1
|
Kang L, Wu J, Lin X, Li J, Duan N, Wang Z, Wu S. Detection and simultaneous imaging of acrylamide, miR-21 and miR-221 based on multicolor aggregation-induced emission nanoparticles and DNAzyme walker. Biosens Bioelectron 2024; 264:116628. [PMID: 39133994 DOI: 10.1016/j.bios.2024.116628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024]
Abstract
Acrylamide (AA) in heat-processed foods has emerged as a global health problem, mainly carcinogenic, neurotoxic, and reproductive toxicity, and an increasing number of researchers have delved into elucidating its toxicological mechanisms. Studies have demonstrated that exposure of HepG2 by AA in a range of concentrations can induce the upregulation of miR-21 and miR-221. Monitoring the response of intracellular miRNAs can play an important role in unraveling the mechanisms of AA toxicity. Here, multicolor aggregation induced emission nano particle (AIENP) probes were constructed from three AIE dyes for simultaneous imaging of intracellular AA and AA-induced miR-21/miR-221 by combining the recognition function of AA aptamers and the signal amplification of a DNAzyme walker. The surface of these nanoparticles contains carboxyl groups, facilitating their linkage to a substrate chain modified with a fluorescent quencher group via an amide reaction. Optimization experiments were conducted to determine the optimal substrate-to-DNAzyme ratio, confirming its efficacy as a walker for signal amplification. Sensitive detection of AA, miR-21 and miR-221 was achieved in extracellular medium, with detection limits of 0.112 nM for AA, 0.007 pM and 0.003 pM for miR-21 and miR-221, respectively, demonstrating excellent selectivity. Intracellularly, ZIF-8 structure collapsed, releasing Zn2+, activating DNAzyme cleavage activity, and the fluorescence of multicolor AIENPs within HepG2 cells gradually recovered with increasing stimulation time (0-12 h) and concentrations of AA (0-500 μM). This dynamic response unveiled the relationship between AA exposure and miR-21/miR-221 expression, further validating the carcinogenicity of AA.
Collapse
Affiliation(s)
- Lixin Kang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jiajun Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jin Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Hou S, Yang B, Chen Q, Xu Y, Li H. Potential biomarkers of recurrent FSGS: a review. BMC Nephrol 2024; 25:258. [PMID: 39134955 PMCID: PMC11318291 DOI: 10.1186/s12882-024-03695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Focal segmental glomerulosclerosis (FSGS), a clinicopathological condition characterized by nephrotic-range proteinuria, has a high risk of progression to end-stage renal disease (ESRD). Meanwhile, the recurrence of FSGS after renal transplantation is one of the main causes of graft loss. The diagnosis of recurrent FSGS is mainly based on renal puncture biopsy transplants, an approach not widely consented by patients with early mild disease. Therefore, there is an urgent need to find definitive diagnostic markers that can act as a target for early diagnosis and intervention in the treatment of patients. In this review, we summarize the domestic and international studies on the pathophysiology, pathogenesis and earliest screening methods of FSGS and describe the functions and roles of specific circulating factors in the progression of early FSGS, in order to provide a new theoretical basis for early diagnosis of FSGS recurrence, as well as aid the exploration of therapeutic targets.
Collapse
Affiliation(s)
- Shuang Hou
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Bo Yang
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Qian Chen
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China
| | - Yuan Xu
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China.
| | - Haiyang Li
- Hepatological surgery department, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550000, China.
| |
Collapse
|
3
|
Dasgupta S, Sharapova T, Mahalingaiah PK, Chorley BN, Shoieb A, Tsuji T, Dos Santos AAC, Chari R, Ebrahimi A, Dalmas Wilk DA, Pettit S, Bawa B, Vaughan E, van Vleet TR, Mitchell CA, Yuen PST. Urinary MicroRNA biomarkers of nephrotoxicity in Macaca fascicularis. Regul Toxicol Pharmacol 2024; 151:105668. [PMID: 38936797 DOI: 10.1016/j.yrtph.2024.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Drug-induced kidney injury (DIKI) refers to kidney damage resulting from the administration of medications. The aim of this project was to identify reliable urinary microRNA (miRNAs) biomarkers that can be used as potential predictors of DIKI before disease diagnosis. This study quantified a panel of six miRNAs (miRs-210-3p, 423-5p, 143-3p, 130b-3p, 486-5p, 193a-3p) across multiple time points using urinary samples from a previous investigation evaluating effects of a nephrotoxicant in cynomolgus monkeys. Exosome-associated miRNA exhibited distinctive trends when compared to miRNAs quantified in whole urine, which may reflect a different urinary excretion mechanism of miRNAs than those released passively into the urine. Although further research and mechanistic studies are required to elucidate how these miRNAs regulate signaling in disease pathways, we present, for the first time, data that several miRNAs displayed strong correlations with histopathology scores, thus indicating their potential use as biomarkers to predict the development of DIKI in preclinical studies and clinical trials. Also, these findings can potentially be translated into other non-clinical species or human for the detection of DIKI.
