1
|
Karmakar S, Chatterjee M, Basu M, Ghosh MK. CK2: The master regulator in tumor immune-microenvironment - A crucial target in oncotherapy. Eur J Pharmacol 2025; 994:177376. [PMID: 39952582 DOI: 10.1016/j.ejphar.2025.177376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
A constitutively active serine/threonine kinase, casein kinase 2 (CK2) is involved in several physiological functions, such as DNA repair, apoptosis, and cell cycle control. New research emphasizes how critical CK2 is to the immune system's dysregulation in the tumor immune-microenvironment (TIME). The inhibition of immunological responses, including the downregulation of immune effector cells and the elevation of immunosuppressive proteins that aid in the development of tumor and immune evasion, has been linked to CK2 overexpression. CK2 maintains an immunosuppressive milieu that impedes anti-tumor immunity by encouraging the expressions and activities of immune checkpoint markers, regulating cytokines release, and boosting immune-suppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) to maintain immune evasion. It is a promising target for cancer treatment due to its complex role in immune regulation and oncogenic pathways. In this study, we address the therapeutic perspectives of targeting CK2 in oncotherapy and investigate the mechanisms by which it controls immunological responses in the TME. This review, comprehending the function of CK2 in immune suppression can facilitate the creation of innovative treatment approaches aimed at augmenting anti-tumor immunity and enhancing immunotherapy effectiveness.
Collapse
Affiliation(s)
- Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Mouli Chatterjee
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, University of Calcutta, Dakshin Barasat, WB, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
2
|
Marminon C, Werner C, Gast A, Herfindal L, Charles J, Lindenblatt D, Aichele D, Mularoni A, Døskeland SO, Jose J, Niefind K, Le Borgne M. Exploring the biological potential of the brominated indenoindole MC11 and its interaction with protein kinase CK2. Biol Chem 2025:hsz-2024-0160. [PMID: 40116007 DOI: 10.1515/hsz-2024-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/05/2025] [Indexed: 03/23/2025]
Abstract
Protein kinase CK2 is a promising therapeutic target, especially in oncology. Over the years, various inhibitors have been developed, with polyhalogenated scaffolds emerging as a particularly effective class. Halogens like bromine and chlorine enhance inhibitor stability by forming additional interactions within the ATP pocket. Among halogenated scaffolds, benzotriazole and benzimidazole have led to potent molecules such as 4,5,6,7-tetrabromo-1H-benzotriazole (IC50 = 300 nM) and 4,5,6,7-tetrabromo-2-(dimethylamino)benzimidazole (IC50 = 140 nM). Modifications, including 4,5,6-tribromo-7-ethyl-1H-benzotriazole (IC50 = 160 nM), further improved activity. Changing scaffolds while retaining halogens has enabled design of new inhibitors. Flavonols, dibenzofuranones, and the indeno[1,2-b]indole scaffold are key examples. Halogenation of the reference molecule 5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4b, IC50 = 360 nM) significantly boosted potency. The study focused on introducing four halogens, yielding to the compound 1,2,3,4-tetrabromo-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (MC11), with an IC50 of 16 nM. Co-crystallography revealed how bromine atoms enhance binding, and MC11 demonstrated strong in cellulo activity, particularly against leukemic cell lines like IPC-Bcl2.
Collapse
Affiliation(s)
- Christelle Marminon
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| | - Christian Werner
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Corrensstraße 48, D-48149 Münster, Germany
| | - Lars Herfindal
- Department of Clinical Science, University of Bergen, N-5009 Bergen, Norway
| | - Johana Charles
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| | - Dirk Lindenblatt
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Dagmar Aichele
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Corrensstraße 48, D-48149 Münster, Germany
| | - Angélique Mularoni
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| | | | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Corrensstraße 48, D-48149 Münster, Germany
| | - Karsten Niefind
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| |
Collapse
|
3
|
Tripathi S, Sharma Y, Kumar D. Exploring New Structures of Kinase Inhibitors and Multitarget Strategies in Alzheimer's Disease Treatment. Protein Pept Lett 2025; 32:2-17. [PMID: 39716791 DOI: 10.2174/0109298665348075241121071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 12/25/2024]
Abstract
Alzheimer's disease (AD) treatments currently available have ineffective results. Previously employed Acetylcholine esterase inhibitors and memantine, an NMDA receptor antagonist, target a single target structure that plays a complex role in the multifactorial progression of disease. Memantine moderates the toxic effects of excessive glutamate activity by blocking NMDA receptors, which decreases neurotoxicity in AD, while acetylcholine esterase inhibitors function by blocking cholinergic receptors (muscarinic and nicotinic), preventing the breakdown of acetylcholine, thereby enhancing cholinergic transmission, thus improving cognitive functions in mild to moderate stages of AD. Every drug class targets a distinct facet of the intricate pathophysiology of AD, indicating the diverse strategy required to counteract the advancement of this neurodegenerative disorder. Thus, patients are currently not getting much benefit from current drugs. A closer look at the course of AD revealed several potential target structures for future drug discovery. AD drug development strategies focus on developing new target structures in addition to well-established ones for combination treatment regimens, ideally with a single drug that can target two different target structures. Because of their roles in AD progression pathways like pathologic tau protein phosphorylations as well as amyloid β toxicity, protein kinases have been identified as potential targets. This review will give a quick rundown of the first inhibitors of single protein kinases, such as glycogen synthase kinase (gsk3) β, along with cyclin-dependent kinase 5. We will also look into novel inhibitors that target recently identified protein kinases in Alzheimer's disease, such as dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Additionally, multitargeting inhibitors, which target multiple protein kinases as well as those thought to be involved in other processes related to AD will be discussed. This kind of multitargeting offers prospective hope for improved patient outcomes down the road since it is the most effective way to impede multifactorial disease development.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
4
|
Dorin-Semblat D, Semblat JP, Hamelin R, Srivastava A, Tetard M, Matesic G, Doerig C, Gamain B. Casein Kinases 2-dependent phosphorylation of the placental ligand VAR2CSA regulates Plasmodium falciparum-infected erythrocytes cytoadhesion. PLoS Pathog 2025; 21:e1012861. [PMID: 39804934 PMCID: PMC11761665 DOI: 10.1371/journal.ppat.1012861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/24/2025] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Placental malaria is characterized by the massive accumulation and sequestration of infected erythrocytes in the placental intervillous blood spaces, causing severe birth outcomes. The variant surface antigen VAR2CSA is associated with Plasmodium falciparum sequestration in the placenta via its capacity to adhere to chondroitin sulfate A. We have previously shown that the extracellular region of VAR2CSA is phosphorylated on several residues and that the phosphorylation enhances the adhesive properties of CSA-binding infected erythrocytes. Here, we aimed to identify the kinases mediating this phosphorylation. We report that Human and Plasmodium falciparum Casein Kinase 2α are involved in the phosphorylation of the extracellular region of VAR2CSA. We notably show that both CK2α can phosphorylate the extracellular region of recombinant and immunoprecipitated VAR2CSA. Mass spectrometry analysis of recombinant VAR2CSA phosphorylated by recombinant Human and P. falciparum CK2α combined with site-directed mutagenesis led to the identification of residue S1068 in VAR2CSA, which is phosphorylated by both enzymes and is associated with CSA binding. Furthermore, using CRISPR/Cas9 we generated a parasite line in which phosphoresidue S1068 was changed to alanine. This mutation strongly impairs infected erythrocytes adhesion by abolishing VAR2CSA translocation to the surface of infected erythrocytes. We also report that two specific CK2 inhibitors reduce infected erythrocytes adhesion to CSA and decrease the phosphorylation of the recombinant extracellular region of VAR2CSA using either infected erythrocytes lysates as a source of kinases or recombinant Human and P. falciparum casein kinase 2. Taken together, these results undoubtedly demonstrate that host and P. falciparum CK2α phosphorylate the extracellular region of VAR2CSA and that this post-translational modification is important for VAR2CSA trafficking and for infected erythrocytes adhesion to CSA.
