrane antiporter, to import cystine for glutathione synthesis and maintenance of redox homeostasis, in turn releasing glutamate as a metabolic pro-nociceptive by-product. Metastatic breast cancers establish themselves at distal sites including bone, where changes in extracellular glutamate levels contribute to cancer-induced bone pain. We previously established that stearically blocking system xc- activity with sulfasalazine delays the onset of nociceptive behaviours and that xCT, the functional antiporter subunit, is positively regulated by signal transducer and activator of transcription 3 (STAT3). In the current investigation, a murine xenograft cancer-induced bone pain model was applied to examine whether pharmacological inhibition of phosphorylated STAT3 (pSTAT3) induces changes in nociception. A high glutamate-releasing, xCT/pSTAT3 over-expressing human breast cancer cell line was selected for injection into the distal epiphysis of the right femur of female nude mice. A 14-day regimen of intraperitoneal injections with either vehicle or the novel STAT3 inhibitor DR-1-55 commenced three weeks after initial intrafemoral bone injection. Nociceptive behaviours were temporally monitored by automated von Frey, dynamic weight bearing and open-field testing for the duration of the study, beginning at the baseline. Prior to sacrifice and at ethical end point, tumour-induced osteolytic lesions were radiographically assessed. Treatment with DR-1-55 significantly delayed the onset and severity of spontaneous and induced nociceptive behaviours, also decreasing human SLC7A11 ( xCT) mRNA levels in tumour-bearing limbs without altering osteolysis. In addition, two pro-inflammatory cytokines released by this cell line, interleukin 6 and interleukin 1β, were also down-regulated at the mRNA level in response to DR-1-55 treatment in vivo, with lower human interleukin 6 levels detected in the host circulation. This study demonstrates that targeting pSTAT3 may be a viable therapeutic means to manage cancer-induced bone pain, alone or in combination with stearic system xc- blockers.
Collapse
Affiliation(s)
- Katja Linher-Melville
- 1 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Manu Sharma
- 1 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Peter Nakhla
- 1 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Elena Kum
- 1 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Robert Ungard
- 1 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ji Park
- 2 Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - David Rosa
- 2 Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Patrick Gunning
- 2 Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Gurmit Singh
- 1 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
41
|
Civenni G, Albino D, Shinde D, Vázquez R, Merulla J, Kokanovic A, Mapelli SN, Carbone GM, Catapano CV. Transcriptional Reprogramming and Novel Therapeutic Approaches for Targeting Prostate Cancer Stem Cells. Front Oncol 2019; 9:385. [PMID: 31143708 PMCID: PMC6521702 DOI: 10.3389/fonc.2019.00385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is the most common malignancy in men and the second cause of cancer-related deaths in western countries. Despite the progress in the treatment of localized prostate cancer, there is still lack of effective therapies for the advanced forms of the disease. Most patients with advanced prostate cancer become resistant to androgen deprivation therapy (ADT), which remains the main therapeutic option in this setting, and progress to lethal metastatic castration-resistant prostate cancer (mCRPC). Current therapies for prostate cancer preferentially target proliferating, partially differentiated, and AR-dependent cancer cells that constitute the bulk of the tumor mass. However, the subpopulation of tumor-initiating or tumor-propagating stem-like cancer cells is virtually resistant to the standard treatments causing tumor relapse at the primary or metastatic sites. Understanding the pathways controlling the establishment, expansion and maintenance of the cancer stem cell (CSC) subpopulation is an important step toward the development of more effective treatment for prostate cancer, which might enable ablation or exhaustion of CSCs and prevent treatment resistance and disease recurrence. In this review, we focus on the impact of transcriptional regulators on phenotypic reprogramming of prostate CSCs and provide examples supporting the possibility of inhibiting maintenance and expansion of the CSC pool in human prostate cancer along with the currently available methodological approaches. Transcription factors are key elements for instructing specific transcriptional programs and inducing CSC-associated phenotypic changes implicated in disease progression and treatment resistance. Recent studies have shown that interfering with these processes causes exhaustion of CSCs with loss of self-renewal and tumorigenic capability in prostate cancer models. Targeting key transcriptional regulators in prostate CSCs is a valid therapeutic strategy waiting to be tested in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carlo V. Catapano
- Institute of Oncology (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
42
|