Collapse
Affiliation(s)
- Subham Dasgupta
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | | | - Brian N Chorley
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Takayuki Tsuji
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alef A C Dos Santos
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rohit Chari
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Syril Pettit
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | | | | | | | - Peter S T Yuen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Razavinia A, Razavinia A, Jamshidi Khalife Lou R, Ghavami M, Shahri F, Tafazoli A, Khalesi B, Hashemi ZS, Khalili S. Exosomes as novel tools for renal cell carcinoma therapy, diagnosis, and prognosis. Heliyon 2024; 10:e32875. [PMID: 38948044 PMCID: PMC11211897 DOI: 10.1016/j.heliyon.2024.e32875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Background Renal Cell Carcinoma (RCC) stands as a formidable challenge within the field of oncology, despite considerable research endeavors. The advanced stages of this malignancy present formidable barriers to effective treatment and management. Objective This review aims to explore the potential of exosomes in addressing the diagnostic and therapeutic challenges associated with RCC. Specifically, it investigates the role of exosomes as biomarkers and therapeutic vehicles in the context of RCC management. Methods For this review article, a comprehensive literature search was conducted using databases such as PubMed, employing relevant keywords to identify research articles pertinent to the objectives of the review. Initially, 200 articles were identified, which underwent screening to remove duplicates and assess relevance based on titles and abstracts, followed by a detailed examination of full texts. From the selected articles, relevant data were extracted and synthesized to address the review's objectives. The conclusions were drawn based on a thorough analysis of the findings. The quality was ensured through independent review and resolution of discrepancies among multiple reviewers. Results Exosomes demonstrate potential as diagnostic tools for early detection, prognosis, and treatment monitoring in RCC. Their ability to deliver various therapeutic agents, such as small interfering RNAs, lncRNAs, chemotherapeutic drugs, and immune-stimulating agents, allows for a personalized approach to RCC management. By leveraging exosome-based technologies, precision and efficacy in treatment strategies can be significantly enhanced. Conclusion Despite the promising advancements enabled by exosomes in the management of RCC, further research is necessary to refine exosome-based technologies and validate their efficacy, safety, and long-term benefits through rigorous clinical trials. Embracing exosomes as integral components of RCC diagnosis and treatment represents a significant step towards improving patient outcomes and addressing the persistent challenges posed by this malignancy in the field of oncology.
Collapse
Affiliation(s)
- Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abazar Razavinia
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roya Jamshidi Khalife Lou
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahlegha Ghavami
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Forouzan Shahri
- Department of Chemistry, Faculty of Sciences, University of Guilan, Iran
| | - Aida Tafazoli
- Department of Bacterial and Virology, Shiraz medical school, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
5
|
Eritja À, Caus M, Belmonte T, de Gonzalo-Calvo D, García-Carrasco A, Martinez A, Martínez M, Bozic M. microRNA Expression Profile in Obesity-Induced Kidney Disease Driven by High-Fat Diet in Mice. Nutrients 2024; 16:691. [PMID: 38474819 DOI: 10.3390/nu16050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity is one of the main causes of chronic kidney disease; however, the precise molecular mechanisms leading to the onset of kidney injury and dysfunction in obesity-associated nephropathy remain unclear. The present study aimed to unveil the kidney microRNA (miRNA) expression profile in a model of obesity-induced kidney disease in C57BL/6J mice using next-generation sequencing (NGS) analysis. High-fat diet (HFD)-induced obesity led to notable structural alterations in tubular and glomerular regions of the kidney, increased renal expression of proinflammatory and profibrotic genes, as well as an elevated renal expression of genes involved in cellular lipid metabolism. The miRNA sequencing analysis identified a set of nine miRNAs differentially expressed in the kidney upon HFD feeding, with miR-5099, miR-551b-3p, miR-223-3p, miR-146a-3p and miR-21a-3p showing the most significant differential expression between standard diet (STD) and HFD mice. A validation analysis showed that the expression levels of miR-5099, miR-551b-3p and miR-146a-3p were consistent with NGS results, while Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses revealed that these three validated miRNAs modulated target genes involved in metabolic and adipocytokine pathways, fatty acid and lipid metabolism, and inflammatory, senescence and profibrotic pathways. Our results suggest that differentially expressed miRNAs play pivotal roles in the intricate pathophysiology of obesity-associated kidney disease and could potentially create novel treatment strategies to counteract the deleterious effects of obesity on kidney function.