Collapse
Affiliation(s)
- Dominique Dorin-Semblat
- Sorbonne Université, CNRS, Inserm, Centre d’Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Jean-Philippe Semblat
- Sorbonne Université, CNRS, Inserm, Centre d’Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Romain Hamelin
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anand Srivastava
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Marilou Tetard
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Graziella Matesic
- Université Paris Cité and Université des Antilles, INSERM, BIGR, Paris, France
| | - Christian Doerig
- School of Health and Biomedical Science, RMIT University, Bundoora, Australia
| | - Benoit Gamain
- Sorbonne Université, CNRS, Inserm, Centre d’Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| |
Collapse
|
5
|
Gehlot P, Pathak R, Kumar S, Choudhary NK, Vyas VK. A review on synthetic inhibitors of dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A) for the treatment of Alzheimer's disease (AD). Bioorg Med Chem 2024; 113:117925. [PMID: 39357433 DOI: 10.1016/j.bmc.2024.117925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's disease (AD) is a complex disorder that is influenced by a number of variables, such as age, gender, environmental factors, disease, lifestyle, infections, and many more. The main characteristic of AD is the formation of amyloid plaque and neurofibrillary tangles (NFT), which are caused by various reasons such as inflammation, impairment of neurotransmitters, hyperphosphorylation of tau protein, generation of toxic amyloid beta (Aβ) 40/42, oxidative stress, etc. Protein kinases located in chromosome 21, namely dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A), play an essential role in the pathogenesis of AD. DYRK1A stimulates the Aβ peptide aggregation and phosphorylation of tau protein to generate the NFT formation that causes neurodegeneration. Thus, DYRK1A is associated with AD, and inhibition of DYRK1A has the potential to treat AD. In this review, we discussed the pathophysiology of AD, various factors responsible for AD, and the role of DYRK1A in AD. We have also discussed the latest therapeutic potential of DYRK1A inhibitors for neurogenerative disease, along with their structure-activity relationship (SAR) studies. This article provides valuable information for guiding the future discovery of novel and target-specific DYRK1A inhibitors over other kinases and their structural optimization to treat AD.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Rekha Pathak
- B R Nahata College of Pharmacy, Mandsaur University, Mandsaur 458001, Madhya Pradesh, India; Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Naveen Kumar Choudhary
- B R Nahata College of Pharmacy, Mandsaur University, Mandsaur 458001, Madhya Pradesh, India
| | - Vivek Kumar Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
6
|
Hamid A, Ladke J, Shah A, Ganguli S, Pal M, Singh A, Bhandari R. Interaction with IP6K1 supports pyrophosphorylation of substrate proteins by the inositol pyrophosphate 5-InsP7. Biosci Rep 2024; 44:BSR20240792. [PMID: 39230924 PMCID: PMC11461180 DOI: 10.1042/bsr20240792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024] Open
Abstract
Inositol pyrophosphates (PP-InsPs) are a sub-family of water soluble inositol phosphates that possess one or more diphosphate groups. PP-InsPs can transfer their β-phosphate group to a phosphorylated Ser residue to generate pyrophosphorylated Ser. This unique post-translational modification occurs on Ser residues that lie in acidic stretches within an intrinsically disordered protein sequence. Serine pyrophosphorylation is dependent on the presence of Mg2+ ions, but does not require an enzyme for catalysis. The mechanisms by which cells regulate PP-InsP-mediated pyrophosphorylation are still unknown. We performed mass spectrometry to identify interactors of IP6K1, an enzyme responsible for the synthesis of the PP-InsP 5-InsP7. Interestingly, IP6K1 interacted with several proteins that are known to undergo 5-InsP7-mediated pyrophosphorylation, including the nucleolar proteins NOLC1, TCOF and UBF1, and AP3B1, the β subunit of the AP3 adaptor protein complex. The IP6K1 interactome also included CK2, a protein kinase that phosphorylates Ser residues prior to pyrophosphorylation. We observe the formation of a protein complex between IP6K1, AP3B1, and the catalytic α-subunit of CK2, and show that disrupting IP6K1 binding to AP3B1 lowers its in vivo pyrophosphorylation. We propose that assembly of a substrate-CK2-IP6K complex would allow for coordinated pre-phosphorylation and pyrophosphorylation of the target serine residue, and provide a mechanism to regulate this enzyme-independent modification.
Collapse
Affiliation(s)
- Aisha Hamid
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Jayashree S. Ladke
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Akruti Shah
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Monisita Pal
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Arpita Singh
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
7
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
8
|
Latosińska M, Latosińska JN. Serine/Threonine Protein Kinases as Attractive Targets for Anti-Cancer Drugs-An Innovative Approach to Ligand Tuning Using Combined Quantum Chemical Calculations, Molecular Docking, Molecular Dynamic Simulations, and Network-like Similarity Graphs. Molecules 2024; 29:3199. [PMID: 38999151 PMCID: PMC11243552 DOI: 10.3390/molecules29133199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Serine/threonine protein kinases (CK2, PIM-1, RIO1) are constitutively active, highly conserved, pleiotropic, and multifunctional kinases, which control several signaling pathways and regulate many cellular functions, such as cell activity, survival, proliferation, and apoptosis. Over the past decades, they have gained increasing attention as potential therapeutic targets, ranging from various cancers and neurological, inflammation, and autoimmune disorders to viral diseases, including COVID-19. Despite the accumulation of a vast amount of experimental data, there is still no "recipe" that would facilitate the search for new effective kinase inhibitors. The aim of our study was to develop an effective screening method that would be useful for this purpose. A combination of Density Functional Theory calculations and molecular docking, supplemented with newly developed quantitative methods for the comparison of the binding modes, provided deep insight into the set of desirable properties responsible for their inhibition. The mathematical metrics helped assess the distance between the binding modes, while heatmaps revealed the locations in the ligand that should be modified according to binding site requirements. The Structure-Binding Affinity Index and Structural-Binding Affinity Landscape proposed in this paper helped to measure the extent to which binding affinity is gained or lost in response to a relatively small change in the ligand's structure. The combination of the physico-chemical profile with the aforementioned factors enabled the identification of both "dead" and "promising" search directions. Tests carried out on experimental data have validated and demonstrated the high efficiency of the proposed innovative approach. Our method for quantifying differences between the ligands and their binding capabilities holds promise for guiding future research on new anti-cancer agents.