Sánchez BG, Bort A, Mateos-Gómez PA, Rodríguez-Henche N, Díaz-Laviada I. Combination of the natural product capsaicin and docetaxel synergistically kills human prostate cancer cells through the metabolic regulator AMP-activated kinase. Cancer Cell Int 2019; 19:54. [PMID: 30899201 PMCID: PMC6408806 DOI: 10.1186/s12935-019-0769-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Background Current chemotherapy for castration-resistant prostate cancer is established on taxane-based compounds like docetaxel. However, eventually, the development of toxic side effects and resistance limits the therapeutic benefit being the major concern in the treatment of prostate cancer. Combination therapies in many cases, enhance drug efficacy and delay the appearance of undesired effects, representing an important option for the treatment of castration-resistant prostate cancer. In this study, we tested the efficacy of the combination of docetaxel and capsaicin, the pungent ingredient of hot chili peppers, on prostate cancer cells proliferation. Methods Prostate cancer LNCaP and PC3 cell lines were used in this study. Levels of total and phosphorylated forms of Akt, mTOR, S6, LKB1, AMPK and ACC were determined by Western blot. AMPK, LKB1 and Akt knock down was performed by siRNA. PTEN was overexpressed by transient transfection with plasmids. Xenograft prostate tumors were induced in nude mice and treatments (docetaxel and capsaicin) were administered intraperitoneally. Statistical analyses were performed with GraphPad software. Combination index was calculated with Compusyn software. Results Docetaxel and capsaicin synergistically inhibited the growth of LNCaP and PC3 cells, with a combination index lower than 1 for most of the combinations tested. Co-treatment with docetaxel and capsaicin notably decreased Akt and its downstream targets mTOR and S6 phosphorylation. Overexpression of PTEN phosphatase abrogated the synergistic antiproliferative effect of docetaxel and capsaicin. The combined treatment also increased the phosphorylation of AMP-activated kinase (AMPK) and the phosphorylation of its substrate ACC. In addition, pharmacological inhibition of AMPK with dorsomorphin (compound C) as well as knock down by siRNA of AMPK or its upstream kinase LKB1, abolished the synergy of docetaxel and capsaicin. Mechanistically, we showed that the synergistic anti-proliferative effect may be attributed to two independent effects: Inhibition of the PI3K/Akt/mTOR signaling pathway by one side, and AMPK activation by the other. In vivo experiments confirmed the synergistic effects of docetaxel and capsaicin in reducing the tumor growth of PC3 cells. Conclusion Combination of docetaxel and capsaicin represents a therapeutically relevant approach for the treatment of Prostate Cancer.
Collapse
Affiliation(s)
- Belén G Sánchez
- 1Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, Alcala University, Alcalá de Henares, Ctra A-2 Km 32., 28871 Madrid, Spain
| | - Alicia Bort
- 1Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, Alcala University, Alcalá de Henares, Ctra A-2 Km 32., 28871 Madrid, Spain
| | - Pedro A Mateos-Gómez
- 1Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, Alcala University, Alcalá de Henares, Ctra A-2 Km 32., 28871 Madrid, Spain
| | - Nieves Rodríguez-Henche
- 1Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, Alcala University, Alcalá de Henares, Ctra A-2 Km 32., 28871 Madrid, Spain
| | - Inés Díaz-Laviada
- 1Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, Alcala University, Alcalá de Henares, Ctra A-2 Km 32., 28871 Madrid, Spain.,2Chemical Research Institute "Andrés M. del Río" (IQAR), Alcalá University, Alcalá de Henares, 28871 Madrid, Spain
| |
Collapse
|
43
|
Beyreis M, Gaisberger M, Jakab M, Neureiter D, Helm K, Ritter M, Kiesslich T, Mayr C. The Cancer Stem Cell Inhibitor Napabucasin (BBI608) Shows General Cytotoxicity in Biliary Tract Cancer Cells and Reduces Cancer Stem Cell Characteristics. Cancers (Basel) 2019; 11:cancers11030276. [PMID: 30813586 PMCID: PMC6468451 DOI: 10.3390/cancers11030276] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Biliary tract cancer is a devastating disease with limited therapeutic options. The involvement of cancer stem cells in biliary tract cancer is likely. Napabucasin is a previously described cancer stem cell inhibitor that is currently being used in clinical trials. However, data regarding napabucasin and biliary tract cancer are not available yet. We tested the general cytotoxic effect of napabucasin on a comprehensive biliary tract cancer in vitro model, using resazurin assay and Annexin V/7-AAD staining. The effect of napabucasin on functional cancer stem cell characteristics was analyzed via soft agar assay, aldehyde-dehydrogenase-1 assay, measurement of surface CD326 expression, and measurement of clonogenic growth. The evaluation of the effect of napabucasin on cancer stem cell protein and gene expression was performed using Western blot and reverse transcription-PCR-based human cancer stem cell array. Napabucasin showed a concentration- and cell line-dependent cytotoxic effect, and increased the apoptotic and necrotic cell fractions. Treatment with napabucasin significantly reduced the formation of tumor spheres and clonogenic growth, as well as CD326 surface expression. Expression of cancer stem cell markers were reduced following napabucasin treatment on the protein and mRNA levels. Our study provides first data regarding napabucasin as a promising substance for the treatment of biliary tract cancer.