Collapse
Affiliation(s)
- Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Maite Caus
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Thalia Belmonte
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, Hospital Universitari Arnau de Vilanova-Santa Maria, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Alicia García-Carrasco
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Ana Martinez
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Montserrat Martínez
- Biostatistics Unit (Biostat), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain
| |
Collapse
|
6
|
Wu K, Ma C, Wang Y. Functional Nucleic Acid Probes Based on Two-Photon for Biosensing. BIOSENSORS 2023; 13:836. [PMID: 37754070 PMCID: PMC10527542 DOI: 10.3390/bios13090836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
Functional nucleic acid (FNA) probes have been widely used in environmental monitoring, food analysis, clinical diagnosis, and biological imaging because of their easy synthesis, functional modification, flexible design, and stable properties. However, most FNA probes are designed based on one-photon (OP) in the ultraviolet or visible regions, and the effectiveness of these OP-based FNA probes may be hindered by certain factors, such as their potential for photodamage and limited light tissue penetration. Two-photon (TP) is characterized by the nonlinear absorption of two relatively low-energy photons of near-infrared (NIR) light with the resulting emission of high-energy ultraviolet or visible light. TP-based FNA probes have excellent properties, including lower tissue self-absorption and autofluorescence, reduced photodamage and photobleaching, and higher spatial resolution, making them more advantageous than the conventional OP-based FNA probes in biomedical sensing. In this review, we summarize the recent advances of TP-excited and -activated FNA probes and detail their applications in biomolecular detection. In addition, we also share our views on the highlights and limitations of TP-based FNA probes. The ultimate goal is to provide design approaches for the development of high-performance TP-based FNA probes, thereby promoting their biological applications.
Collapse
Affiliation(s)
- Kefeng Wu
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yisen Wang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| |
Collapse
|
7
|
Piko N, Bevc S, Hojs R, Ekart R. Atherosclerosis and Epigenetic Modifications in Chronic Kidney Disease. Nephron Clin Pract 2023; 147:655-659. [PMID: 37459841 DOI: 10.1159/000531292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/23/2023] [Indexed: 11/03/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the most common chronic diseases worldwide, with prevalence currently projected at 10% and rising. Cardiovascular disease is the leading cause of morbidity and mortality in CKD patients and is integrally linked with atherogenesis and vascular stiffness. Estimated glomerular filtration rate and the level of proteinuria are not only markers of kidney function but of cardiovascular risk, as well. Despite the efforts, CKD patients still experience excessive cardiovascular burden. MicroRNAs (miRNAs) are small (18-24 nucleotides), single-stranded non-coding RNAs that regulate gene expression by blocking messenger RNA (mRNA) translation and initiating degradation of mRNA. Studies have confirmed the imperative role of miRNA dysregulation in the pathophysiology of several diseases, including atherosclerosis and CKD. This article summarizes what is currently known about the role of miRNAs in CKD patients.
