1
|
Feng Y, Kang Y, Wang Z, Du C, Tan J, Zhao X, Qi G. Ralstonia solanacearum infection induces tobacco root to secrete chemoattractants to recruit antagonistic bacteria and defensive compounds to inhibit pathogen. PEST MANAGEMENT SCIENCE 2025; 81:1817-1828. [PMID: 39673161 DOI: 10.1002/ps.8581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Plant root exudates play crucial roles in maintaining the structure and function of the whole belowground ecosystem and regulating the interactions between roots and soil microorganisms. Ralstonia solanacearum causes bacterial wilt disease in many plants, while root exudate-mediated inhibition of pathogen infection is poorly understood. Here, we characterize the chemical divergence between root exudates of healthy and diseased tobacco plants and the effects of that variability on the rhizosphere microbial community and the occurrence of bacterial wilt. RESULTS Compared with the healthy plants, root exudates in diseased plants showed distinct exudation patterns and metabolite profiles including increased amounts of flavonoids, phenylpropanoids, terpenoids and defense-related hormones, as well as distinct bacterial community composition, as illustrated by an increased abundance of Ralstonia and decreased abundances of Bacillus and Streptomyces in diseased plants rhizosphere. Pathogen infection stimulated roots to secrete more defensive compounds to inhibit pathogen growth. Change of root exudates modulated rhizosphere microbial community. Specific root exudates could benefit plants by attracting antagonistic Bacillus amyloliquefaciens and inhibiting pathogens. Bacillus amyloliquefaciens could utilize specific root exudates as carbon sources. Benzyl cinnamatel promoted the biofilm formation and colonization of B. amyloliquefaciens on roots. CONCLUSION To defend against pathogen invasion, tobacco plants recruited antagonistic and plant growth-promoting rhizobacteria to the rhizosphere by modifying root exudate profiles. Specific signal molecules are recommended to recruit beneficial microorganisms for controlling bacterial wilt. The results provide insights concerning the metabolic divergence of root exudates integral to understanding root-microorganism interaction. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yali Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yue Kang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhibo Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenyang Du
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Tan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Mayo-Montor CI, Vidal-Limon A, Loyola-Vargas VM, Carmona-Hernández O, Barreda-Castillo JM, Monribot-Villanueva JL, Guerrero-Analco JA. Targeting Hypoglycemic Natural Products from the Cloud Forest Plants Using Chemotaxonomic Computer-Assisted Selection. Int J Mol Sci 2024; 25:10881. [PMID: 39456663 PMCID: PMC11507857 DOI: 10.3390/ijms252010881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The cloud forest (CF), a hugely biodiverse ecosystem, is a hotspot of unexplored plants with potential for discovering pharmacologically active compounds. Without sufficient ethnopharmacological information, developing strategies for rationally selecting plants for experimental studies is crucial. With this goal, a CF metabolites library was created, and a ligand-based virtual screening was conducted to identify molecules with potential hypoglycemic activity. From the most promising botanical families, plants were collected, methanolic extracts were prepared, and hypoglycemic activity was evaluated through in vitro enzyme inhibition assays on α-amylase, α-glucosidase, and dipeptidyl peptidase IV (DPP-IV). Metabolomic analyses were performed to identify the dominant metabolites in the species with the best inhibitory activity profile, and their affinity for the molecular targets was evaluated using ensemble molecular docking. This strategy led to the identification of twelve plants (in four botanical families) with hypoglycemic activity. Sida rhombifolia (Malvaceae) stood out for its DPP-IV selective inhibition versus S. glabra. A comparison of chemical profiles led to the annotation of twenty-seven metabolites over-accumulated in S. rhombifolia compared to S. glabra, among which acanthoside D and cis-tiliroside were noteworthy for their potential selective inhibition due to their specific intermolecular interactions with relevant amino acids of DPP-IV. The workflow used in this study presents a novel targeting strategy for identifying novel bioactive natural sources, which can complement the conventional selection criteria used in Natural Product Chemistry.