Collapse
Affiliation(s)
- Marlena Beyreis
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Martin Gaisberger
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, 5020 Salzburg, Austria.
- Gastein Research Institute, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Martin Jakab
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Katharina Helm
- Gastein Research Institute, Paracelsus Medical University, 5020 Salzburg, Austria.
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Markus Ritter
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, 5020 Salzburg, Austria.
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Tobias Kiesslich
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Christian Mayr
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| |
Collapse
|
44
|
Homocysteine, Thioretinaco Ozonide, and Oxidative Phosphorylation in Cancer and Aging: A Proposed Clinical Trial Protocol. Methods Mol Biol 2019; 1866:285-310. [PMID: 30725425 DOI: 10.1007/978-1-4939-8796-2_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of the proposed clinical interventional trial is to demonstrate the efficacy of a novel therapeutic strategy in subjects with cancer and hyperhomocysteinemia. Following discovery of abnormal homocysteine thiolactone metabolism in cultured malignant cells, thioretinamide, the amide synthesized from retinoic acid and homocysteine thiolactone, and thioretinaco, the complex formed from cobalamin and thioretinamide, were demonstrated to have antineoplastic, anticarcinogenic, and anti-atherogenic properties in animal models. Retinol, ascorbate, and homocysteine thiolactone are necessary for biosynthesis of thioretinamide and thioretinaco by cystathionine synthase and for formation of thioretinaco ozonide from thioretinamide, cobalamin, and ozone. Thioretinaco ozonide is required for prevention of abnormal oxidative metabolism, aerobic glycolysis, suppressed immunity, and hyperhomocysteinemia in cancer.The pancreatic enzyme therapy of cancer promotes catabolism of proteins, nucleic acids, and glycosaminoglycans with excess homocysteinylated amino groups resulting from abnormal accumulation of homocysteine thiolactone in malignant cells. Dietary deficiencies of pyridoxal, folate, cobalamin, and nitriloside contribute to hyperhomocysteinemia in cancer, and in protein energy malnutrition. A deficiency of dietary sulfur amino acids downregulates cystathionine synthase, causing hyperhomocysteinemia.The organic sulfur compound diallyl trisulfide increases hydrogen sulfide production from homocysteine in animal models, inhibits Stat3 signaling in cancer stem cells, and produces apoptosis of malignant cells. The furanonaphthoquinone compound napabucasin inhibits Stat3 signaling and causes mitochondrial dysfunction, decreased oxidative phosphorylation, and apoptosis of malignant cells. The protocol of the proposed clinical trial in subjects with myelodysplasia consists of thioretinamide and cobalamin as precursors of thioretinaco ozonide, combined with pancreatic enzyme extracts, diallyl trisulfide, napabucasin, nutritional modification to minimize processed foods, vitamin supplements, essential amino acids, and beneficial dietary fats and proteins.