Collapse
Affiliation(s)
- Nejc Piko
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
- Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
- Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Robert Ekart
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor, Slovenia
- Medical Faculty, University of Maribor, Maribor, Slovenia
| |
Collapse
|
8
|
Mastrolia I, Catani V, Oltrecolli M, Pipitone S, Vitale MG, Masciale V, Chiavelli C, Bortolotti CA, Nasso C, Grisendi G, Sabbatini R, Dominici M. Chasing the Role of miRNAs in RCC: From Free-Circulating to Extracellular-Vesicle-Derived Biomarkers. BIOLOGY 2023; 12:877. [PMID: 37372161 DOI: 10.3390/biology12060877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Renal cell carcinoma (RCC) is the second most common cancer of the urinary system. The current therapeutic strategies are based on partial or total nephrectomy and/or targeted therapies based on immune checkpoint inhibitors to which patients are often refractory. Preventive and screening strategies do not exist and the few available biomarkers for RCC are characterized by a lack of sensitivity, outlining the need for novel noninvasive and sensitive biomarkers for early diagnosis and better disease monitoring. Blood liquid biopsy (LB) is a non- or minimally invasive procedure for a more representative view of tumor heterogeneity than a tissue biopsy, potentially allowing the real-time monitoring of cancer evolution. Growing interest is focused on the extracellular vesicles (EVs) secreted by either healthy or tumoral cells and recovered in a variety of biological matrices, blood included. EVs are involved in cell-to-cell crosstalk transferring their mRNAs, microRNAs (miRNAs), and protein content. In particular, transferred miRNAs may regulate tumorigenesis and proliferation also impacting resistance to apoptosis, thus representing potential useful biomarkers. Here, we present the latest efforts in the identification of circulating miRNAs in blood samples, focusing on the potential use of EV-derived miRNAs as RCC diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Ilenia Mastrolia
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Virginia Catani
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marco Oltrecolli
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Stefania Pipitone
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Maria Giuseppa Vitale
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | | | - Cecilia Nasso
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
- Division of Oncology, S. Corona Hospital, 17027 Pietra Ligure, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Roberto Sabbatini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
9
|
MicroRNA Modulation during Orthodontic Tooth Movement: A Promising Strategy for Novel Diagnostic and Personalized Therapeutic Interventions. Int J Mol Sci 2022; 23:ijms232415501. [PMID: 36555142 PMCID: PMC9779831 DOI: 10.3390/ijms232415501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The Orthodontic Tooth Movement (OTM) is allowed through a mediated cell/tissue mechanism performed by applying a force or a pair of forces on the dental elements, and the tooth movement is a fundamental requirement during any orthodontic treatment. In this regard, it has been widely shown that each orthodontic treatment has a minimum duration required concerning numerous factors (age, patient compliance, type of technique used, etc.). In this regard, the aim of the following revision of the literature is to give readers a global vision of principal microRNAs (miRNAs) that are most frequently associated with OTM and their possible roles. Previously published studies of the last 15 years have been considered in the PubMed search using "OTM" and "miRNA" keywords for the present review article. In vitro and in vivo studies and clinical trials were mainly explored. Correlation between OTM and modulation of several miRNAs acting through post-transcriptional regulation on target genes was observed in the majority of previous studied. The expression analysis of miRNAs in biological samples, such as gingival crevicular fluid (GCF), can be considered a useful tool for novel diagnostic and/or prognostic approaches and for new personalized orthodontic treatments able to achieve a better clinical response rate. Although only a few studies have been published, the data obtained until now encourage further investigation of the role of miRNA modulation during orthodontic treatment. The aim of this study is to update the insights into the role and impact of principal micro-RNAs (miRNAs) that are most frequently associated during OTM.