Collapse
Affiliation(s)
- Cecilia I. Mayo-Montor
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| | - Abraham Vidal-Limon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| | | | | | - José Martín Barreda-Castillo
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| | - Juan L. Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| | - José A. Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| |
Collapse
|
3
|
Gao XY, Li XY, Zhang CY, Bai CY. Scopoletin: a review of its pharmacology, pharmacokinetics, and toxicity. Front Pharmacol 2024; 15:1268464. [PMID: 38464713 PMCID: PMC10923241 DOI: 10.3389/fphar.2024.1268464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
Scopoletin is a coumarin synthesized by diverse medicinal and edible plants, which plays a vital role as a therapeutic and chemopreventive agent in the treatment of a variety of diseases. In this review, an overview of the pharmacology, pharmacokinetics, and toxicity of scopoletin is provided. In addition, the prospects and outlook for future studies are appraised. Scopoletin is indicated to have antimicrobial, anticancer, anti-inflammation, anti-angiogenesis, anti-oxidation, antidiabetic, antihypertensive, hepatoprotective, and neuroprotective properties and immunomodulatory effects in both in vitro and in vivo experimental trials. In addition, it is an inhibitor of various enzymes, including choline acetyltransferase, acetylcholinesterase, and monoamine oxidase. Pharmacokinetic studies have demonstrated the low bioavailability, rapid absorption, and extensive metabolism of scopoletin. These properties may be associated with its poor solubility in aqueous media. In addition, toxicity research indicates the non-toxicity of scopoletin to most cell types tested to date, suggesting that scopoletin will neither induce treatment-associated mortality nor abnormal performance with the test dose. Considering its favorable pharmacological activities, scopoletin has the potential to act as a drug candidate in the treatment of cancer, liver disease, diabetes, neurodegenerative disease, and mental disorders. In view of its merits and limitations, scopoletin is a suitable lead compound for the development of new, efficient, and low-toxicity derivatives. Additional studies are needed to explore its molecular mechanisms and targets, verify its toxicity, and promote its oral bioavailability.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
- Key Laboratory of Mechanism and Evaluation of Chinese and Mongolian Pharmacy at Chifeng University, Chifeng University, Chifeng, China
| | - Xu-Yang Li
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
| | - Cong-Ying Zhang
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
- Key Laboratory of Mechanism and Evaluation of Chinese and Mongolian Pharmacy at Chifeng University, Chifeng University, Chifeng, China
| | - Chun-Ying Bai
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
| |
Collapse
|
4
|
Cheng X, Li BP, Han ZX, Zhang FL, Jiang ZR, Yang JS, Luo QZ, Tang L. Qualitative and quantitative analysis of the major components in Qinghao Biejia decoction by UPLC-Orbitrap Fusion-MS/MS and UPLC-QQQ-MS/MS and evaluation of their antibacterial activities. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:809-825. [PMID: 35546427 DOI: 10.1002/pca.3131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE In the present study, the chemical components of Qinghao Biejia decoction (QBD) were qualitatively and quantitatively analyzed using UPLC-Orbitrap Fusion-MS/MS and UPLC-QQQ-MS/MS techniques, followed by identification of each component's origin and evaluation of the antibacterial activity of QBD and its components. METHODS High-resolution mass spectrometry was used to obtain information on the precise molecular weight, retention time, and fragmentation ion peaks of the compounds used to identify the components of QBD and establish a method for their quantification. In vitro assays including determination of the minimal inhibitory concentration and growth curves were used to assess the antibacterial activity of QBD and its components. RESULTS A total of 39 components, including fatty acids, phenolic acids, amino acids, flavonoids, coumarins, terpenoids, and alkaloids, were identified by UPLC-Orbitrap Fusion-MS/MS. A high-performance analytical method was also established to quantify 12 components of QBD. The content of mangiferin was relatively high (estimated to be 814 μg/g). The results of the antibacterial assays indicated that mangiferin exhibits antibacterial effects against two strains causing respiratory tract infections. CONCLUSIONS The present study suggests that mangiferin may serve as a natural compound which shows high antibacterial activity. The results can aid the discovery and analysis of the active antimicrobial components present in QBD and further provide a reference for quality assessment of multi-component herbal prescriptions.
