1
|
Benković V, Milić M, Oršolić N, Horvat Knežević A, Brozović G, Borojević N. Brain DNA damaging effects of volatile anesthetics and 1 and 2 Gy gamma irradiation in vivo: Preliminary results. Toxicol Ind Health 2023; 39:67-80. [PMID: 36602468 DOI: 10.1177/07482337221145599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although both can cause DNA damage, the combined impact of volatile anesthetics halothane/sevoflurane/isoflurane and radiotherapeutic exposure on sensitive brain cells in vivo has not been previously analyzed. Healthy Swiss albino male mice (240 in total, 48 groups) were exposed to either halothane/sevoflurane/isoflurane therapeutic doses alone (2 h); 1 or 2 gray of gamma radiation alone; or combined exposure. Frontal lobe brain samples from five animals were taken immediately and 2, 6, and 24 h after exposure. DNA damage and cellular repair index were analyzed using the alkaline comet assay and the tail intensity parameter. Elevated tail intensity levels for sevoflurane/halothane were the highest at 6 h and returned to baseline within 24 h for sevoflurane, but not for halothane, while isoflurane treatment caused lower tail intensity than control values. Combined exposure demonstrated a slightly halothane/sevoflurane protective and isoflurane protective effect, which was stronger for 2 than for 1 gray. Cellular repair indices and tail intensity histograms indicated different modes of action in DNA damage creation. Isoflurane/sevoflurane/halothane preconditioning demonstrated protective effects in sensitive brain cells in vivo. Owing to the constant increases in the combined use of radiotherapy and volatile anesthetics, further studies should explore the mechanisms behind these effects, including longer and multiple exposure treatments and in vivo brain tumor models.
Collapse
Affiliation(s)
- Vesna Benković
- Faculty of Science, 117036University of Zagreb, Zagreb, Croatia
| | - Mirta Milić
- Mutagenesis Unit, 118938Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nada Oršolić
- Faculty of Science, 117036University of Zagreb, Zagreb, Croatia
| | | | - Gordana Brozović
- Department of Anesthesiology, Reanimatology and ICU, University Hospital for Tumors, 499232Sestre Milosrdnice University Hospital Centre, Zagreb, Croatia.,Faculty of Dental Medicine and Health, 84992University of Osijek, Osijek, Croatia
| | - Nikola Borojević
- 8256Warrington and Halton Teaching Hospitals NHS Foundation Trust, Warrington, UK
| |
Collapse
|
2
|
Dong J, Zhang Z, Huang H, Mo P, Cheng C, Liu J, Huang W, Tian C, Zhang C, Li J. miR-10a rejuvenates aged human mesenchymal stem cells and improves heart function after myocardial infarction through KLF4. Stem Cell Res Ther 2018; 9:151. [PMID: 29848383 PMCID: PMC5977543 DOI: 10.1186/s13287-018-0895-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
Abstract
Background Aging is one of the key factors that regulate the function of human bone marrow mesenchymal stem cells (hBM-MSCs) and related changes in microRNA (miRNA) expression. However, data reported on aging-related miRNA changes in hBM-MSCs are limited. Methods We demonstrated previously that miR-10a is significantly decreased in aged hBM-MSCs and restoration of the miR-10a level attenuated cell senescence and increased the differentiation capacity of aged hBM-MSCs by repressing Krüpple-like factor 4 (KLF4). In the present study, miR-10a was overexpressed or KLF4 was downregulated in old hBM-MSCs by lentiviral transduction. The hypoxia-induced apoptosis, cell survival, and cell paracrine function of aged hBM-MSCs were investigated in vitro. In vivo, miR-10a-overexpressed or KLF4-downregulated old hBM-MSCs were implanted into infarcted mouse hearts after myocardial infarction (MI). The mouse cardiac function of cardiac angiogenesis was measured and cell survival of aged hBM-MSCs was investigated. Results Through lentivirus-mediated upregulation of miR-10a and downregulation of KLF4 in aged hBM-MSCs in vitro, we revealed that miR-10a decreased hypoxia-induced cell apoptosis and increased cell survival of aged hBM-MSCs by repressing the KLF4–BAX/BCL2 pathway. In vivo, transplantation of miR-10a-overexpressed aged hBM-MSCs promoted implanted stem cell survival and improved cardiac function after MI. Mechanistic studies revealed that overexpression of miR-10a in aged hBM-MSCs activated Akt and stimulated the expression of angiogenic factors, thus increasing angiogenesis in ischemic mouse hearts. Conclusions miR-10a rejuvenated aged hBM-MSCs which improved angiogenesis and cardiac function in injured mouse hearts. Electronic supplementary material The online version of this article (10.1186/s13287-018-0895-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Dong
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Department of Oncology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenhui Zhang
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Department of Intensive Care Unit, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongshen Huang
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Pei Mo
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chuanfan Cheng
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jianwei Liu
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Weizhao Huang
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chaowei Tian
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chongyu Zhang
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Jiao Li
- Guangzhou Institute of Cardiovascular Disease, Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. .,Toronto General Research Institute, University Health Network, Toronto, Canada.
| |
Collapse
|
3
|
Liu HX, Li N, Wei L, Zhou FX, Ma R, Xiao F, Zhang W, Zhang Y, Hui YP, Song H, Chen BL. High expression of Kruppel-like factor 4 as a predictor of poor prognosis for cervical cancer patient response to radiotherapy. Tumour Biol 2017. [PMID: 28639905 DOI: 10.1177/1010428317710225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hai-Xia Liu
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Na Li
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Li Wei
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Fu-Xing Zhou
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Rui Ma
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Feng Xiao
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Wei Zhang
- The State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi’an, China
| | - Ying Zhang
- Department of Gynecology and Obstetrics, The People’s Liberation Army 323 Hospital, Xi’an, China
| | - Yan-ping Hui
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Hui Song
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Bi-Liang Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
4
|
Ghaleb AM, Yang VW. Krüppel-like factor 4 (KLF4): What we currently know. Gene 2017; 611:27-37. [PMID: 28237823 DOI: 10.1016/j.gene.2017.02.025] [Citation(s) in RCA: 390] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor that regulates diverse cellular processes such as cell growth, proliferation, and differentiation. Since its discovery in 1996, KLF4 has been gaining a lot of attention, particularly after it was shown in 2006 as one of four factors involved in the induction of pluripotent stem cells (iPSCs). Here we review the current knowledge about the different functions and roles of KLF4 in various tissue and organ systems.
Collapse
Affiliation(s)
- Amr M Ghaleb
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Vincent W Yang
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|