Collapse
Affiliation(s)
- Magdalena Latosińska
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-814 Poznań, Poland
| | | |
Collapse
|
9
|
Patel S, Vyas VK, Sharma M, Ghate M. Structure-guided discovery of adenosine triphosphate-competitive casein kinase 2 inhibitors. Future Med Chem 2023; 15:987-1014. [PMID: 37307219 DOI: 10.4155/fmc-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous, highly pleiotropic serine-threonine kinase. CK2 has been identified as a potential drug target for the treatment of cancer and related disorders. Several adenosine triphosphate-competitive CK2 inhibitors have been identified and have progressed at different levels of clinical trials. This review presents details of CK2 protein, structural insights into adenosine triphosphate binding pocket, current clinical trial candidates and their analogues. Further, it includes the emerging structure-based drug design approaches, chemistry, structure-activity relationship and biological screening of potent and selective CK2 inhibitors. The authors tabulated the details of CK2 co-crystal structures because these co-crystal structures facilitated the structure-guided discovery of CK2 inhibitors. The narrow hinge pocket compared with related kinases provides useful insights into the discovery of CK2 inhibitors.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manjunath Ghate
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
10
|
Patel S, Patel S, Tulsian K, Kumar P, Vyas VK, Ghate M. Design of 2-amino-6-methyl-pyrimidine benzoic acids as ATP competitive casein kinase-2 (CK2) inhibitors using structure- and fragment-based design, docking and molecular dynamic simulation studies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:211-230. [PMID: 37051759 DOI: 10.1080/1062936x.2023.2196091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Overexpression of casein kinase-2 (CK2) has been implicated in several carcinomas, mainly lung, prostate and acute myeloid leukaemia. The smaller nucleotide pocket compared to related kinases provides a great opportunity to discover newer ATP-competitive CK2 inhibitors. In this study, we have employed an integrated structure- and fragment-based design strategy to design 2-amino-6-methyl-pyrimidine benzoic acids as ATP-competitive CK2 inhibitors. A statistically significant four features-based E-pharmacophore (ARRR) model was used to screen 780,092 molecules. Further, the retrieved hits were considered for molecular docking study to identify essential binding interactions. At the same time, fragment-based virtual screening was performed using a dataset of 1,542,397 fragments. The identified hits and fragments were used as structure templates to rationalize the design of 2-amino-6-methyl-pyrimidine benzoic acids as newer CK2 inhibitors. Finally, the binding interactions of the designed hits were identified using an induced fit docking (IFD) study, and their stability was estimated by a molecular dynamics (MD) simulation study of 100 ns.
Collapse
Affiliation(s)
- S Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - S Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, India
| | - K Tulsian
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - P Kumar
- Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University, Ahmedabad, India
| | - V K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - M Ghate
- School of Pharmacy, National Forensic Science University, Gandhinagar, India
| |
Collapse
|
11
|
Yadav S, Ahamad S, Gupta D, Mathur P. Lead optimization, pharmacophore development and scaffold design of protein kinase CK2 inhibitors as potential COVID-19 therapeutics. J Biomol Struct Dyn 2023; 41:1811-1827. [PMID: 35014595 DOI: 10.1080/07391102.2021.2024449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Therapeutic agents being designed against COVID-19 have targeted either the virus directly or the host cellular machinery. A particularly attractive host target is the ubiquitous and constitutively active serine-threonine kinase, Protein kinase CK2 (CK2). CK2 enhances viral protein synthesis by inhibiting the sequestration of host translational machinery as stress granules and assists in viral egression via association with the N-protein at filopodial protrusions of the infected cell. CK2 inhibitors such as Silmitasertib have been proposed as possible therapeutic candidates in COVID-19 infections. The present study aims to optimize Silmitasertib, develop pharmacophore models and design unique scaffolds to modulate CK2. The lead optimization phase involved the generation of compounds structurally similar to Silmitasertib via bioisostere replacement followed by a multi-stage docking approach to identify drug-like candidates. Molecular dynamics (MD) simulations were performed for two promising candidates (ZINC-43206125 and PC-57664175) to estimate their binding stability and interaction. Top scoring candidates from the lead optimization phase were utilized to build ligand-based pharmacophore models. These models were then merged with structure-based pharmacophores (e-pharmacophores) to build a hybrid hypothesis. This hybrid hypothesis was validated against a decoy set and used to screen a diverse kinase inhibitors library to identify favored chemical features in the retrieved actives. These chemical features include; an anion, an aromatic ring and an H-bond acceptor. Based on the knowledge of these features; de-novo scaffold design was carried out which identified phenindiones, carboxylated steroids, macrocycles and peptides as novel scaffolds with the potential to modulate CK2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Siddharth Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Shahzaib Ahamad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Puniti Mathur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
CKII Control of Axonal Plasticity Is Mediated by Mitochondrial Ca 2+ via Mitochondrial NCLX. Cells 2022; 11:cells11243990. [PMID: 36552754 PMCID: PMC9777275 DOI: 10.3390/cells11243990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial Ca2+ efflux by NCLX is a critical rate-limiting step in mitochondria signaling. We previously showed that NCLX is phosphorylated at a putative Casein Kinase 2 (CKII) site, the serine 271 (S271). Here, we asked if NCLX is regulated by CKII and interrogated the physiological implications of this control. We found that CKII inhibitors down-regulated NCLX-dependent Ca2+ transport activity in SH-SY5Y neuronal cells and primary hippocampal neurons. Furthermore, we show that the CKII phosphomimetic mutants on NCLX inhibited (S271A) and constitutively activated (S271D) NCLX transport, respectively, rendering it insensitive to CKII inhibition. These phosphomimetic NCLX mutations also control the allosteric regulation of NCLX by mitochondrial membrane potential (ΔΨm). Since the omnipresent CKII is necessary for modulating the plasticity of the axon initial segment (AIS), we interrogated, in hippocampal neurons, if NCLX is required for this process. Similarly to WT neurons, NCLX-KO neurons can exhibit homeostatic plasticity following M-channel block. However, while WT neurons utilize a CKII-sensitive distal relocation of AIS Na+ and Kv7 channels to decrease their intrinsic excitability, we did not observe such translocation in NCLX-KO neurons. Thus, our results indicate that NCLX is regulated by CKII and is a crucial link between CKII signaling and fast neuronal plasticity.
Collapse
|
14
|
You KS, Yi YW, Cho J, Seong YS. Dual Inhibition of AKT and MEK Pathways Potentiates the Anti-Cancer Effect of Gefitinib in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:1205. [PMID: 33801977 PMCID: PMC8000364 DOI: 10.3390/cancers13061205] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022] Open
Abstract
There is an unmet medical need for the development of new targeted therapeutic strategies for triple-negative breast cancer (TNBC). With drug combination screenings, we found that the triple combination of the protein kinase inhibitors (PKIs) of the epidermal growth factor receptor (EGFR), v-akt murine thymoma viral oncogene homolog (AKT), and MAPK/ERK kinase (MEK) is effective in inducing apoptosis in TNBC cells. A set of PKIs were first screened in combination with gefitinib in the TNBC cell line, MDA-MB-231. The AKT inhibitor, AT7867, was identified and further analyzed in two mesenchymal stem-like (MSL) subtype TNBC cells, MDA-MB-231 and HS578T. A combination of gefitinib and AT7867 reduced the proliferation and long-term survival of MSL TNBC cells. However, gefitinib and AT7867 induced the activation of the rat sarcoma (RAS)/ v-raf-1 murine leukemia viral oncogene homolog (RAF)/MEK/ extracellular signal-regulated kinase (ERK) pathway. To inhibit this pathway, MEK/ERK inhibitors were further screened in MDA-MB-231 cells in the presence of gefitinib and AT7867. As a result, we identified that the MEK inhibitor, PD-0325901, further enhanced the anti-proliferative and anti-clonogenic effects of gefitinib and AT7867 by inducing apoptosis. Our results suggest that the dual inhibition of the AKT and MEK pathways is a novel potential therapeutic strategy for targeting EGFR in TNBC cells.
Collapse
Affiliation(s)
- Kyu Sic You
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Korea;
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Yeon-Sun Seong
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Korea;
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| |
Collapse
|
15
|
Protein kinase CK2 inhibition as a pharmacological strategy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 124:23-46. [PMID: 33632467 DOI: 10.1016/bs.apcsb.2020.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CK2 is a constitutively active Ser/Thr protein kinase which phosphorylates hundreds of substrates. Since they are primarily related to survival and proliferation pathways, the best-known pathological roles of CK2 are in cancer, where its targeting is currently being considered as a possible therapy. However, CK2 activity has been found instrumental in many other human pathologies, and its inhibition will expectably be extended to different purposes in the near future. Here, after a description of CK2 features and implications in diseases, we analyze the different inhibitors and strategies available to target CK2, and update the results so far obtained by their in vivo application.