Collapse
|
45
|
Nunes T, Hamdan D, Leboeuf C, El Bouchtaoui M, Gapihan G, Nguyen TT, Meles S, Angeli E, Ratajczak P, Lu H, Di Benedetto M, Bousquet G, Janin A. Targeting Cancer Stem Cells to Overcome Chemoresistance. Int J Mol Sci 2018; 19:E4036. [PMID: 30551640 PMCID: PMC6321478 DOI: 10.3390/ijms19124036] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cancers are heterogeneous at the cell level, and the mechanisms leading to cancer heterogeneity could be clonal evolution or cancer stem cells. Cancer stem cells are resistant to most anti-cancer treatments and could be preferential targets to reverse this resistance, either targeting stemness pathways or cancer stem cell surface markers. Gold nanoparticles have emerged as innovative tools, particularly for photo-thermal therapy since they can be excited by laser to induce hyperthermia. Gold nanoparticles can be functionalized with antibodies to specifically target cancer stem cells. Preclinical studies using photo-thermal therapy have demonstrated the feasibility of targeting chemo-resistant cancer cells to reverse clinical chemoresistance. Here, we review the data linking cancer stem cells and chemoresistance and discuss the way to target them to reverse resistance. We particularly focus on the use of functionalized gold nanoparticles in the treatment of chemo-resistant metastatic cancers.
Collapse
Affiliation(s)
- Toni Nunes
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Diaddin Hamdan
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Hôpital de La Porte Verte, F-78004 Versailles, France.
| | - Christophe Leboeuf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Morad El Bouchtaoui
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Guillaume Gapihan
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Thi Thuy Nguyen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Solveig Meles
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Eurydice Angeli
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Philippe Ratajczak
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - He Lu
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Mélanie Di Benedetto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Université Paris 13, F-93430 Villetaneuse, France.
| | - Guilhem Bousquet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Université Paris 13, F-93430 Villetaneuse, France.
- Service d'Oncologie Médicale, AP-HP-Hôpital Avicenne, F-93008 Bobigny, France.
| | - Anne Janin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Service de Pathologie, AP-HP-Hôpital Saint-Louis, F-75010 Paris, France.
| |
Collapse
|
46
|
Zuo D, Shogren KL, Zang J, Jewison DE, Waletzki BE, Miller AL, Okuno SH, Cai Z, Yaszemski MJ, Maran A. Inhibition of STAT3 blocks protein synthesis and tumor metastasis in osteosarcoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:244. [PMID: 30286779 PMCID: PMC6172747 DOI: 10.1186/s13046-018-0914-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Osteosarcoma is the most common bone cancer. Despite advances, molecular mechanisms associated with osteosarcoma have not been fully understood. Hence, an effective treatment for osteosarcoma has yet to be developed. Even though signal transducer and activator of transcription3 (STAT3) has been implicated, its role in pathogenesis of osteosarcoma is not fully determined. In this study, we investigated the antitumor effect of napabucasin (NP) (BBI608), an inhibitor of STAT3 on osteosarcoma in vitro and in vivo and studied the underlying molecular mechanism. METHODS Cell viability, colony formation, apoptosis, tumor growth and metastasis assays were performed to examine the effect of NP on osteosarcoma in vitro and in vivo. Real-time RT-PCR, western analysis, immunofluorescence and reporter assays were used to monitor the expression and activity of proteins and underlying molecular pathways. Protein synthesis, co-immunoprecipitation and CAP binding assays were carried out to understand NP-mediated mechanism of actions in osteosarcoma cells. RESULTS Our results show that NP treatment decreases cell viability and induces apoptosis in several osteosarcoma cell lines. NP treatment suppresses both expression and phosphorylation of STAT3 in addition to blocking STAT3-mediated transcription and downstream target proteins in osteosarcoma cells. Furthermore, NP inhibits protein synthesis through regulation of the eukaryotic initiation factor 4E (eIF4E) and eIF4E-binding protein 1 (4E-BP1). NP also inhibits the progression of osteosarcoma tumors and metastasis in vivo in an orthotopic tibial model of osteosarcoma. CONCLUSIONS Taken together, our investigation reveals that NP acts through a novel mechanism and inhibits osteosarcoma growth and metastasis, and could be investigated clinically for treating osteosarcoma patients alone or in combination with other drugs.