Collapse
Affiliation(s)
- Xin Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Biao-Ping Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Zhong-Xiao Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Feng-Lin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhi-Rui Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Jia-Shun Yang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qi-Zhi Luo
- Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Ling Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| |
Collapse
|
5
|
Valencia-Mejía E, León-Wilchez YY, Monribot-Villanueva JL, Ramírez-Vázquez M, Bonilla-Landa I, Guerrero-Analco JA. Isolation and Identification of Pennogenin Tetraglycoside from Cestrum nocturnum (Solanaceae) and Its Antifungal Activity against Fusarium kuroshium, Causal Agent of Fusarium Dieback. Molecules 2022; 27:1860. [PMID: 35335224 PMCID: PMC8951829 DOI: 10.3390/molecules27061860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Antifungal assay-guided fractionation of the methanolic crude extract of Cestrum nocturnum (Solanaceae), popular known as 'lady of the night', led the isolation and identification of the steroidal saponin named pennogenin tetraglycoside, which was identified for the first time in this plant species by spectroscopic means. The crude extract, fractions and pennogenin tetraglycoside exhibited mycelial growth inhibition of Fusarium solani and F. kuroshium. F. solani is a cosmopolitan fungal phytopathogen that affects several economically important crops. However, we highlight the antifungal activity displayed by pennogenin tetraglycoside against F. kuroshium, since it is the first plant natural product identified as active for this phytopathogen. This fungus along with its insect symbiont known as Kuroshio shot hole borer (Euwallacea kuroshio) are the causal agents of the plant disease Fusarium dieback that affects more than 300 plant species including avocado (Persea americana) among others of ecological relevance. Scanning electron microscopy showed morphological alterations of the fungal hyphae after exposure with the active fractions and 12 phenolic compounds were also identified by mass spectrometry dereplication as part of potential active molecules present in C. nocturnum leaves.
Collapse
Affiliation(s)
- Erika Valencia-Mejía
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. (INECOL)—Clúster Científico y Tecnológico BioMimic, Carretera Antigua a Coatepec N. 351, Xalapa 91073, Veracruz, Mexico; (E.V.-M.); (Y.Y.L.-W.); (J.L.M.-V.)
| | - Yeli Y. León-Wilchez
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. (INECOL)—Clúster Científico y Tecnológico BioMimic, Carretera Antigua a Coatepec N. 351, Xalapa 91073, Veracruz, Mexico; (E.V.-M.); (Y.Y.L.-W.); (J.L.M.-V.)
| | - Juan L. Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. (INECOL)—Clúster Científico y Tecnológico BioMimic, Carretera Antigua a Coatepec N. 351, Xalapa 91073, Veracruz, Mexico; (E.V.-M.); (Y.Y.L.-W.); (J.L.M.-V.)
| | - Mónica Ramírez-Vázquez
- Unidad de Microscopía Avanzada, Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. (INECOL)—Clúster Científico y Tecnológico BioMimic, Carretera Antigua a Coatepec N. 351, Xalapa 91073, Veracruz, Mexico;
- Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Cd. Universitaria, Copilco, Coyoacán, Ciudad de México 04510, Mexico
| | - Israel Bonilla-Landa
- Laboratorio de Química Orgánica, Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. (INECOL)—Clúster Científico y Tecnológico BioMimic, Carretera Antigua a Coatepec N. 351, Xalapa 91073, Veracruz, Mexico;
| | - José A. Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. (INECOL)—Clúster Científico y Tecnológico BioMimic, Carretera Antigua a Coatepec N. 351, Xalapa 91073, Veracruz, Mexico; (E.V.-M.); (Y.Y.L.-W.); (J.L.M.-V.)
| |
Collapse
|
6
|
Fu A, Wang Q, Mu J, Ma L, Wen C, Zhao X, Gao L, Li J, Shi K, Wang Y, Zhang X, Zhang X, Wang F, Grierson D, Zuo J. Combined genomic, transcriptomic, and metabolomic analyses provide insights into chayote (Sechium edule) evolution and fruit development. HORTICULTURE RESEARCH 2021; 8:35. [PMID: 33517348 PMCID: PMC7847470 DOI: 10.1038/s41438-021-00487-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 05/11/2023]
Abstract
Chayote (Sechium edule) is an agricultural crop in the Cucurbitaceae family that is rich in bioactive components. To enhance genetic research on chayote, we used Nanopore third-generation sequencing combined with Hi-C data to assemble a draft chayote genome. A chromosome-level assembly anchored on 14 chromosomes (N50 contig and scaffold sizes of 8.40 and 46.56 Mb, respectively) estimated the genome size as 606.42 Mb, which is large for the Cucurbitaceae, with 65.94% (401.08 Mb) of the genome comprising repetitive sequences; 28,237 protein-coding genes were predicted. Comparative genome analysis indicated that chayote and snake gourd diverged from sponge gourd and that a whole-genome duplication (WGD) event occurred in chayote at 25 ± 4 Mya. Transcriptional and metabolic analysis revealed genes involved in fruit texture, pigment, flavor, flavonoids, antioxidants, and plant hormones during chayote fruit development. The analysis of the genome, transcriptome, and metabolome provides insights into chayote evolution and lays the groundwork for future research on fruit and tuber development and genetic improvements in chayote.