Collapse
|
16
|
Wang F, Li J, Fan S, Jin Z, Huang C. Targeting stress granules: A novel therapeutic strategy for human diseases. Pharmacol Res 2020; 161:105143. [PMID: 32814168 PMCID: PMC7428673 DOI: 10.1016/j.phrs.2020.105143] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
Stress granules (SGs) are assemblies of mRNA and proteins that form from mRNAs stalled in translation initiation in response to stress. Chronic stress might even induce formation of cytotoxic pathological SGs. SGs participate in various biological functions including response to apoptosis, inflammation, immune modulation, and signalling pathways; moreover, SGs are involved in pathogenesis of neurodegenerative diseases, viral infection, aging, cancers and many other diseases. Emerging evidence has shown that small molecules can affect SG dynamics, including assembly, disassembly, maintenance and clearance. Thus, targeting SGs is a potential therapeutic strategy for the treatment of human diseases and the promotion of health. The established methods for detecting SGs provided ready tools for large-scale screening of agents that alter the dynamics of SGs. Here, we describe the effects of small molecules on SG assembly, disassembly, and their roles in the disease. Moreover, we provide perspective for the possible application of small molecules targeting SGs in the treatment of human diseases.
Collapse
Affiliation(s)
- Fei Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Juan Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhigang Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang, 321004, China.
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
17
|
Cozza G, Zonta F, Dalle Vedove A, Venerando A, Dall'Acqua S, Battistutta R, Ruzzene M, Lolli G. Biochemical and cellular mechanism of protein kinase CK2 inhibition by deceptive curcumin. FEBS J 2019; 287:1850-1864. [DOI: 10.1111/febs.15111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/01/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Giorgio Cozza
- Department of Molecular Medicine University of Padua Padua Italy
| | - Francesca Zonta
- Department of Biomedical Sciences CNR Institute of Neuroscience University of Padua Padua Italy
| | - Andrea Dalle Vedove
- Department of Cellular, Computational and Integrative Biology – CIBIO University of Trento Trento Italy
| | - Andrea Venerando
- Department of Comparative Biomedicine and Food Science University of Padua Legnaro Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences University of Padua Padua Italy
| | - Roberto Battistutta
- Department of Chemical Sciences University of Padua Padua Italy
- Institute of Biomolecular Chemistry National Research Council (CNR) Padua Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences CNR Institute of Neuroscience University of Padua Padua Italy
| | - Graziano Lolli
- Department of Cellular, Computational and Integrative Biology – CIBIO University of Trento Trento Italy
| |
Collapse
|
18
|
Small molecule modulators targeting protein kinase CK1 and CK2. Eur J Med Chem 2019; 181:111581. [DOI: 10.1016/j.ejmech.2019.111581] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
|
19
|
Chakrabarti S, Liu NJ, Gintzler AR. Phosphorylation of unique C-terminal sites of the mu-opioid receptor variants 1B2 and 1C1 influences their Gs association following chronic morphine. J Neurochem 2019; 152:449-467. [PMID: 31479519 DOI: 10.1111/jnc.14863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/14/2019] [Accepted: 08/11/2019] [Indexed: 11/27/2022]
Abstract
We recently demonstrated in rat spinal cord that a regimen of escalating doses of systemic morphine, analogous to regimens used clinically for chronic pain management, selectively up-regulates the mu-opioid receptor (MOR) splice variants MOR-1B2 and MOR-1C1 mRNA and functional protein. This study investigated the potential relevance of up-regulating MOR-1B2 and MOR-1C1 to the ability of chronic morphine to shift MOR signaling from predominantly Gi /Go inhibitory to Gs stimulatory. Specifically, we tested the hypotheses that chronic morphine induces phosphorylation of carboxyl terminal sites unique to MOR-1B2 and MOR-1C1, and that this phosphorylation is causally related to augmented association of these variants with Gs α. Hypotheses were validated by (i) abolition of the chronic morphine-induced increment in MOR-1C1 and MOR-1B2 association with Gs α by inhibitors of protein kinase A and Casein kinase 2, respectively; (ii) failure of chronic morphine to augment MOR variant Gs α interactions in Chinese hamster ovary cells transiently transfected with either rat MOR-1C1 or MOR-1B2 in which targeted protein kinase A and Casein kinase 2 serine phosphorylation sites, respectively, were mutated to alanine; (iii) abrogation of chronic morphine-induced augmented MOR Gs α association in spinal cord of male rats following intrathecal administration of dicer substrate small interfering RNAs targeting MOR-1B2/MOR-1C1 mRNA. The ability of chronic morphine to not only up-regulate-specific MOR variants but also their carboxyl terminal phosphorylation and consequent augmented association with Gs α may represent a novel component of opioid tolerance mechanisms, suggesting novel potential targets for tolerance abatement.
Collapse
Affiliation(s)
- Sumita Chakrabarti
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA
| | - Nai-Jiang Liu
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA
| | - Alan R Gintzler
- Department of Obstetrics and Gynecology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
20
|
Lee YS, Park SY, Heo HJ, Lee WS, Hong KW, Kim CD. Multitarget-directed cotreatment with cilostazol and aripiprazole for augmented neuroprotection against oxidative stress-induced toxicity in HT22 mouse hippocampal cells. Eur J Pharmacol 2019; 857:172454. [PMID: 31202803 DOI: 10.1016/j.ejphar.2019.172454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Abstract
Cerebrovascular dysfunction is crucially associated with cognitive impairment and a high prevalence of psychotic symptoms in the vascular dementia characterized by oxidative stress and multifactorial neurodegeneration. In this study, the significant decrease in BDNF expression in HT22 cells due to H2O2 (0.25 mM) was little affected by either aripiprazole (1 μM) or cilostazol (1 μM) alone, but significantly increased by cotreatment with both drugs. Even in the presence of H2O2, P-CK2α (Tyr 255), nuclear P-CREB (Ser 133), and nuclear P-β-catenin (Ser 675) levels were significantly increased in a synergistic manner by aripiprazole plus cilostazol cotreatment. Aripiprazole and cilostazol cotreatment synergistically increased P-GSK-3β (Ser 9) level. Nrf2/HO-1 expression was significantly elevated time- and concentration-dependently by either aripiprazole or cilostazol. In line with these, concurrent treatment with aripiprazole (1 μM) plus cilostazol (1 μM) significantly increased Nrf2 and HO-1 expression in a synergistic manner, accompanying with increased ARE luciferase activity, while each drug monotherapy showed little effects. Consequently, this cotreatment synergistically ameliorated the attenuated neurite outgrowth induced by H2O2 in the HT22 cells, and these were inhibited by K252A (inhibitor of BDNF receptor), TBCA (CK2 inhibitor), imatinib (β-catenin inhibitor) and ZnPP (inhibitor of HO-1), indicating that BDNF, P-CK2α, β-catenin and HO-1 activation are implicated in the enhanced neurite outgrowth. This study highlights that cotreatment with low concentrations of aripiprazole and cilostazol synergistically elicits neuroprotective effects by overcoming oxidative stress-evoked neurotoxicity associated with increased neurite outgrowth, providing a rationale for the use of this combinatorial treatment in vascular dementia.