Collapse
|
10
|
Santos SAA, Portela LMF, Camargo ACL, Constantino FB, Colombelli KT, Fioretto MN, Mattos R, de Almeida Fantinatti BE, Denti MA, Piazza S, Felisbino SL, Zambrano E, Justulin LA. miR-18a-5p Is Involved in the Developmental Origin of Prostate Cancer in Maternally Malnourished Offspring Rats: A DOHaD Approach. Int J Mol Sci 2022; 23:14855. [PMID: 36499183 PMCID: PMC9739077 DOI: 10.3390/ijms232314855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept correlates early life exposure to stressor conditions with the increased incidence of non-communicable chronic diseases, including prostate cancer (PCa), throughout the life span. However, the molecular mechanisms involved in this process remain poorly understood. In this study, the deregulation of two miRNAs (rno-miR-18a-5p and rno-miR-345-3p) was described in the ventral prostate VP of old rats born to dams fed with a low protein diet (LPD) (6% protein in the diet) during gestational and lactational periods. Integrative analysis of the (VP) transcriptomic and proteomic data revealed changes in the expression profile of 14 identified predicted targets of these two DE miRNAs, which enriched terms related to post-translational protein modification, metabolism of proteins, protein processing in endoplasmic reticulum, phosphonate and phosphinate metabolism, the calnexin/calreticulin cycle, metabolic pathways, N-glycan trimming in the ER and the calnexin/calreticulin cycle, hedgehog ligand biogenesis, the ER-phagosome pathway, detoxification of reactive oxygen species, antigenprocessing-cross presentation, RAB geranylgeranylation, collagen formation, glutathione metabolism, the metabolism of xenobiotics by cytochrome P450, and platinum drug resistance. RT-qPCR validated the deregulation of the miR-18a-5p/P4HB (prolyl 4-hydroxylase subunit beta) network in the VP of older offspring as well as in the PNT-2 cells transfected with mimic miR-18a-5p. Functional in vitro studies revealed a potential modulation of estrogen receptor α (ESR1) by miR-18a-5p in PNT-2 cells, which was also confirmed in the VP of older offspring. An imbalance of the testosterone/estrogen ratio was also observed in the offspring rats born to dams fed with an LPD. In conclusion, deregulation of the miR-18a-5p/P4HB network can contribute to the developmental origins of prostate cancer in maternally malnourished offspring, highlighting the need for improving maternal healthcare during critical windows of vulnerability early in life.
Collapse
Affiliation(s)
- Sergio Alexandre Alcantara Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Luiz Marcos Frediani Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Ana Carolina Lima Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Flavia Bessi Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Ketlin Thassiani Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Renato Mattos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Bruno Evaristo de Almeida Fantinatti
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Michela Alessandra Denti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Sérgio Luis Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
11
|
Iulian Stanciugelu S, Homorogan C, Selaru C, Patrascu JM, Patrascu JM, Stoica R, Nitusca D, Marian C. Osteoarthritis and microRNAs: Do They Provide Novel Insights into the Pathophysiology of This Degenerative Disorder? Life (Basel) 2022; 12:1914. [PMID: 36431049 PMCID: PMC9692287 DOI: 10.3390/life12111914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent degenerative joint diseases in older adults and a leading cause of disability. Recent research studies have evidenced the importance of mi-croRNAs (miRs) in the pathogenesis of OA. In the present review, we focused on current literature findings on dysregulated miRs involved in the pathophysiology of OA. From the 35 case-control studies including OA patients compared to healthy controls, a total of 54 human miRs were identified to be dysregulated in OA. In total, 41 miRs were involved in the pathophysiological processes of OA, including apoptosis, inflammation, and proliferation, having either a protective or a progressive role in OA. The discovery of altered miR levels in OA patients compared to healthy controls determines a better understanding of the molecular mechanisms involved in the pathophysiology of OA and could open novel horizons in the field of orthopedics.
Collapse
Affiliation(s)
- Stefan Iulian Stanciugelu
- Doctoral School, Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
| | - Claudia Homorogan
- Doctoral School, Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Cosmin Selaru
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
| | - Jenel Marian Patrascu
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
- Department of Orthopedics and Trauma, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Jenel Marian Patrascu
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
- Department of Orthopedics and Trauma, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Raymond Stoica
- Orthopedic and Traumatology Clinic, Timisoara County Emergency Clinical Hospital, B-dul L Rebreanu Nr. 156, 300723 Timisoara, Romania
| | - Diana Nitusca
- Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
- Center for Complex Networks Science, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Catalin Marian
- Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
- Center for Complex Networks Science, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| |
Collapse
|
12
|
Gao Y, Xu W, Guo C, Huang T. GATA1 regulates the microRNA‑328‑3p/PIM1 axis via circular RNA ITGB1 to promote renal ischemia/reperfusion injury in HK‑2 cells. Int J Mol Med 2022; 50:100. [PMID: 35674159 PMCID: PMC9242654 DOI: 10.3892/ijmm.2022.5156] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
Acute kidney injury (AKI) is caused by renal ischemia/reperfusion injury (IRI) during kidney transplantation. The levels of both circular RNAs (circRNAs) and microRNAs (miRNAs/miR) appear to be critical for AKI detection. While several RNA interactions in AKI have been found, the regulatory mechanisms between the molecules remain to be fully elucidated. In the present study, miRNA expression profiling analysis was conducted using an online dataset to identify the differentially expressed miRNAs in rats with IRI. miR-328-3p was also found to be downregulated in human kidney-2 (HK-2) cells subjected to hypoxia/reperfusion (H/R), and its overexpression targeting pim-1 proto-oncogene (PIM1) resulted in an increased viability and a reduced apoptosis, as well as in the decreased expression of inflammatory factors upon H/R exposure. Putative targets and circRNAs of miR-328-3p were identified using publically available databases. The inhibition of circRNA integrin beta 1 (ITGB1; circITGB1) suppressed the inflammatory response induced by H/R by sponging miR-328-3p in HK-2 cells. Furthermore, a sequence of the functional ITGB1 promoter was studied for transcription factor GATA binding protein 1 (GATA1) binding sites. GATA1 binds to the ITGB1 promoter, leading to the expression of circITGB1. On the whole, the findings of the present study revealed a regulatory pathway modulating miR-328-3p in IRI, demonstrating that the GATA1-mediated regulation of circITGB1 enhanced the H/R-induced inflammatory response via the miR-328-3p/PIM1 axis.
