1
|
Chukrallah LG, Badrinath A, Vittor GG, Snyder EM. ADAD2 regulates heterochromatin in meiotic and post-meiotic male germ cells via translation of MDC1. J Cell Sci 2022; 135:jcs259196. [PMID: 35191498 PMCID: PMC8919335 DOI: 10.1242/jcs.259196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022] Open
Abstract
Male germ cells establish a unique heterochromatin domain, the XY-body, early in meiosis. How this domain is maintained through the end of meiosis and into post-meiotic germ cell differentiation is poorly understood. ADAD2 is a late meiotic male germ cell-specific RNA-binding protein, loss of which leads to post-meiotic germ cell defects. Analysis of ribosome association in Adad2 mouse mutants revealed defective translation of Mdc1, a key regulator of XY-body formation, late in meiosis. As a result, Adad2 mutants show normal establishment but failed maintenance of the XY-body. Observed XY-body defects are concurrent with abnormal autosomal heterochromatin and ultimately lead to severely perturbed post-meiotic germ cell heterochromatin and cell death. These findings highlight the requirement of ADAD2 for Mdc1 translation, the role of MDC1 in maintaining meiotic male germ cell heterochromatin and the importance of late meiotic heterochromatin for normal post-meiotic germ cell differentiation.
Collapse
Affiliation(s)
| | - Aditi Badrinath
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gabrielle G. Vittor
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Elizabeth M. Snyder
- Department of Animal Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Lee SG, Kim N, Park IB, Park JH, Myung K. Tissue-specific DNA damage response in Mouse Whole-body irradiation. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00195-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Background
Genomic instability is a hallmark of various cancers, and DNA repair is an essential process for maintaining genomic integrity. Mammalian cells have developed various DNA repair mechanisms in response to DNA damage. Compared to the cellular response to DNA damage, the in vivo DNA damage response (DDR) of specific tissues has not been studied extensively.
Objective
In this study, mice were exposed to whole-body gamma (γ)-irradiation to evaluate the specific DDR of various tissues. We treated male C57BL6/J mice with γ-irradiation at different doses, and the DDR protein levels in different tissues were analyzed.
Results
The level of gamma-H2A histone family member X (γH2AX) increased in most organs after exposure to γ-irradiation. In particular, the liver, lung, and kidney tissues showed higher γH2AX induction upon DNA damage, compared to that in the brain, muscle, and testis tissues. RAD51 was highly expressed in the testis, irrespective of irradiation. The levels of proliferating cell nuclear antigen (PCNA) and ubiquitinated PCNA increased in lung tissues upon irradiation, suggesting that the post-replication repair may mainly operate in the lungs in response to γ-irradiation.
Conclusion
These results suggest that each tissue has a preferable repair mechanism in response to γ-irradiation. Therefore, the understanding and application of tissue-specific DNA damage responses could improve the clinical approach of radiotherapy for treating specific cancers.
Collapse
|
3
|
Mitochondrial genome stability in human: understanding the role of DNA repair pathways. Biochem J 2021; 478:1179-1197. [DOI: 10.1042/bcj20200920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
Mitochondria are semiautonomous organelles in eukaryotic cells and possess their own genome that replicates independently. Mitochondria play a major role in oxidative phosphorylation due to which its genome is frequently exposed to oxidative stress. Factors including ionizing radiation, radiomimetic drugs and replication fork stalling can also result in different types of mutations in mitochondrial DNA (mtDNA) leading to genome fragility. Mitochondria from myopathies, dystonia, cancer patient samples show frequent mtDNA mutations such as point mutations, insertions and large-scale deletions that could account for mitochondria-associated disease pathogenesis. The mechanism by which such mutations arise following exposure to various DNA-damaging agents is not well understood. One of the well-studied repair pathways in mitochondria is base excision repair. Other repair pathways such as mismatch repair, homologous recombination and microhomology-mediated end joining have also been reported. Interestingly, nucleotide excision repair and classical nonhomologous DNA end joining are not detected in mitochondria. In this review, we summarize the potential causes of mitochondrial genome fragility, their implications as well as various DNA repair pathways that operate in mitochondria.