Collapse
Affiliation(s)
- Yi Sle Lee
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - So Youn Park
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Hye Jin Heo
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Won Suk Lee
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Ki Whan Hong
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
21
|
Lian H, Su M, Zhu Y, Zhou Y, Soomro SH, Fu H. Protein Kinase CK2, a Potential Therapeutic Target in Carcinoma Management. Asian Pac J Cancer Prev 2019; 20:23-32. [PMID: 30677865 PMCID: PMC6485562 DOI: 10.31557/apjcp.2019.20.1.23] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Protein kinase CK2 (formerly known as casein kinase 2) is a highly conserved serine/ threonine kinase
overexpressed in various human carcinomas and its high expression often correlates with poor prognosis. CK2 protein
is localized in the nucleus of many tumor cells and correlates with clinical features in many cases. Increased expression
of CK2 in mice results in the development of various types of carcinomas (both solids and blood related tumors, such
as (breast carcinoma, lymphoma, etc), which reveals its carcinogenic properties. CK2 plays essential roles in many key
biological processes related to carcinoma, including cell apoptosis, DNA damage responses and cell cycle regulation.
CK2 has become a potential anti-carcinoma target. Various CK2 inhibitors have been developed with anti-neoplastic
properties against a variety of carcinomas. Some CK2 inhibitors have showed good results in in vitro and pre-clinical
models, and have even entered in clinical trials. This article will review effects of CK2 and its inhibitors on common
carcinomas in in vitro and pre-clinical studies.
Collapse
Affiliation(s)
- Haiwei Lian
- Department of Human Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, P.R, China.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Thrombus formation is dependent on the interaction of platelets, leukocytes and endothelial cells as well as proteins of the coagulation cascade. This interaction is tightly controlled by phospho-regulated pathways involving protein kinase CK2. A growing number of studies have demonstrated an important role of this kinase in the regulation of primary and secondary hemostasis. Inhibition of CK2 downregulates the expression of important adhesion molecules on platelets and endothelial cells, such as glycoprotein (GP)IIb/IIIa, P-selectin, von Willebrand factor and vascular cell adhesion molecule. Moreover, the reduced CK2-dependent phosphorylation of different coagulation factors prevents the conversion of fibrinogen to fibrin. Targeting these mechanisms may open the door for the development of novel anti-thrombotic therapies.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Beate M Schmitt
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Matthias W Laschke
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Michael D Menger
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| |
Collapse
|
23
|
Bastian C, Quinn J, Tripathi A, Aquila D, McCray A, Dutta R, Baltan S, Brunet S. CK2 inhibition confers functional protection to young and aging axons against ischemia by differentially regulating the CDK5 and AKT signaling pathways. Neurobiol Dis 2018; 126:47-61. [PMID: 29944965 DOI: 10.1016/j.nbd.2018.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 12/25/2022] Open
Abstract
White matter (WM) is injured in most strokes, which contributes to functional deficits during recovery. Casein kinase 2 (CK2) is a protein kinase that is expressed in brain, including WM. To assess the impact of CK2 inhibition on axon recovery following oxygen glucose deprivation (OGD), mouse optic nerves (MONs), which are pure WM tracts, were subjected to OGD with or without the selective CK2 inhibitor CX-4945. CX-4945 application preserved axon function during OGD and promoted axon function recovery when applied before or after OGD. This protective effect of CK2 inhibition correlated with preservation of oligodendrocytes and conservation of axon structure and axonal mitochondria. To investigate the pertinent downstream signaling pathways, siRNA targeting the CK2α subunit identified CDK5 and AKT as downstream molecules. Consequently, MK-2206 and roscovitine, which are selective AKT and CDK5 inhibitors, respectively, protected young and aging WM function only when applied before OGD. However, a novel pan-AKT allosteric inhibitor, ARQ-092, which targets both the inactive and active conformations of AKT, conferred protection to young and aging axons when applied before or after OGD. These results suggest that AKT and CDK5 signaling contribute to the WM functional protection conferred by CK2 inhibition during ischemia, while inhibition of activated AKT signaling plays the primary role in post-ischemic protection conferred by CK2 inhibition in WM independent of age. CK2 inhibitors are currently being used in clinical trials for cancer patients; therefore, our results will provide rationale for repurposing these drugs as therapeutic options for stroke patients by adding novel targets.
Collapse
Affiliation(s)
- Chinthasagar Bastian
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - John Quinn
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Ajai Tripathi
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Danielle Aquila
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Andrew McCray
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Ranjan Dutta
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Selva Baltan
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Sylvain Brunet
- Departments of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
24
|
MgAl-Layered Double Hydroxide Solid Base Catalysts for Henry Reaction: A Green Protocol. Catalysts 2018. [DOI: 10.3390/catal8040133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Montero JC, Seoane S, García-Alonso S, Pandiella A. Multisite phosphorylation of P-Rex1 by protein kinase C. Oncotarget 2018; 7:77937-77949. [PMID: 27788493 PMCID: PMC5363633 DOI: 10.18632/oncotarget.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023] Open
Abstract
P-Rex proteins are guanine nucleotide exchange factors (GEFs) that act on the Rho/Rac family of GTP binding proteins. The activity of P-Rex proteins is regulated by several extracellular stimuli. In fact, activation of growth factor receptors has been reported to activate a phosphorylation/dephosphorylation cycle of P-Rex1. Such cycle includes dephosphorylation of serines 313 and 319 which negatively regulate the GEF activity of P-Rex1, together with phosphorylation of serines 605 and 1169 which favour P-Rex1 GEF activity. However, the kinases that regulate phosphorylation at these different regulatory sites are largely unknown. Here we have investigated the potential regulatory action of several kinases on the phosphorylation of P-Rex1 at S313, S319, S605 and S1169. We show that activation of protein kinase C (PKC) caused phosphorylation of S313, S319 and S1169. Activation of growth factor receptors induced phosphorylation of S1169 through a mechanism that was independent of PKC, indicating that distinct kinases and mechanisms control the phosphorylation of P-Rex1 at different regulatory serines. Genetic and biochemical studies confirmed that the PKC isoform PKCδ was able to directly phosphorylate P-Rex1 at S313. Functional studies using cells with very low endogenous P-Rex1 expression, transfected with wild type P-Rex1 or a mutant form in which S313 was substituted by alanine, indicated that phosphorylation at that residue negatively regulated P-Rex1 exchange activity. We suggest that control of P-Rex1 activity depends on a highly dynamic interplay among distinct signalling routes and its multisite phosphorylation is controlled by the action of different kinases.
Collapse
Affiliation(s)
- Juan Carlos Montero
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| | - Samuel Seoane
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| | - Sara García-Alonso
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Spain
| |
Collapse
|
26
|
Neuroprotection by aripiprazole against β-amyloid-induced toxicity by P-CK2α activation via inhibition of GSK-3β. Oncotarget 2017; 8:110380-110391. [PMID: 29299155 PMCID: PMC5746390 DOI: 10.18632/oncotarget.22777] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022] Open
Abstract
Psychosis is reported over 30% of patients with Alzheimer's disease (AD) in clinics. Aripiprazole is an atypical antipsychotic drug with partial agonist activity at the D2 dopamine and 5-HT1A receptors with low side-effect profile. We identified aripiprazole is able to overcome the amyloid-β (Aβ)-evoked neurotoxicity and then increase the cell viability. This study elucidated the mechanism(s) by which aripiprazole ameliorates Aβ1-42-induced decreased neurite outgrowth and viability in neuronal cells. Pretreatment with aripiprazole increased Brain-derived neurotrophic factor (BDNF) mRNA and protein expressions in N2a cells. Additionally, phosphorylated casein kinase 2α at Y 255 (P-CK2α) was increased in time- and concentration-dependent manners. Furthermore, Aβ1-42-induced decreased BDNF and P-CK2α expression were increased over control level by aripiprazole. Subsequently, Aβ1-42-induced decreased levels of phosphorylated glycogen synthase-3β at Ser9 (P-GSK-3β) and nuclear P-β-catenin (Ser675) were elevated by aripiprazole, which were inhibited by K252A (inhibitor of BDNF receptor) and tetrabromocinnamic acid (TBCA, CK2 inhibitor), indicating that BDNF and P-CK2α activation are implicated in the aripiprazole effects. Expressions of cyclin D1 and insulin-like growth factor 2 (IGF2) mRNA were increased by aripiprazole; even in the presence of Aβ1-42, which was blocked by K252A and TBCA. In CK2α gene-silenced N2a cells, aripiprazole failed to increase P-GSK-3β and P-β-catenin expressions. Consequently, aripiprazole ameliorated Aβ1-42-induced attenuation of neurite elongation in HT22 cells, and this effect was blocked by both TBCA and imatinib. Decreased viability induced by Aβ1-42 was recovered by aripiprazole. These findings provide evidence supporting that aripiprazole can provide an effective therapeutic strategy against Aβ-induced neurotoxicity in AD-associated psychosis.