Collapse
Affiliation(s)
- Dongqing Zuo
- Department of Orthopedic Surgery, 2-69 Medical Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.,Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kristen L Shogren
- Department of Orthopedic Surgery, 2-69 Medical Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Jie Zang
- Musculoskeletal Tumor Center, People's Hospital, Peking University, Beijing, 100044, China
| | - Donna E Jewison
- Department of Orthopedic Surgery, 2-69 Medical Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Brian E Waletzki
- Department of Orthopedic Surgery, 2-69 Medical Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | | | - Scott H Okuno
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Michael J Yaszemski
- Department of Orthopedic Surgery, 2-69 Medical Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Avudaiappan Maran
- Department of Orthopedic Surgery, 2-69 Medical Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
47
|
Karandish F, Mamnoon B, Feng L, Haldar MK, Xia L, Gange KN, You S, Choi Y, Sarkar K, Mallik S. Nucleus-Targeted, Echogenic Polymersomes for Delivering a Cancer Stemness Inhibitor to Pancreatic Cancer Cells. Biomacromolecules 2018; 19:4122-4132. [PMID: 30169024 DOI: 10.1021/acs.biomac.8b01133] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemotherapeutic agents for treating cancers show considerable side effects, toxicity, and drug resistance. To mitigate the problems, we designed nucleus-targeted, echogenic, stimuli-responsive polymeric vesicles (polymersomes) to transport and subsequently release the encapsulated anticancer drugs within the nuclei of pancreatic cancer cells. We synthesized an alkyne-dexamethasone derivative and conjugated it to N3-polyethylene glycol (PEG)-polylactic acid (PLA) copolymer employing the Cu2+ catalyzed "Click" reaction. We prepared polymersomes from the dexamethasone-PEG-PLA conjugate along with a synthesized stimuli-responsive polymer PEG-S-S-PLA. The dexamethasone group dilates the nuclear pore complexes and transports the vesicles to the nuclei. We designed the polymersomes to release the encapsulated drugs in the presence of a high concentration of reducing agents in the nuclei of pancreatic cancer cells. We observed that the nucleus-targeted, stimuli-responsive polymersomes released 70% of encapsulated contents in the nucleus-mimicking environment in 80 min. We encapsulated the cancer stemness inhibitor BBI608 in the vesicles and observed that the BBI608 encapsulated polymersomes reduced the viability of the BxPC3 cells to 43% in three-dimensional spheroid cultures. The polymersomes were prepared following a special protocol so that they scatter ultrasound, allowing imaging by a medical ultrasound scanner. Therefore, these echogenic, targeted, stimuli-responsive, and drug-encapsulated polymersomes have the potential for trackable, targeted carrier of chemotherapeutic drugs to cancer cell nuclei.
Collapse
Affiliation(s)
| | | | | | | | - Lang Xia
- Department of Mechanical and Aerospace Engineering , The George Washington University , Washington, D.C. 20052 , United States
| | | | | | | | - Kausik Sarkar
- Department of Mechanical and Aerospace Engineering , The George Washington University , Washington, D.C. 20052 , United States
| | | |
Collapse
|
48
|
Guha P, Gardell J, Darpolor J, Cunetta M, Lima M, Miller G, Espat NJ, Junghans RP, Katz SC. STAT3 inhibition induces Bax-dependent apoptosis in liver tumor myeloid-derived suppressor cells. Oncogene 2018; 38:533-548. [PMID: 30158673 DOI: 10.1038/s41388-018-0449-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/29/2018] [Accepted: 06/19/2018] [Indexed: 11/09/2022]
Abstract
Immunosuppressive myeloid-derived suppressor cells (MDSC) subvert antitumor immunity and limit the efficacy of chimeric antigen receptor T cells (CAR-T). Previously, we reported that the GM-CSF/JAK2/STAT3 axis drives liver-associated MDSC (L-MDSC) proliferation and blockade of this axis rescued antitumor immunity. We extended these findings in our murine liver metastasis (LM) model, by treating tumor-bearing mice with STAT3 inhibitors (STATTIC or BBI608) to further our understanding of how STAT3 drives L-MDSC suppressive function. STAT3 inhibition caused significant reduction of tumor burden as well as L-MDSC frequencies due to decrease in pSTAT3 levels. L-MDSC isolated from STATTIC or BBI608-treated mice had significantly reduced suppressive function. STAT3 inhibition of L-MDSC was associated with enhanced antitumor activity of CAR-T. Further investigation demonstrated activation of apoptotic signaling pathways in L-MDSC following STAT3 inhibition as evidenced by an upregulation of the pro-apoptotic proteins Bax, cleaved caspase-3, and downregulation of the anti-apoptotic protein Bcl-2. Accordingly, there was also a decrease of pro-survival markers, pErk and pAkt, and an increase in pro-death marker, Fas, with activation of downstream JNK and p38 MAPK. These findings represent a previously unrecognized link between STAT3 inhibition and Fas-induced apoptosis of MDSCs. Our findings suggest that inhibiting STAT3 has potential clinical application for enhancing the efficacy of CAR-T cells in LM through modulation of L-MDSC.