Collapse
|
4
|
Gopalakrishnan V, Dahal S, Radha G, Sharma S, Raghavan SC, Choudhary B. Characterization of DNA double-strand break repair pathways in diffuse large B cell lymphoma. Mol Carcinog 2018; 58:219-233. [DOI: 10.1002/mc.22921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/18/2018] [Accepted: 10/07/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Vidya Gopalakrishnan
- Institute of Bioinformatics and Applied Biotechnology; Electronics City; Bangalore India
- Manipal Academy of Higher Education; Manipal Karnataka India
| | - Sumedha Dahal
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | - Gudapureddy Radha
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | - Shivangi Sharma
- Department of Biochemistry; Indian Institute of Science; Bangalore India
| | | | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology; Electronics City; Bangalore India
| |
Collapse
|
5
|
Dahal S, Dubey S, Raghavan SC. Homologous recombination-mediated repair of DNA double-strand breaks operates in mammalian mitochondria. Cell Mol Life Sci 2018; 75:1641-1655. [PMID: 29116362 PMCID: PMC11105789 DOI: 10.1007/s00018-017-2702-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Mitochondrial DNA is frequently exposed to oxidative damage, as compared to nuclear DNA. Previously, we have shown that while microhomology-mediated end joining can account for DNA deletions in mitochondria, classical nonhomologous DNA end joining, the predominant double-strand break (DSB) repair pathway in nucleus, is undetectable. In the present study, we investigated the presence of homologous recombination (HR) in mitochondria to maintain its genomic integrity. Biochemical studies revealed that HR-mediated repair of DSBs is more efficient in the mitochondria of testes as compared to that of brain, kidney and spleen. Interestingly, a significant increase in the efficiency of HR was observed when a DSB was introduced. Analyses of the clones suggest that most of the recombinants were generated through reciprocal exchange, while ~ 30% of recombinants were due to gene conversion in testicular extracts. Colocalization and immunoblotting studies showed the presence of RAD51 and MRN complex proteins in the mitochondria and immunodepletion of MRE11, RAD51 or NIBRIN suppressed the HR-mediated repair. Thus, our results reveal importance of homologous recombination in the maintenance of mitochondrial genome stability.
Collapse
Affiliation(s)
- Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shubham Dubey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
6
|
Tripathi V, Agarwal H, Priya S, Batra H, Modi P, Pandey M, Saha D, Raghavan SC, Sengupta S. MRN complex-dependent recruitment of ubiquitylated BLM helicase to DSBs negatively regulates DNA repair pathways. Nat Commun 2018. [PMID: 29523790 PMCID: PMC5844875 DOI: 10.1038/s41467-018-03393-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutations in BLM in Bloom Syndrome patients predispose them to multiple types of cancers. Here we report that BLM is recruited in a biphasic manner to annotated DSBs. BLM recruitment is dependent on the presence of NBS1, MRE11 and ATM. While ATM activity is essential for BLM recruitment in early phase, it is dispensable in late phase when MRE11 exonuclease activity and RNF8-mediated ubiquitylation of BLM are the key determinants. Interaction between polyubiquitylated BLM and NBS1 is essential for the helicase to be retained at the DSBs. The helicase activity of BLM is required for the recruitment of HR and c-NHEJ factors onto the chromatin in S- and G1-phase, respectively. During the repair phase, BLM inhibits HR in S-phase and c-NHEJ in G1-phase. Consequently, inhibition of helicase activity of BLM enhances the rate of DNA alterations. Thus BLM utilizes its pro- and anti-repair functions to maintain genome stability. Bloom helicase is recruited to double strand breaks in an ATM dependent manner. Here the authors show that Bloom helicase is recruited to double strand breaks in an ATM and MRN dependent manner with HR and NHEJ regulated by the helicase depending on the phase of the cell cycle.