Collapse
|
27
|
Leo L, Weissmann C, Burns M, Kang M, Song Y, Qiang L, Brady ST, Baas PW, Morfini G. Mutant spastin proteins promote deficits in axonal transport through an isoform-specific mechanism involving casein kinase 2 activation. Hum Mol Genet 2017; 26:2321-2334. [PMID: 28398512 DOI: 10.1093/hmg/ddx125] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/24/2017] [Indexed: 01/19/2023] Open
Abstract
Mutations of various genes cause hereditary spastic paraplegia (HSP), a neurological disease involving dying-back degeneration of upper motor neurons. From these, mutations in the SPAST gene encoding the microtubule-severing protein spastin account for most HSP cases. Cumulative genetic and experimental evidence suggests that alterations in various intracellular trafficking events, including fast axonal transport (FAT), may contribute to HSP pathogenesis. However, the mechanisms linking SPAST mutations to such deficits remain largely unknown. Experiments presented here using isolated squid axoplasm reveal inhibition of FAT as a common toxic effect elicited by spastin proteins with different HSP mutations, independent of microtubule-binding or severing activity. Mutant spastin proteins produce this toxic effect only when presented as the tissue-specific M1 isoform, not when presented as the ubiquitously-expressed shorter M87 isoform. Biochemical and pharmacological experiments further indicate that the toxic effects of mutant M1 spastins on FAT involve casein kinase 2 (CK2) activation. In mammalian cells, expression of mutant M1 spastins, but not their mutant M87 counterparts, promotes abnormalities in the distribution of intracellular organelles that are correctable by pharmacological CK2 inhibition. Collectively, these results demonstrate isoform-specific toxic effects of mutant M1 spastin on FAT, and identify CK2 as a critical mediator of these effects.
Collapse
Affiliation(s)
- Lanfranco Leo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Carina Weissmann
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew Burns
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Minsu Kang
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Yuyu Song
- Marine Biological Laboratory, Woods Hole, MA, USA.,Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
28
|
Li J, Chen C, Li Y, Matye DJ, Wang Y, Ding WX, Li T. Inhibition of insulin/PI3K/AKT signaling decreases adipose Sortilin 1 in mice and 3T3-L1 adipocytes. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2924-2933. [PMID: 28844948 DOI: 10.1016/j.bbadis.2017.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/08/2017] [Accepted: 08/22/2017] [Indexed: 10/19/2022]
Abstract
Sortilin 1(Sort1) is a vesicle trafficking receptor that mediates protein sorting in the endocytic and exocytic pathways. Sort1 is a component of the GLUT4 storage vesicles in adipocytes and is also involved in the regulation of adipogenesis. Sort1 protein is reduced in adipose of obese mice and humans, but the underlying cause is not fully understood. Here we report that insulin/PI3K/AKT signaling cascade critically regulates adipose Sort1 protein abundance. Administration of a PI3K inhibitor rapidly decreased Sort1 protein but not mRNA in adipose of chow-fed mice. In 3T3-L1 adipocytes, serum-starvation or inhibition of the PI3K/AKT signaling also decreased Sort1 protein without affecting Sort1 mRNA expression. Sort1 protein downregulation upon PI3K inhibition was blocked by pretreatment of MG132 but not Bafilomycin A1, suggesting that PI3K inhibition caused Sort1 degradation via the proteasome pathway. Using a phospho-specific Sort1 antibody, we showed that endogenous Sort1 was phosphorylated at S825 adjacent to the DXXLL sorting motif on the cytoplasmic tail. We demonstrated that mutagenesis that abolished Sort1 S825 phosphorylation decreased insulin-stimulated Sort1 localization on the plasma membrane and Sort1 protein stability in 3T3-L1 adipocytes. However, endogenous Sort1 phosphorylation at S825 was not affected by insulin stimulation or by inhibition of PI3K. In conclusion, this study revealed an important role of insulin signaling in regulating adipose Sort1 protein stability, and further suggests that impaired insulin signaling may underlie reduced adipose Sort1 in obesity. The cellular events downstream of insulin/PI3K/AKT signaling that mediates insulin regulation of Sort1 stability requires further investigation.
Collapse
Affiliation(s)
- Jibiao Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Cheng Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Yuan Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - David J Matye
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
29
|
Moulakakis C, Steinhäuser C, Biedziak D, Freundt K, Reiling N, Stamme C. Surfactant Protein A Enhances Constitutive Immune Functions of Clathrin Heavy Chain and Clathrin Adaptor Protein 2. Am J Respir Cell Mol Biol 2017; 55:92-104. [PMID: 26771574 DOI: 10.1165/rcmb.2015-0219oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
NF-κB transcription factors are key regulators of pulmonary inflammatory disorders and repair. Constitutive lung cell type- and microenvironment-specific NF-κB/inhibitor κBα (IκB-α) regulation, however, is poorly understood. Surfactant protein (SP)-A provides both a critical homeostatic and lung defense control, in part by immune instruction of alveolar macrophages (AMs) via clathrin-mediated endocytosis. The central endocytic proteins, clathrin heavy chain (CHC) and the clathrin adaptor protein (AP) complex AP2, have pivotal alternative roles in cellular homeostasis that are endocytosis independent. Here, we dissect endocytic from alternative functions of CHC, the α-subunit of AP2, and dynamin in basal and SP-A-modified LPS signaling of macrophages. As revealed by pharmacological inhibition and RNA interference in primary AMs and RAW264.7 macrophages, respectively, CHC and α-adaptin, but not dynamin, prevent IκB-α degradation and TNF-α release, independent of their canonical role in membrane trafficking. Kinetics studies employing confocal microscopy, Western analysis, and immunomagnetic sorting revealed that SP-A transiently enhances the basal protein expression of CHC and α-adaptin, depending on early activation of protein kinase CK2 (former casein kinase II) and Akt1 in primary AMs from rats, SP-A(+/+), and SP-A(-/-) mice, as well as in vivo when intratracheally administered to SP-A(+/+) mice. Constitutive immunomodulation by SP-A, but not SP-A-mediated inhibition of LPS-induced NF-κB activity and TNF-α release, requires CHC, α-adaptin, and dynamin. Our data demonstrate that endocytic proteins constitutively restrict NF-κB activity in macrophages and provide evidence that SP-A enhances the immune regulatory capacity of these proteins, revealing a previously unknown pathway of microenvironment-specific NF-κB regulation in the lung.
