1
|
Chen X, Zou L, Zhang L, Li J, Liu R, He Y, Shu M, Huang K. Discovery of novel potential 11β-HSD1 inhibitors through combining deep learning, molecular modeling, and bio-evaluation. Mol Divers 2025:10.1007/s11030-025-11171-0. [PMID: 40397334 DOI: 10.1007/s11030-025-11171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/15/2025] [Indexed: 05/22/2025]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) has been shown to play an important role in the treatment of impaired glucose tolerance, insulin resistance, dyslipidemia, and obesity and is a promising drug target. In this study, we built a gated recurrent unit (GRU)-based recurrent neural network using 1,854,484 (processed) drug-like molecules from ChEMBL and the US patent database and successfully built a molecular generative model of 11βHSD1 inhibitors by using the known 11β-HSD1 inhibitors that have undergone transfer learning, our constructed GRU model was able to accurately capture drug-like molecules evaluated using traditional machine model-related syntax, and transfer learning can also easily generate potential 11β-HSD1 inhibitors. By combining Lipinski's and absorption, distribution, metabolism, excretion, and toxicity (ADME/T) analyses to filter nonconforming molecules and stepwise screening through molecular docking and molecular dynamics simulation, we finally obtained 5 potential compounds. We found that compound 02 is identical to a previously published inhibitor of 11β-HSD1. We selected compounds 02 and 05 with the lowest binding free energy for in vitro activity validation and found that compound 02 possessed inhibitory activity but was not as potent as the control. In conclusion, our study provides new ideas and methods for the development of new drugs and the discovery of new 11β-HSD1 inhibitors.
Collapse
Affiliation(s)
- Xiaodie Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing, 400054, China
| | - Liang Zou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing, 400054, China
| | - Lu Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing, 400054, China
| | - Jiali Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing, 400054, China
| | - Rong Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing, 400054, China
| | - Yueyue He
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing, 400054, China
| | - Mao Shu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing, 400054, China.
| | - Kuilong Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
2
|
Tokalı P, Demir Y, Çakır F, Şenol H, Tokalı FS. Design, synthesis, and aldose reductase inhibition assessment of novel Quinazolin-4(3H)-one derivatives with 4-Bromo-2-Fluorobenzene functionality. Bioorg Chem 2025; 162:108614. [PMID: 40408983 DOI: 10.1016/j.bioorg.2025.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/03/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
Aldose reductase (ALR2) inhibition is a promising therapeutic strategy for managing diabetes-related complications, including neuropathy, retinopathy, and nephropathy. This study reports the design, synthesis, and biological evaluation of eighteen novel quinazolin-4(3H)-one derivatives incorporating a 4-bromo-2-fluorobenzylidene moiety as ALR2 inhibitors. Among the synthesized compounds, the cyclohexyl-substituted derivative (compound 9) exhibited the highest potency as a competitive ALR2 inhibitor, with a Ki of 0.064 μM-15 times more effective than the standard inhibitor epalrestat (EPR) (Ki = 0.967 μM). Molecular docking and dynamics simulations revealed stable binding interactions between compound 9 and key residues in the ALR2 active site, such as Trp-111, Tyr-209, Trp-20, and Ser-302. Cytotoxicity assays on HUVEC and BEAS-B2 cell lines demonstrated that the most active compounds, were non-toxic at therapeutic concentrations. ADME-T analyses highlighted the favorable drug-likeness and pharmacokinetic properties of compound 9, including high oral absorption and minimal toxicity risks, though limited solubility was identified as a challenge. While minor toxicological concerns were observed for other compounds, these were within manageable levels. Overall, compound 9 emerges as a potent and selective ALR2 inhibitor with significant potential for further optimization. Future studies will focus on enhancing its solubility and refining its pharmacokinetic and pharmacodynamic profiles to support its development as a therapeutic candidate for diabetes-associated complications.
Collapse
Affiliation(s)
- Pelin Tokalı
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Kafkas University 36100 Kars, Türkiye.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700 Ardahan, Türkiye; Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Türkiye.
| | - Furkan Çakır
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Türkiye.
| | - Halil Şenol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Türkiye.
| | - Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, 36100 Kars, Türkiye.