Collapse
Affiliation(s)
- Yang Gao
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Weijia Xu
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Chen Guo
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Tao Huang
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
13
|
Zaman A, Banday AA. Angiotensin1-7 Protects Against Renal Ischemia-Reperfusion Injury via Regulating the Expression of NRF2 and microRNAs in Fisher 344 Rats. Am J Physiol Renal Physiol 2022; 323:F33-F47. [PMID: 35532070 DOI: 10.1152/ajprenal.00283.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemia/reperfusion (I/R) is considered the primary cause of acute kidney injury and is higher among older individuals. While ischemic episodes are hard to predict and prevent, detrimental ischemic effects could be mitigated by exogenous intervention. This study aims to identify the protective role of angiotensin (ANG)1-7 against I/R-induced renal injury in adult vs. aged rats. Adult and aged male Fisher 344 rats were subjected to 40-minute bilateral renal ischemia followed by 28-days reperfusion. ANG1-7 was administered intraperitoneally in ischemic rats for 28 days without or with Mas receptor antagonist A779. I/R increased blood pressure, plasma creatinine, urinary 8-isoprostane, and renal infiltration of pro and anti-inflammatory macrophages and reduced glomerular filtration rate in both adult and aged rats compared to shams. In addition to causing glomerular sclerosis and tubular damage, I/R increased the expression of pathogenic microRNAs (miRNAs): miR-20a-5p, miR-21-5p, miR-24-3p, and miR-194-5p in both the age groups. ANG1-7 treatment of ischemic rats mitigated oxidative stress and renal inflammation, restored renal structure and function, and reduced high blood pressure. Also, ANG1-7 suppressed the expression of pathogenic miRNAs. In addition, ANG1-7 treatment of I/R rats increased the expression of redox-sensitive transcription factor NRF2 and phase II antioxidant enzymes. The beneficial effects of ANG1-7 were sensitive to A779. Collectively, these data suggest that ANG1-7 associated with NRF2 activation could alleviate post-I/R-induced kidney injury and therefore serve as a potential therapeutic compound to protect against biochemical and morphological pathologies of I/R in both adults and aged populations.
Collapse
Affiliation(s)
- Asif Zaman
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas, United States
| | - Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas, United States
| |
Collapse
|
14
|
Motshwari DD, George C, Matshazi DM, Weale CJ, Davids SFG, Zemlin AE, Erasmus RT, Kengne AP, Matsha TE. Expression of whole blood miR-126-3p, -30a-5p, -1299, -182-5p and -30e-3p in chronic kidney disease in a South African community-based sample. Sci Rep 2022; 12:4107. [PMID: 35260775 PMCID: PMC8904505 DOI: 10.1038/s41598-022-08175-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
The burden of chronic kidney disease (CKD) in Africa remains poorly characterized, due partly to the lack of appropriate diagnostic strategies. Although in recent years the diagnostic and prognostic utility of microRNAs (miRNAs) have gained prominence in the context of CKD, its value has not been evaluated in African populations. We investigated the expression of whole blood miRNAs (miR-126-3p, -30a-5p, -1299, -182-5p and -30e-3p) in a total sample of 1449 comprising of 13.3% individuals with CKD (stage 1-5) and 26.4% male participants, as well as the association of these miRNAs with prevalent CKD, in a community-based sample of South African adults. We used Reverse Transcription Quantitative Real-Time PCR (RT-qPCR) to analyze miRNA expression. There was an increased expression in whole blood miR-126-3p, -30a-5p, -1299 and -182-5p in individuals with CKD, compared to those without (all p ≤ 0.036), whereas miR-30e-3p showed no significant difference between the groups (p = 0.482). Only miR-126-3p, -182-5p and -30e-3p were independently associated with increased risk of CKD (all p ≤ 0.022). This study showed for the first time that there is a dysregulation of whole blood miR-126-3p, -30a-5p, -1299 and -182-5p in South Africans of mixed-ancestry with CKD. More research is needed to ascertain their role in CKD risk screening in African populations.