Collapse
Affiliation(s)
| | - Christine Steinhäuser
- 2 Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany; and
| | | | | | - Norbert Reiling
- 2 Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany; and
| | - Cordula Stamme
- Divisions of 1 Cellular Pneumology and.,3 Department of Anesthesiology and Intensive Care Medicine, University of Lübeck, Lübeck, Germany
| |
Collapse
|
30
|
Figliozzi RW, Chen F, Hsia SV. New insights on thyroid hormone mediated regulation of herpesvirus infections. Cell Biosci 2017; 7:13. [PMID: 28344765 PMCID: PMC5360088 DOI: 10.1186/s13578-017-0140-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/14/2017] [Indexed: 12/22/2022] Open
Abstract
Thyroid hormone (T3) has been suggested to participate in the regulation of herpesvirus replication during reactivation. Clinical observations and in vivo experiments suggest that T3 are involved in the suppression of herpes virus replication. In vitro, differentiated LNCaP cells, a human neuron-like cells, further resisted HSV-1 replication upon addition of T3. Previous studies indicate that T3 controlled the expression of several key viral genes via its nuclear receptors in differentiated LNCaP cells. Additional observation showed that differentiated LNCaP cells have active PI3K signaling and inhibitor LY294002 can reverse T3-mediated repression of viral replication. Active PI3K signaling has been linked to HSV-1 latency in neurons. The hypothesis is that, in addition to repressing viral gene transcription at the nuclear level, T3 may influence PI3K signaling to control HSV-1 replication in human neuron-like cells. We review the genomic and non-genomic regulatory roles of T3 by examining the phosphoinositide 3-kinase (PI3K) pathway gene expression profile changes in differentiated LNCaP cells under the influence of hormone. The results indicated that 15 genes were down-regulated and 22 genes were up-regulated in T3-treated differentiated LNCaP cells in comparison to undifferentiated state. Of all these genes, casein kinase 2 (CK2), a key component to enhance PI3K signaling pathway, was significantly increased upon T3 treatment only while the cells were differentiated. Further studies revealed that CK2 inhibitors tetrabrominated cinnamic acid (TBCA) and 4, 5, 6, 7-tetrabromo-2H-benzotriazole (TBB) both reversed the T3-mediated repression of viral replication. Together these observations suggested a new approach to understanding the roles of T3 in the complicated regulation of HSV-1 replication during latency and reactivation.
Collapse
Affiliation(s)
- Robert W Figliozzi
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, USA.,Department of Natural Sciences, School of Agriculture and Natural Sciences, University of Maryland Eastern Shore, Princess Anne, USA
| | - Feng Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, USA
| | - S Victor Hsia
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, USA.,Department of Natural Sciences, School of Agriculture and Natural Sciences, University of Maryland Eastern Shore, Princess Anne, USA
| |
Collapse
|
31
|
Cassier E, Gallay N, Bourquard T, Claeysen S, Bockaert J, Crépieux P, Poupon A, Reiter E, Marin P, Vandermoere F. Phosphorylation of β-arrestin2 at Thr 383 by MEK underlies β-arrestin-dependent activation of Erk1/2 by GPCRs. eLife 2017; 6. [PMID: 28169830 PMCID: PMC5325621 DOI: 10.7554/elife.23777] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/06/2017] [Indexed: 01/14/2023] Open
Abstract
In addition to their role in desensitization and internalization of G protein-coupled receptors (GPCRs), β-arrestins are essential scaffolds linking GPCRs to Erk1/2 signaling. However, their role in GPCR-operated Erk1/2 activation differs between GPCRs and the underlying mechanism remains poorly characterized. Here, we show that activation of serotonin 5-HT2C receptors, which engage Erk1/2 pathway via a β-arrestin-dependent mechanism, promotes MEK-dependent β-arrestin2 phosphorylation at Thr383, a necessary step for Erk recruitment to the receptor/β-arrestin complex and Erk activation. Likewise, Thr383 phosphorylation is involved in β-arrestin-dependent Erk1/2 stimulation elicited by other GPCRs such as β2-adrenergic, FSH and CXCR4 receptors, but does not affect the β-arrestin-independent Erk1/2 activation by 5-HT4 receptor. Collectively, these data show that β-arrestin2 phosphorylation at Thr383 underlies β-arrestin-dependent Erk1/2 activation by GPCRs. DOI:http://dx.doi.org/10.7554/eLife.23777.001
Collapse
Affiliation(s)
- Elisabeth Cassier
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Nathalie Gallay
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France.,Université François Rabelais, Tours, France
| | - Thomas Bourquard
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France.,Université François Rabelais, Tours, France
| | - Sylvie Claeysen
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Joël Bockaert
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Pascale Crépieux
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France.,Université François Rabelais, Tours, France
| | - Anne Poupon
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France.,Université François Rabelais, Tours, France
| | - Eric Reiter
- INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France.,Université François Rabelais, Tours, France
| | - Philippe Marin
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Franck Vandermoere
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| |
Collapse
|
32
|
Casein Kinase 2 Is Linked to Stress Granule Dynamics through Phosphorylation of the Stress Granule Nucleating Protein G3BP1. Mol Cell Biol 2017; 37:MCB.00596-16. [PMID: 27920254 DOI: 10.1128/mcb.00596-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 11/29/2016] [Indexed: 12/27/2022] Open
Abstract
Stress granules (SGs) are large macromolecular aggregates that contain translation initiation complexes and mRNAs. Stress granule formation coincides with translational repression, and stress granules actively signal to mediate cell fate decisions by signaling to the translation apparatus to (i) maintain translational repression, (ii) mount various transcriptional responses, including innate immunity, and (iii) repress apoptosis. Previous work showed that G3BP1 is phosphorylated at serine 149, which regulates G3BP1 oligomerization, stress granule assembly, and RNase activity intrinsic to G3BP1. However, the kinase that phosphorylates G3BP1 was not identified, leaving a key step in stress granule regulation uncharacterized. Here, using chemical inhibition, genetic depletion, and overexpression experiments, we show that casein kinase 2 (CK2) promotes stress granule dynamics. These results link CK2 activity with SG disassembly. We also show that casein kinase 2 phosphorylates G3BP1 at serine 149 in vitro and in cells. These data support a role for casein kinase 2 in regulation of protein synthesis by downregulating stress granule formation through G3BP1.
Collapse
|
33
|
Chua MMJ, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, Dominguez I. CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Pharmaceuticals (Basel) 2017; 10:E18. [PMID: 28134850 PMCID: PMC5374422 DOI: 10.3390/ph10010018] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 01/09/2023] Open
Abstract
CK2 genes are overexpressed in many human cancers, and most often overexpression is associated with worse prognosis. Site-specific expression in mice leads to cancer development (e.g., breast, lymphoma) indicating the oncogenic nature of CK2. CK2 is involved in many key aspects of cancer including inhibition of apoptosis, modulation of signaling pathways, DNA damage response, and cell cycle regulation. A number of CK2 inhibitors are now available and have been shown to have activity against various cancers in vitro and in pre-clinical models. Some of these inhibitors are now undergoing exploration in clinical trials as well. In this review, we will examine some of the major cancers in which CK2 inhibition has promise based on in vitro and pre-clinical studies, the proposed cellular and signaling mechanisms of anti-cancer activity by CK2 inhibitors, and the current or recent clinical trials using CK2 inhibitors.