Collapse
Affiliation(s)
- Vivek Tripathi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Himanshi Agarwal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swati Priya
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Harish Batra
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Priyanka Modi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Monica Pandey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Dhurjhoti Saha
- Institute of Genomics and Integrative Biology, CSIR, Mathura Road, New Delhi, 110025, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
7
|
Srivastava S, Dahal S, Naidu SJ, Anand D, Gopalakrishnan V, Kooloth Valappil R, Raghavan SC. DNA double-strand break repair in Penaeus monodon is predominantly dependent on homologous recombination. DNA Res 2017; 24:117-128. [PMID: 28431013 PMCID: PMC5397610 DOI: 10.1093/dnares/dsw059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/08/2016] [Indexed: 11/13/2022] Open
Abstract
DNA double-strand breaks (DSBs) are mostly repaired by nonhomologous end joining (NHEJ) and homologous recombination (HR) in higher eukaryotes. In contrast, HR-mediated DSB repair is the major double-strand break repair pathway in lower order organisms such as bacteria and yeast. Penaeus monodon, commonly known as black tiger shrimp, is one of the economically important crustaceans facing large-scale mortality due to exposure to infectious diseases. The animals can also get exposed to chemical mutagens under the culture conditions as well as in wild. Although DSB repair mechanisms have been described in mammals and some invertebrates, its mechanism is unknown in the shrimp species. In the present study, we show that HR-mediated DSB repair is the predominant mode of repair in P. monodon. Robust repair was observed at a temperature of 30 °C, when 2 µg of cell-free extract derived from hepatopancreas was used for the study. Although HR occurred through both reciprocal recombination and gene conversion, the latter was predominant when the bacterial colonies containing recombinants were evaluated. Unlike mammals, NHEJ-mediated DSB repair was undetectable in P. monodon. However, we could detect evidence for an alternative mode of NHEJ that uses microhomology, termed as microhomology-mediated end joining (MMEJ). Interestingly, unlike HR, MMEJ was predominant at lower temperatures. Therefore, the results suggest that, while HR is major DSB repair pathway in shrimp, MMEJ also plays a role in ensuring the continuity and stability of the genome.
Collapse
Affiliation(s)
- Shikha Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sumedha Dahal
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sharanya J Naidu
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Deepika Anand
- ICAR-Central Institute of Fisheries Education, Mumbai 400 061, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
8
|
Vergés L, Molina O, Geán E, Vidal F, Blanco J. Deletions and duplications of the 22q11.2 region in spermatozoa from DiGeorge/velocardiofacial fathers. Mol Cytogenet 2014; 7:86. [PMID: 25435913 PMCID: PMC4247602 DOI: 10.1186/s13039-014-0086-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/04/2014] [Indexed: 11/12/2022] Open
Abstract
Background DiGeorge/velocardiofacial syndrome (DGS/VCFS) is the most common deletion syndrome in humans. Low copy repeats flanking the 22q11.2 region confer a substrate for non-allelic homologous recombination (NAHR) events leading to rearrangements. This study sought to identify DGS/VCFS fathers with increased susceptibility to deletions and duplications at the 22q11.2 region in spermatozoa and to assess the particular contribution of intra-chromatid and/or inter-chromatid NAHR. Semen samples from nine DGS/VCFS fathers were analyzed by triple-color FISH using a probe combination that discriminated between normal, deleted and duplicated genotypes. Microsatellite analysis were performed in the parents and the affected children to determine the parental origin of the deleted chromosome 22. Results A significant increase in 22q11.2 deletions was observed in the sperm of two out of nine DGS/VCFS fathers (odds ratio 2.03-fold, P < 0.01), and in both cases the deletion in the offspring was transmitted by the father. Patients with significant increases in sperm anomalies presented a disturbed deletion:duplication 1:1 ratio (P < 0.01). Conclusions Altogether, results support that intra-chromatid NAHR is the mechanism responsible for the higher rate of sperm deletions, which is directly related to the transmission of the deleted chromosome 22 to offspring. Accordingly, the screening of sperm anomalies in the 22q11.2 region should be taken into account in the genetic counseling of DGS/VCFS families.