| |
Collapse
|
3
|
Tokalı FS. Recent advances in quinazolinone derivatives: structure, design and therapeutic potential. Future Med Chem 2025; 17:1071-1091. [PMID: 40350383 DOI: 10.1080/17568919.2025.2504327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
Quinazolinones, a prominent class of heterocyclic compounds, have garnered significant attention due to their diverse biological activities and synthetic versatility. Over the past thirty years, extensive research has been conducted to explore their pharmacological potential, making them an essential scaffold in modern medicinal chemistry.This review provides an analysis of the most common synthesis methods employed for the preparation of quinazolinones, highlighting their efficiency and applicability. Furthermore, it presents an in-depth discussion of their broad-spectrum biological activities, including anticancer, antimicrobial, antifungal, anti-inflammatory, anticonvulsant, anti-Alzheimer's, antiparasitic, antioxidant, antidiabetic, and antiviral properties. By summarizing the latest advancements in quinazolinone research, specifically those made in the past five years, this review aims to serve as a valuable resource for researchers, facilitating easy access to recent studies and promoting further advancements in the field.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Türkiye
| |
Collapse
|
4
|
Acar Cevik U, Ünver H, Bostancı HE, Tüzün B, Gedik Nİ, Kocyigit ÜM. New hydrazone derivatives: synthesis, characterization, carbonic anhydrase I-II enzyme inhibition, anticancer activity and in silico studies. Z NATURFORSCH C 2025:znc-2024-0226. [PMID: 40080398 DOI: 10.1515/znc-2024-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/17/2025] [Indexed: 03/15/2025]
Abstract
A new series of hydrazone derivatives (1a-1l) were prepared from a condensation reaction between different hydrazide derivatives and 3-formylbenzoic acid. Through the use of several spectral techniques, such as 1H-NMR, 13C-NMR, and elemental analysis, the structures of the compounds were clarified. The crystal structure of compound 1d was obtained by single-crystal X-ray crystallography. They were found to have inhibitory effects on the anticancer potentials and human carbonic anhydrase isoforms I and II. Compound 1d was found to be the strongest inhibitor, with IC50 values of 0.133 µM against hCA I. Also, compound 1l showed the highest inhibitory activity with IC50 values of 3.244 µM against hCA II. Moreover, their cytotoxic effects on rat glioma cell and colon adeno carcinoma cell lines were evaluated. According to the cytotoxicity results, compounds 1j and 1l exhibited the highest cytotoxicity on the HT29 cell, while compounds 1e, 1g, and 1l showed the strongest cytotoxic effect on C6 cell line. Compound 1l, which carries the methoxy substituent at the 3rd position on the phenyl ring, was effective against both cancer cells and showed the highest inhibitory effect on hCA II. The ADME/T properties and molecular docking of the molecules with the highest activity were examined.
Collapse
Affiliation(s)
- Ulviye Acar Cevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 52944 Anadolu University , Eskişehir 26470, Türkiye
| | - Hakan Ünver
- Department of Chemistry, Faculty of Science, Eskisehir Technical University, Eskisehir, Türkiye
| | - Hayrani Eren Bostancı
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Türkiye
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Nurten İrem Gedik
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Türkiye
| | - Ümit M Kocyigit
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Türkiye
| |
Collapse
|
5
|
Shokouhi Asl AS, Sayahi MH, Hashempur MH, Irajie C, Alaeddini AH, Ghafouri SN, Noori M, Dastyafteh N, Mottaghipisheh J, Asadi M, Larijani B, Mahdavi M, Iraji A. Cinnamic acid conjugated with triazole acetamides as anti-Alzheimer and anti-melanogenesis candidates: an in vitro and in silico study. Sci Rep 2025; 15:655. [PMID: 39754023 PMCID: PMC11698978 DOI: 10.1038/s41598-024-83020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including 1H-NMR, 13C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes. Among synthesize derivative compound 3-(4-((1-(2-((2,4-dichlorophenyl)amino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-methoxyphenyl)acrylic acid (10j) exhibited the highest activity against BChE with an IC50 value of 11.99 ± 0.53 µM. Derivative 3-(3-methoxy-4-((1-(2-oxo-2-(p-tolylamino)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)acrylic acid (10d), bearing a 4-CH3 group, was identified as the most potent AChE inhibitor. In terms of tyrosinase inhibition, 3-(3-methoxy-4-((1-(2-((2-methyl-4-nitrophenyl)amino)-2-oxoethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)acrylic acid (compound 10n), demonstrated 44.87% inhibition at a concentration of 40 µM. Additionally, a kinetic study of compound 10j which 2,4-dichlorophenyl substituents against BChE revealed a mixed-type inhibition pattern. Furthermore, molecular docking and molecular dynamic studies of compound 10j were conducted to thoroughly evaluate its mode of action within the BChE active site.
Collapse
Affiliation(s)
- Amir Shervin Shokouhi Asl
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Mottaghipisheh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 7050, SE-750 07, Uppsala, Sweden
| | - Mehdi Asadi
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Jaiswal S, Verma K, Srivastva A, Arya N, Dwivedi J, Sharma S. Green Synthetic and Pharmacological Developments in the Hybrid Quinazolinone Moiety: An Updated Review. Curr Top Med Chem 2025; 25:493-532. [PMID: 39162270 DOI: 10.2174/0115680266313354240807051401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
Bicyclic quinazolinone constitutes an important class of organic framework enveloping numerous biological properties which enthused organic and medicinal chemists to explore green synthetic strategies for the construction of quinazolinone hybrids with significantly improved pharmacodynamics and pharmacokinetic profiles. In this perspective, the present review summarizes the most recent green synthetic strategies, biological properties, structure-activity relationship, and molecular docking studies of the 4-quinazolinone-based scaffold. This review provides deeper insight into the hit-to-lead synthesis of quinazolinone derivatives in the development of clinically important therapeutic candidates.