Collapse
Affiliation(s)
- Dipuo D Motshwari
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Cindy George
- Non-Communicable Disease Research Unit, South African Medical Research Council, Parow, Francie van Zijl Drive, Parow Valley, Cape Town, South Africa.
| | - Don M Matshazi
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Cecil J Weale
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Saarah F G Davids
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Annalise E Zemlin
- Division of Chemical Pathology, Faculty of Medicine and Health Sciences, National Health Laboratory Service (NHLS) and University of Stellenbosch, Cape Town, South Africa
| | - Rajiv T Erasmus
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
- Division of Chemical Pathology, Faculty of Medicine and Health Sciences, National Health Laboratory Service (NHLS) and University of Stellenbosch, Cape Town, South Africa
| | - Andre P Kengne
- Non-Communicable Disease Research Unit, South African Medical Research Council, Parow, Francie van Zijl Drive, Parow Valley, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Tandi E Matsha
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
15
|
Li J, Ma L, Yu H, Yao Y, Xu Z, Lin W, Wang L, Wang X, Yang H. MicroRNAs as Potential Biomarkers for the Diagnosis of Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 8:782561. [PMID: 35198569 PMCID: PMC8860181 DOI: 10.3389/fmed.2021.782561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
For Chronic Kidney Disease (CKD), the study of microRNA as a biomarker has become an exciting area, so we carried out a meta-analysis to investigate the potential diagnostic values of miRNAs in CKD. We searched Pubmed, Cochrane Library, Embase, and Web of science databases to identify relevant publications published from the establishment of the database to April 30, 2021. We included a total of 26 articles containing 56 studies. There were 4,098 patients with CKD and 2,450 patients without CKD. We found that the overall sensitivity and specificity of miRNAs in CKD diagnosis were 0.86 (95% CI: 0.83–0.89) and 0.79 (95% CI: 0.75–0.83), respectively. In addition, we plotted the summary receiver operator characteristic (SROC) curve to assess diagnostic accuracy, with the area under the curve (AUC) of 0.90 (95% CI: 0.87–0.92). Subgroup analysis showed that sensitivity, specificity, and AUC of miRNAs in plasma and serum were 0.84, 0.78, 0.88; and 0.79, 0.76, 0.83, respectively, while miRNAs in urine were 0.89 for sensitivity, 0.82 for specificity, and 0.92 for AUC. Moreover, we found that the panel of microRNAs (miRNAs) could improve the pooled sensitivity (0.88, 0.81, and 0.91 for sensitivity, specificity, and AUC, respectively). We believe that miRNAs have great potential to become an effective diagnostic biomarker for CKD. Panels of miRNA have higher accuracy than single miRNAs. Additionally, miRNAs in both blood and urine have significant accuracy in the diagnosis of CKD; nevertheless, urine is superior.
Collapse
|
16
|
Evaluation of endogenous miRNA reference genes across different zebrafish strains, developmental stages and kidney disease models. Sci Rep 2021; 11:22894. [PMID: 34819534 PMCID: PMC8613261 DOI: 10.1038/s41598-021-00075-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022] Open
Abstract
The majority of kidney diseases arise from the loss of podocytes and from morphological changes of their highly complex foot process architecture, which inevitably leads to a reduced kidney filtration and total loss of kidney function. It could have been shown that microRNAs (miRs) play a pivotal role in the pathogenesis of podocyte-associated kidney diseases. Due to their fully functioning pronephric kidney, larval zebrafish have become a popular vertebrate model, to study kidney diseases in vivo. Unfortunately, there is no consensus about a proper normalization strategy of RT-qPCR-based miRNA expression data in zebrafish. In this study we analyzed 9 preselected candidates dre-miR-92a-3p, dre-miR-206-3p, dre-miR-99-1, dre-miR-92b-3p, dre-miR-363-3p, dre-let-7e, dre-miR-454a, dre-miR-30c-5p, dre-miR-126a-5p for their capability as endogenous reference genes in zebrafish experiments. Expression levels of potential candidates were measured in 3 different zebrafish strains, different developmental stages, and in different kidney disease models by RT-qPCR. Expression values were analyzed with NormFinder, BestKeeper, GeNorm, and DeltaCt and were tested for inter-group differences. All candidates show an abundant expression throughout all samples and relatively high stability. The most stable candidate without significant inter-group differences was dre-miR-92b-3p making it a suitable endogenous reference gene for RT-qPCR-based miR expression zebrafish studies.