Collapse
Affiliation(s)
- Laia Vergés
- Unitat de Biologia Cellular (Facultat de Biociències). Universitat Autònoma de Barcelona, 08193-Bellaterra, Cerdanyola del Vallès, Spain
| | - Oscar Molina
- Unitat de Biologia Cellular (Facultat de Biociències). Universitat Autònoma de Barcelona, 08193-Bellaterra, Cerdanyola del Vallès, Spain ; Current address: Wellcome Trust Center for Cell Biology, University of Edinburgh, Edinburgh, Scotland United Kingdom
| | - Esther Geán
- Secció de Genètica Clínica. Hospital Universitari Sant Joan de Déu, 08950-Esplugues de Llobregat, Barcelona, Spain
| | - Francesca Vidal
- Unitat de Biologia Cellular (Facultat de Biociències). Universitat Autònoma de Barcelona, 08193-Bellaterra, Cerdanyola del Vallès, Spain
| | - Joan Blanco
- Unitat de Biologia Cellular (Facultat de Biociències). Universitat Autònoma de Barcelona, 08193-Bellaterra, Cerdanyola del Vallès, Spain
| |
Collapse
|
9
|
Singh P, Raman MJ. Dynamics of radiation induced γH2AX foci in chromatin subcompartments of mouse pachytene spermatocytes and round spermatids. Mol Reprod Dev 2014; 81:484-96. [DOI: 10.1002/mrd.22314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/18/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Priti Singh
- Cytogenetics Laboratory; Department of Zoology; Centre of Advanced Study; Banaras Hindu University; Varanasi India
| | - Mercy J. Raman
- Cytogenetics Laboratory; Department of Zoology; Centre of Advanced Study; Banaras Hindu University; Varanasi India
| |
Collapse
|
10
|
Villani P, Fresegna AM, Ranaldi R, Eleuteri P, Paris L, Pacchierotti F, Cordelli E. X-ray induced DNA damage and repair in germ cells of PARP1(-/-) male mice. Int J Mol Sci 2013; 14:18078-92. [PMID: 24009020 PMCID: PMC3794770 DOI: 10.3390/ijms140918078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/16/2022] Open
Abstract
Poly(ADP-ribose)polymerase-1 (PARP1) is a nuclear protein implicated in DNA repair, recombination, replication, and chromatin remodeling. The aim of this study was to evaluate possible differences between PARP1−/− and wild-type mice regarding induction and repair of DNA lesions in irradiated male germ cells. Comet assay was applied to detect DNA damage in testicular cells immediately, and two hours after 4 Gy X-ray irradiation. A similar level of spontaneous and radiation-induced DNA damage was observed in PARP1−/− and wild-type mice. Conversely, two hours after irradiation, a significant level of residual damage was observed in PARP1−/− cells only. This finding was particularly evident in round spermatids. To evaluate if PARP1 had also a role in the dynamics of H2AX phosphorylation in round spermatids, in which γ-H2AX foci had been shown to persist after completion of DNA repair, we carried out a parallel analysis of γ-H2AX foci at 0.5, 2, and 48 h after irradiation in wild-type and PARP1−/− mice. No evidence was obtained of an effect of PARP1 depletion on H2AX phosphorylation induction and removal. Our results suggest that, in round spermatids, under the tested experimental conditions, PARP1 has a role in radiation-induced DNA damage repair rather than in long-term chromatin modifications signaled by phosphorylated H2AX.
Collapse
Affiliation(s)
- Paola Villani
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-06-3048-4316; Fax: +39-06-3048-6559
| | - Anna Maria Fresegna
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Roberto Ranaldi
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Patrizia Eleuteri
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Lorena Paris
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
- Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Francesca Pacchierotti
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Eugenia Cordelli
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| |
Collapse
|
11
|
Sun C, López Arriaza JR, Mueller RL. Slow DNA loss in the gigantic genomes of salamanders. Genome Biol Evol 2013; 4:1340-8. [PMID: 23175715 PMCID: PMC3542557 DOI: 10.1093/gbe/evs103] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Evolutionary changes in genome size result from the combined effects of mutation, natural
selection, and genetic drift. Insertion and deletion mutations (indels) directly impact
genome size by adding or removing sequences. Most species lose more DNA through small
indels (i.e., ∼1–30 bp) than they gain, which can result in genome reduction
over time. Because this rate of DNA loss varies across species, small indel dynamics have
been suggested to contribute to genome size evolution. Species with extremely large
genomes provide interesting test cases for exploring the link between small indels and
genome size; however, most large genomes remain relatively unexplored. Here, we examine
rates of DNA loss in the tetrapods with the largest genomes—the salamanders. We used
low-coverage genomic shotgun sequence data from four salamander species to examine
patterns of insertion, deletion, and substitution in neutrally evolving non-long terminal
repeat (LTR) retrotransposon sequences. For comparison, we estimated genome-wide DNA loss
rates in non-LTR retrotransposon sequences from five other vertebrate genomes:
Anolis carolinensis, Danio rerio, Gallus
gallus, Homo sapiens, and Xenopus tropicalis.