Collapse
Affiliation(s)
- Shivangi Jaiswal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Anamika Srivastva
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Nikilesh Arya
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
7
|
Khan S, Iqbal T, Khan MB, Hussain R, Khan Y, Darwish HW. Novel pyrrole based triazole moiety as therapeutic hybrid: synthesis, characterization and anti-Alzheimer potential with molecular mechanism of protein ligand profile. BMC Chem 2024; 18:223. [PMID: 39522005 PMCID: PMC11550546 DOI: 10.1186/s13065-024-01340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
As a springboard to explore novel potent inhibitors of cholinesterase enzymes (AChE and BChE) responsible for causing Alzheimer disorder, the current study was conducted to synthesize pyrrole derived triazole based Schiff base scaffolds by facile synthetic route. These compounds were validated by 1HNMR, 13CNMR and HREI-MS. All these scaffolds (1-16) were examined for their inhibitory activity against AChE and BChE in contrast to Donepezil (10.20 ± 0.10 and 10.80 ± 0.20 µM) and Allanzanthone (12.40 ± 0.10 and 13.10 ± 0.10 µM). All pyrrole derived triazole based Schiff base scaffolds (1-16) showed varied range of inhibitory potentials against acetylcholinesterase and butyrylcholinesterase enzymes with lowest inhibition concentration values ranging from 5.10 ± 0.40-27.10 ± 0.10 µM (for AChE) and 5.60 ± 0.30-28.40 ± 0.30 µM (for BChE). SAR analysis of these derivatives revealed analog 7 as lead molecule against targeted enzyme, while analog 6 and 11 were ranked as second and third most potent scaffolds. Binding affinity and selectivity of potent molecules against targeted enzymes were examined by molecular docking and obtained results showed that potent molecule have versatile significant binding interactions with stated enzymes. Furthermore, safety profiles of potent analogues were predicted via ADMET protocols.
Collapse
Affiliation(s)
- Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, 22500, Pakistan.
| | - Tayyiaba Iqbal
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, 22500, Pakistan
| | - Muhammad Bilal Khan
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad, 22500, Pakistan
| | - Rafaqat Hussain
- College of Biology, Hunan University, Changsha, Hunan, 410082, People's Republic of China
| | - Yousaf Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
İnanir M, Uçar E, Tüzün B, Eruygur N, Ataş M, Akpulat HA. The pharmacological properties of Gypsophila eriocalyx: The endemic medicinal plant of northern central Turkey. Int J Biol Macromol 2024; 266:130943. [PMID: 38522690 DOI: 10.1016/j.ijbiomac.2024.130943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
The aim of this study is to evaluate and compare the biological properties of different extracts (methanol, ethanol, and water) obtained from Gypsophila eriocalyx (G. eriocalyx), a medicinal plant traditionally used in Turkey. The components of different extracts were defined using the GC-MS method. The effects of G. eriocalyx extracts on cell proliferation, apoptosis, and cell cycle arrest in MDA-MB-231 breast cancer as well as in vitro antioxidant, enzyme inhibition, and antimicrobial activities were investigated. In accordance with the results obtained, although ethanol and methanol extracts of G. eriocalyx show higher antioxidant activity than G. eriocalyx water extract, enzyme inhibition activities of the extracts were not found to be significant compared to the reference drug. The methanol and ethanol extract of G. eriocalyx exhibited moderate antimicrobial activity against Staphylococcus aureus and methanol extract showed significant antimicrobial activity against Bacillus cereus. In addition, both extracts significantly inhibited cell viability in a dose-dependent manner in breast cancer cells. The cell growth inhibition by methanol and ethanol extracts induced S phase cell-cycle arrest and apoptosis in MDA-MB-231 cells. Lastly, in order to compare the activities of the chemicals found in Gypsophila eriocalyx plant extract, their activities against various proteins that are breast cancer protein (PDB ID:1A52 and 1JNX), antioxidant protein (PDB ID: 1HD2), AChE enzyme protein (PDB ID: 4M0E), BChE enzyme protein (PDB ID: 5NN0), and Escherichia coli protein (PDB ID: 4PRV)were compared. Then, ADME/T analysis calculations were made to examine the effects of molecules with high activity on human metabolism. Eventually, G. eriocalyx is thought to be a potent therapeutic herb that can be considered as an alternative and functional therapy for the management of diseases of a progressive nature related to oxidative damage such as infection, diabetes, cancer, and Alzheimer's disease.
Collapse
Affiliation(s)
- Merve İnanir
- Department of Pharmacology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Esra Uçar
- Department of Medicinal and Aromatic Plant, Vocational School, Sivas Cumhuriyet University, Sivas, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Technical SciencesVocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Nuraniye Eruygur
- Department of Pharmacognosy, Faculty of Pharmacy, Selçuk University, Konya, Turkey
| | - Mehmet Ataş
- Department of Microbiology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hüseyin Aşkın Akpulat
- Department of Biology, Faculty of Science,Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|