Collapse
Affiliation(s)
- Anzhen Fu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jianlou Mu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Lili Ma
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Changlong Wen
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoyan Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yunxiang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Xuechuan Zhang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Xuewen Zhang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Fengling Wang
- Biomarker Technologies Corporation, Beijing, 101300, China
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, The Collaborative Innovation Center of Cucurbits Crops, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
7
|
Boudreau A, Richard AJ, Harvey I, Stephens JM. Artemisia scoparia and Metabolic Health: Untapped Potential of an Ancient Remedy for Modern Use. Front Endocrinol (Lausanne) 2021; 12:727061. [PMID: 35211087 PMCID: PMC8861327 DOI: 10.3389/fendo.2021.727061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Botanicals have a long history of medicinal use for a multitude of ailments, and many modern pharmaceuticals were originally isolated from plants or derived from phytochemicals. Among these, artemisinin, first isolated from Artemisia annua, is the foundation for standard anti-malarial therapies. Plants of the genus Artemisia are among the most common herbal remedies across Asia and Central Europe. The species Artemisia scoparia (SCOPA) is widely used in traditional folk medicine for various liver diseases and inflammatory conditions, as well as for infections, fever, pain, cancer, and diabetes. Modern in vivo and in vitro studies have now investigated SCOPA's effects on these pathologies and its ability to mitigate hepatotoxicity, oxidative stress, obesity, diabetes, and other disease states. This review focuses on the effects of SCOPA that are particularly relevant to metabolic health. Indeed, in recent years, an ethanolic extract of SCOPA has been shown to enhance differentiation of cultured adipocytes and to share some properties of thiazolidinediones (TZDs), a class of insulin-sensitizing agonists of the adipogenic transcription factor PPARγ. In a mouse model of diet-induced obesity, SCOPA diet supplementation lowered fasting insulin and glucose levels, while inducing metabolically favorable changes in adipose tissue and liver. These observations are consistent with many lines of evidence from various tissues and cell types known to contribute to metabolic homeostasis, including immune cells, hepatocytes, and pancreatic beta-cells. Compounds belonging to several classes of phytochemicals have been implicated in these effects, and we provide an overview of these bioactives. The ongoing global epidemics of obesity and metabolic disease clearly require novel therapeutic approaches. While the mechanisms involved in SCOPA's effects on metabolic, anti-inflammatory, and oxidative stress pathways are not fully characterized, current data support further investigation of this plant and its bioactives as potential therapeutic agents in obesity-related metabolic dysfunction and many other conditions.
Collapse
Affiliation(s)
- Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Jacqueline M. Stephens,
| |
Collapse
|
8
|
Liu D, Zhang J, Zhao L, He W, Liu Z, Gan X, Song B. First Discovery of Novel Pyrido[1,2- a]pyrimidinone Mesoionic Compounds as Antibacterial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11860-11866. [PMID: 31532652 DOI: 10.1021/acs.jafc.9b03606] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant bacterial diseases cause tremendous decreases in crop yield and quality, and there is a lack of highly effective and low-risk antibacterial agents. A series of novel pyrido[1,2-a]pyrimidinone mesoionic compounds containing vanillin moieties were synthesized, and the application of these mesoionic compounds as plant antibacterial agents was reported here for the first time. The bioassay results revealed that the mesoionic compounds had good antibacterial activity. Of these compounds, compound 11 showed excellent in vitro activity against Xanthomonas oryzae pv. oryzae, with an EC50 value of 1.1 μg/mL, which was substantially better than that of bismerthiazol (92.7 μg/mL) and thiodiazole copper (105.4 μg/mL). Moreover, greenhouse condition trials indicated that the protective and curative activities of compound 11 against rice bacterial leaf blight were 75.12 and 72.04%, respectively, which were better than those of bismerthiazol (62.24 and 50.83%, respectively) and thiodiazole copper (53.35 and 65.04%, respectively). These results provide a basis for the application of mesoionic vanillin moieties as new antibacterial agents.
Collapse
Affiliation(s)
- Dengyue Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Lei Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Wengjing He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Zhengjun Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| |
Collapse
|