Our results show that salamanders have significantly lower rates of DNA loss than do other
vertebrates. More specifically, salamanders experience lower numbers of deletions relative
to insertions, and both deletions and insertions are skewed toward smaller sizes. On the
basis of these patterns, we conclude that slow DNA loss contributes to genomic gigantism
in salamanders. We also identify candidate molecular mechanisms underlying these
differences and suggest that natural variation in indel dynamics provides a unique
opportunity to study the basis of genome stability.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Biology, Colorado State University, CO, USA
| | | | | |
Collapse
|
12
|
Murphey P, McLean DJ, McMahan CA, Walter CA, McCarrey JR. Enhanced genetic integrity in mouse germ cells. Biol Reprod 2013; 88:6. [PMID: 23153565 DOI: 10.1095/biolreprod.112.103481] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genetically based diseases constitute a major human health burden, and de novo germline mutations represent a source of heritable genetic alterations that can cause such disorders in offspring. The availability of transgenic rodent systems with recoverable, mutation reporter genes has been used to assess the occurrence of spontaneous point mutations in germline cells. Previous studies using the lacI mutation reporter transgenic mouse system showed that the frequency of spontaneous mutations is significantly lower in advanced male germ cells than in somatic cell types from the same individuals. Here we used this same mutation reporter transgene system to show that female germ cells also display a mutation frequency that is lower than that in corresponding somatic cells and similar to that seen in male germ cells, indicating this is a common feature of germ cells in both sexes. In addition, we showed that statistically significant differences in mutation frequencies are evident between germ cells and somatic cells in both sexes as early as mid-fetal stages in the mouse. Finally, a comparison of the mutation frequency in a general population of early type A spermatogonia with that in a population enriched for Thy-1-positive spermatogonia suggests there is heterogeneity among the early spermatogonial population such that a subset of these cells are predestined to form true spermatogonial stem cells. Taken together, these results support the disposable soma theory, which posits that genetic integrity is normally maintained more stringently in the germ line than in the soma and suggests that this is achieved by minimizing the initial occurrence of mutations in early germline cells and their subsequent gametogenic progeny relative to that in somatic cells.
Collapse
Affiliation(s)
- Patricia Murphey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
13
|
Cordelli E, Eleuteri P, Grollino MG, Benassi B, Blandino G, Bartoleschi C, Pardini MC, Di Caprio EV, Spanò M, Pacchierotti F, Villani P. Direct and delayed X-ray-induced DNA damage in male mouse germ cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:429-439. [PMID: 22730201 DOI: 10.1002/em.21703] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 06/01/2023]
Abstract
Sperm DNA integrity is essential for the accurate transmission of paternal genetic information. Various stages of spermatogenesis are characterized by large differences in radiosensitivity. Differentiating spermatogonia are susceptible to radiation-induced cell killing, but some of them can repair DNA damage and progress through differentiation. In this study, we applied the neutral comet assay, immunodetection of phosphorylated H2AX (γ-H2AX) and the Sperm Chromatin Structure Assay (SCSA) to detect DNA strand breaks in testicular cells and spermatozoa at different times following in vivo X-ray irradiation. Radiation produced DNA strand breaks in testicular cells that were repaired within the first few hours after exposure. Spermatozoa were resistant to the induction of DNA damage, but non-targeted DNA lesions were detected in spermatozoa derived from surviving irradiated spermatogonia. These lesions formed while round spermatids started to elongate within the testicular seminiferous tubules. The transcription of pro-apoptotic genes at this time was also enhanced, suggesting that an apoptotic-like process was involved in DNA break production. Our results suggest that proliferating spermatogonia retain a memory of the radiation insult that is recognized at a later developmental stage and activates a process leading to DNA fragmentation.