Collapse
|
17
|
Caus M, Eritja À, Bozic M. Role of microRNAs in Obesity-Related Kidney Disease. Int J Mol Sci 2021; 22:ijms222111416. [PMID: 34768854 PMCID: PMC8583993 DOI: 10.3390/ijms222111416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a major global health problem and is associated with a significant risk of renal function decline. Obesity-related nephropathy, as one of the complications of obesity, is characterized by a structural and functional damage of the kidney and represents one of the important contributors to the morbidity and mortality worldwide. Despite increasing data linking hyperlipidemia and lipotoxicity to kidney injury, the apprehension of molecular mechanisms leading to a development of kidney damage is scarce. MicroRNAs (miRNAs) are endogenously produced small noncoding RNA molecules with an important function in post-transcriptional regulation of gene expression. miRNAs have been demonstrated to be important regulators of a vast array of physiological and pathological processes in many organs, kidney being one of them. In this review, we present an overview of miRNAs, focusing on their functional role in the pathogenesis of obesity-associated renal pathologies. We explain novel findings regarding miRNA-mediated signaling in obesity-related nephropathies and highlight advantages and future perspectives of the therapeutic application of miRNAs in renal diseases.
Collapse
|
18
|
Boštjančič E, Večerić-Haler Ž, Kojc N. The Role of Immune-Related miRNAs in the Pathology of Kidney Transplantation. Biomolecules 2021; 11:biom11081198. [PMID: 34439863 PMCID: PMC8393721 DOI: 10.3390/biom11081198] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are members of the non-coding regulatory RNA family that play pivotal roles in physiological and pathological conditions, including immune response. They are particularly interesting as promising therapeutic targets, prognostic and diagnostic markers due to their easy detection in body fluids and stability. There is accumulating evidence that different miRNAs provide disease-specific signatures in liquid samples of distinct kidney injuries. Using experimental models and human samples, there have been numerous suggestions that immune-related miRNAs are also important contributors to the development of different kidney diseases as well as important markers for monitoring response after kidney transplantation. However, there are limited data for understanding their function in the molecular pathways of allograft pathologies. In our review, we focused on microRNAs that are related to different aspects of immune response after kidney transplantation.
Collapse
Affiliation(s)
- Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Željka Večerić-Haler
- Department of Nephrology, University Medical Centre, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Correspondence: ; Tel.: +386-154-371-25
| |
Collapse
|
19
|
MicroRNAs as Biomarkers for Nephrotic Syndrome. Int J Mol Sci 2020; 22:ijms22010088. [PMID: 33374848 PMCID: PMC7795691 DOI: 10.3390/ijms22010088] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Nephrotic syndrome represents the clinical situation characterized by presence of massive proteinuria and low serum protein caused by a variety of diseases, including minimal change nephrotic syndrome (MCNS), focal segmental glomerulosclerosis (FSGS) and membranous glomerulonephropathy. Differentiating between diagnoses requires invasive renal biopsies in general. Even with the biopsy, we encounter difficulties to differentiate MCNS and FSGS in some cases. There is no other better option currently available for the diagnosis other than renal biopsy. MicroRNAs (miRNAs) are no-coding RNAs of approximately 20 nucleotides in length, which regulate target genes in the post-transcriptional processes and have essential roles in many diseases. MiRNAs in serum and urine have been shown as non-invasive biomarkers in multiple diseases, including renal diseases. In this article, we summarize the current knowledge of miRNAs as the promising biomarkers for nephrotic syndrome.
Collapse
|