Collapse
Affiliation(s)
- Prajna Guha
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Jillian Gardell
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Josephine Darpolor
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Marissa Cunetta
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Matthew Lima
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - George Miller
- New York University School of Medicine, New York, NY, USA
| | - N Joseph Espat
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA.,Department of Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Richard P Junghans
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA
| | - Steven C Katz
- Department of Surgery, Roger Williams Medical Center, Providence, RI, USA. .,Department of Surgery, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
49
|
Xu N, Li X, Watanabe M, Ueki H, Hu H, Li N, Araki M, Wada K, Xu A, Liu C, Nasu Y, Huang P. Induction of cells with prostate cancer stem-like properties from mouse induced pluripotent stem cells via conditioned medium. Am J Cancer Res 2018; 8:1624-1632. [PMID: 30210930 PMCID: PMC6129491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023] Open
Abstract
Cancer stem cells (CSCs) that closely correlated with tumor growth, metastasis, provide a plausible explanation for chemoresistance and cancer relapse. CSCs are usually isolated and enriched from carcinoma cells, which is inconvenient, low-efficient, and even unreliable. Here, we converted mouse induced pluripotent stem cells (miPSCs) into prostate cancer stem-like cells with carcinoma microenvironment following exposure to conditioned medium (CM) derived from RM9, a mouse prostate cancer cell line. These transformed cells, termed as miPS-RM9CM, displayed CSCs properties, including spheroids morphology and expression of both stemness genes and cancer stem cells surface markers, such as Oct3/4, Sox2, Nanog, Klf-4, c-Myc, CD44, and CD133. In addition, in vivo transplantation experiment was performed to confirm the tumorigenicity. Furthermore, we used the model to assess conventional chemotherapeutic agent, docetaxel. The results showed that miPS-RM9CM cells exhibited increased resistance to docetaxel, however, high susceptibility to the cancer cell stemness inhibitor I (BBI-608). Our current study demonstrates that CM from cultured RM9 cells play a crucial role in the determination of cell fate from miPSCs to cancer stem-like cells and provide a potentially valuable system for the study of CSCs.
Collapse
Affiliation(s)
- Naijin Xu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Xiezhao Li
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
- Center for Innovative Clinical Medicine, Okayama University HospitalOkayama, Japan
| | - Hideo Ueki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Hao Hu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical CenterGuangzhou, China
| | - Na Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical CenterGuangzhou, China
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Koichiro Wada
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
- Center for Innovative Clinical Medicine, Okayama University HospitalOkayama, Japan
- Okayama Medical Innovation Center, Okayama UniversityOkayama, Japan
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
- Okayama Medical Innovation Center, Okayama UniversityOkayama, Japan
| |
Collapse
|
50
|
Bumbaca B, Li W. Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies. Acta Pharm Sin B 2018; 8:518-529. [PMID: 30109177 PMCID: PMC6089846 DOI: 10.1016/j.apsb.2018.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Despite its good initial response and significant survival benefit in patients with castration-resistant prostate cancer (CRPC), taxane therapy inevitably encounters drug resistance in all patients. Deep understandings of taxane resistant mechanisms can significantly facilitate the development of new therapeutic strategies to overcome taxane resistance and improve CRPC patient survival. Multiple pathways of resistance have been identified as potentially crucial areas of intervention. First, taxane resistant tumor cells typically have mutated microtubule binding sites, varying tubulin isotype expression, and upregulation of efflux transporters. These mechanisms contribute to reducing binding affinity and availability of taxanes. Second, taxane resistant tumors have increased stem cell like characteristics, indicating higher potential for further mutation in response to therapy. Third, the androgen receptor pathway is instrumental in the proliferation of CRPC and multiple hypotheses leading to this pathway reactivation have been reported. The connection of this pathway to the AKT pathway has received significant attention due to the upregulation of phosphorylated AKT in CRPC. This review highlights recent advances in elucidating taxane resistant mechanisms and summarizes potential therapeutic strategies for improved treatment of CRPC.
Collapse
|