Collapse
|
14
|
Fusco F, Paciolla M, Napolitano F, Pescatore A, D'Addario I, Bal E, Lioi MB, Smahi A, Miano MG, Ursini MV. Genomic architecture at the Incontinentia Pigmenti locus favours de novo pathological alleles through different mechanisms. Hum Mol Genet 2011; 21:1260-71. [PMID: 22121116 DOI: 10.1093/hmg/ddr556] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IKBKG/NEMO gene mutations cause an X-linked, dominant neuroectodermal disorder named Incontinentia Pigmenti (IP). Located at Xq28, IKBKG/NEMO has a unique genomic organization, as it is part of a segmental duplication or low copy repeat (LCR1-LCR2, >99% identical) containing the gene and its pseudogene copy (IKBKGP). In the opposite direction and outside LCR1, IKBKG/NEMO partially overlaps G6PD, whose mutations cause a common X-linked human enzymopathy. The two LCRs in the IKBKG/NEMO locus are able to recombine through non-allelic homologous recombination producing either a pathological recurrent exon 4-10 IKBKG/NEMO deletion (IKBKGdel) or benign small copy number variations. We here report that the local high frequency of micro/macro-homologies, tandem repeats and repeat/repetitive sequences make the IKBKG/NEMO locus susceptible to novel pathological IP alterations. Indeed, we describe the first two independent instances of inter-locus gene conversion, occurring between the two LCRs, that copies the IKBKGP pseudogene variants into the functional IKBKG/NEMO, causing the de novo occurrence of p.Glu390ArgfsX61 and the IKBKGdel mutations, respectively. Subsequently, by investigating a group of 20 molecularly unsolved IP subjects using a high-density quantitative polymerase chain reaction assay, we have identified seven unique de novo deletions varying from 4.8 to ∼115 kb in length. Each deletion removes partially or completely both IKBKG/NEMO and the overlapping G6PD, thereby uncovering the first deletions disrupting the G6PD gene which were found in patients with IP. Interestingly, the 4.8 kb deletion removes the conserved bidirectional promoterB, shared by the two overlapping IKBKG/NEMO and G6PD genes, leaving intact the alternative IKBKG/NEMO unidirectional promoterA. This promoter, although active in the keratinocytes of the basal dermal layer, is down-regulated during late differentiation. Genomic analysis at the breakpoint sites indicated that other mutational forces, such as non-homologous end joining, Alu-Alu-mediated recombination and replication-based events, might enhance the vulnerability of the IP locus to produce de novo pathological IP alleles.
Collapse
Affiliation(s)
- Francesca Fusco
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, IGB-CNR, Naples 80131, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Paris L, Cordelli E, Eleuteri P, Grollino MG, Pasquali E, Ranaldi R, Meschini R, Pacchierotti F. Kinetics of γ-H2AX induction and removal in bone marrow and testicular cells of mice after X-ray irradiation. Mutagenesis 2011; 26:563-72. [DOI: 10.1093/mutage/ger017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
16
|
Protecting the heritable genome: DNA damage response mechanisms in spermatogonial stem cells. DNA Repair (Amst) 2011; 10:159-68. [DOI: 10.1016/j.dnarep.2010.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 09/21/2010] [Accepted: 10/22/2010] [Indexed: 01/10/2023]
|
17
|
Molina O, Blanco J, Vidal F. Deletions and duplications of the 15q11-q13 region in spermatozoa from Prader-Willi syndrome fathers. Mol Hum Reprod 2010; 16:320-8. [PMID: 20083560 DOI: 10.1093/molehr/gaq005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a genomic disorder mostly caused by deletions of 15q11-q13 region (70%). It has been suggested that the particular genomic architecture of 15q11-q13 region, characterized to be flanked by low copy repeats, could predispose it to Non-Allelic Homologous Recombination (NAHR). However, no studies in gametes of fathers of PWS individuals have been published to date. The objective of the study was to assess the incidence of 15q11-q13 deletions and duplications in spermatozoa from PWS fathers and to appraise the value of the data obtained for the estimation of the risk of recurrence for the syndrome. Semen samples from 16 fathers of PWS individuals and 10 control donors, were processed by triple-color fluorescence in situ hybridization. A customized combination of probes was used to discriminate between normal, deleted and duplicated sperm genotypes. A minimum of 10,000 sperm were scored for every single sample. A significant increase in the frequency of 15q11-q13 deletions and duplications were observed in PWS fathers (0.90 +/- 0.14%) compared with control donors (0.47 +/- 0.07%). Ten out of 16 individuals contributed to this population increase (P < 0.01), suggesting a predisposition for 15q11-q13 reorganizations. Statistical differences were observed in the frequency of 15q11-q13 deletions and duplications in fathers of PWS individuals (0.59 versus 0.31%; P = 0.001), indicating that intra-chromatid NAHR exchanges also substantially contribute to the rearrangements. Results demonstrated the increased susceptibility of some fathers of PWS individuals to generate 15q11-q13 deletions, suggesting that the screening of anomalies in sperm should be advisable as a valuable complement for genetic counseling.
Collapse
Affiliation(s)
- O Molina
- Unitat de Biologia Cel.lular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
18
|
Leduc F, Maquennehan V, Nkoma GB, Boissonneault G. DNA Damage Response During Chromatin Remodeling in Elongating Spermatids of Mice1. Biol Reprod 2008; 78:324-32. [DOI: 10.1095/biolreprod.107.064162] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|