Collapse
Affiliation(s)
- Melissa M J Chua
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Charina E Ortega
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Ayesha Sheikh
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Migi Lee
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Hussein Abdul-Rassoul
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Kevan L Hartshorn
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Isabel Dominguez
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
34
|
Ampofo E, Widmaier D, Montenarh M, Menger MD, Laschke MW. Protein Kinase CK2 Regulates Leukocyte-Endothelial Cell Interactions during Ischemia and Reperfusion in Striated Skin Muscle. Eur Surg Res 2016; 57:111-24. [PMID: 27287005 DOI: 10.1159/000446367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/21/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ischemia and reperfusion (I/R) causes tissue injury by inflammatory processes. This involves the upregulation of endothelial surface proteins by phospho-regulated signaling pathways, resulting in enhanced interactions of leukocytes with endothelial cells. Recently, we found that protein kinase CK2 is a crucial regulator of leukocyte-mediated inflammation. Therefore, in this study we investigated the involvement of CK2 in leukocyte-endothelial cell interactions during I/R injury. METHODS We first analyzed the inhibitory action of (E)-3-(2,3,4,5-tetrabromophenyl)acrylic acid (TBCA) and CX-4945 on CK2 kinase activity and the viability of human dermal microvascular endothelial cells (HDMEC). To mimic I/R conditions in vitro, HDMEC were exposed to hypoxia and reoxygenation and the expression of adhesion molecules was analyzed by flow cytometry. Moreover, we analyzed in vivo the effect of CK2 inhibition on leukocyte-endothelial cell interactions in the dorsal skinfold chamber model of I/R injury by means of repetitive intravital fluorescence microscopy and immunohistochemistry. RESULTS We found that TBCA and CX-4945 suppressed the activity of CK2 in HDMEC without affecting cell viability. This was associated with a significant downregulation of E-selectin and intercellular adhesion molecule (ICAM)-1 after in vitro hypoxia and reoxygenation. In vivo, CX-4945 treatment significantly decreased the numbers of adherent and transmigrated leukocytes in striated muscle tissue exposed to I/R. CONCLUSION Our findings indicate that CK2 is involved in the regulation of leukocyte-endothelial cell interactions during I/R by mediating the expression of E-selectin and ICAM-1.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
35
|
Dong M, Liu X, Dang Q, Qi H, Huang Y, Gao Q, Zhang C. Sensitive and versatile electrogenerated chemiluminescence biosensing platform for protein kinase based on Ru(bpy)32+ functionalized gold nanoparticles mediated signal transduction. Anal Chim Acta 2016; 906:72-79. [DOI: 10.1016/j.aca.2015.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 01/10/2023]
|
36
|
Wu S, Kong XJ, Cen Y, Yu RQ, Chu X. Phosphorylation-induced formation of a cytochrome c-peptide complex: a novel fluorescent sensing platform for protein kinase assay. Chem Commun (Camb) 2016; 52:776-9. [DOI: 10.1039/c5cc07545a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescent sensing platform has been developed for protein kinase assay based on the phosphorylation-induced formation of a cytochrome c-peptide complex.
Collapse
Affiliation(s)
- Shuang Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Xiang-Juan Kong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Yao Cen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| |
Collapse
|
37
|
Williams MD, Nguyen T, Carriere PP, Tilghman SL, Williams C. Protein Kinase CK2 Expression Predicts Relapse Survival in ERα Dependent Breast Cancer, and Modulates ERα Expression in Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 13:ijerph13010036. [PMID: 26703694 PMCID: PMC4730427 DOI: 10.3390/ijerph13010036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
Abstract
The heterotetrameric protein kinase CK2 has been associated with oncogenic transformation, and our previous studies have shown that it may affect estrogenic signaling. Here, we investigate the role of the protein kinase CK2 in regulating ERα (estrogen receptor α) signaling in breast cancer. We determined the correlation of CK2α expression with relapse free breast cancer patient survival utilizing Kaplan Meier Plotter (kmplot.com/analysis/) to mine breast cancer microarrays repositories. Patients were stratified according to ERα status, histological grade, and hormonal therapy. Luciferase reporter assays and flow cytometry were implemented to determine the impact of CK2 inhibition on ERE-mediated gene expression and expression of ERα protein. CK2α expression is associated with shorter relapse free survival among ERα (+) patients with grade 1 or 2 tumors, as well as among those patients receiving hormonal therapy. Biochemical inhibition of CK2 activity results in increased ER-transactivation as well as increased expression among ERα (+) and ERα (−) breast cancer cell lines. These findings suggest that CK2 may contribute to estrogen-independent cell proliferation and breast tumor progression, and may potentially serve as a biomarker and pharmacological target in breast cancer.
Collapse
Affiliation(s)
- Marlon D Williams
- College of Pharmacy, Xavier University of Louisiana, 1 Drexel Dr, New Orleans, LA 70125, USA.
| | - Thu Nguyen
- College of Pharmacy, Xavier University of Louisiana, 1 Drexel Dr, New Orleans, LA 70125, USA.
| | - Patrick P Carriere
- College of Pharmacy, Xavier University of Louisiana, 1 Drexel Dr, New Orleans, LA 70125, USA.
| | - Syreeta L Tilghman
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural & Mechanical University, 1415 S. Martin L. King Jr. Blvd., Tallahassee, FL 32307.
| | - Christopher Williams
- College of Pharmacy, Xavier University of Louisiana, 1 Drexel Dr, New Orleans, LA 70125, USA.
| |
Collapse
|
38
|
Chan T, Cheung FSG, Zheng J, Lu X, Zhu L, Grewal T, Murray M, Zhou F. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking. Mol Pharm 2015; 13:144-54. [DOI: 10.1021/acs.molpharmaceut.5b00576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ting Chan
- Faculty
of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Jian Zheng
- Alkali
Soil Natural Environmental Science Center, Northeast Forestry University/Key
Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil
Field, Ministry of Education, Harbin, 150040, China
| | - Xiaoxi Lu
- Faculty
of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ling Zhu
- Retinal
Therapeutics Research Group, Save Sight Institute, The University of Sydney, Sydney, New South Wales 2000, Australia
| | - Thomas Grewal
- Faculty
of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael Murray
- Discipline
of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fanfan Zhou
- Faculty
of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
39
|
Abstract
INTRODUCTION The conventional term 'casein kinase' (CK) denotes three classes of kinases - CK1, CK2 and Golgi-CK (G-CK)/Fam20C (family with sequence similarity 20, member C) - sharing the ability to phoshorylate casein in vitro, but otherwise unrelated to each other. All CKs have been reported to be implicated in human diseases, and reviews individually dealing with the druggability of CK1 and CK2 are available. Our aim is to provide a comparative analysis of the three classes of CKs as therapeutic targets. AREAS COVERED CK2 is the CK for which implication in neoplasia is best documented, with the survival of cancer cells often relying on its overexpression. An ample variety of cell-permeable CK2 inhibitors have been developed, with a couple of these now in clinical trials. Isoform-specific CK1 inhibitors that are expected to play a beneficial role in oncology and neurodegeneration have been also developed. In contrast, the pathogenic potential of G-CK/Fam20C is caused by its loss of function. Activators of Fam20C, notably sphingolipids and their analogs, may prove beneficial in this respect. EXPERT OPINION Optimization of CK2 and CK1 inhibitors will prove useful to develop new therapeutic strategies for treating cancer and neurodegenerative disorders, while the design of potent activators of G-CK/Fam20C will provide a new tool in the fields of bio-mineralization and hypophosphatemic diseases.
Collapse
Affiliation(s)
- Giorgio Cozza
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy
| | - Lorenzo A Pinna
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy .,b 2 University of Padova, Department of Biomedical Sciences and CNR Institute of Neurosciences , Padova, Italy ;
| |
Collapse
|
40
|
Ampofo E, Rudzitis-Auth J, Dahmke IN, Rössler OG, Thiel G, Montenarh M, Menger MD, Laschke MW. Inhibition of protein kinase CK2 suppresses tumor necrosis factor (TNF)-α-induced leukocyte–endothelial cell interaction. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2123-36. [DOI: 10.1016/j.bbadis.2015.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/29/2015] [Accepted: 07/15/2015] [Indexed: 12/22/2022]
|
41
|
Iniaghe LO, Krafft PR, Klebe DW, Omogbai EKI, Zhang JH, Tang J. Dimethyl fumarate confers neuroprotection by casein kinase 2 phosphorylation of Nrf2 in murine intracerebral hemorrhage. Neurobiol Dis 2015; 82:349-358. [PMID: 26176793 DOI: 10.1016/j.nbd.2015.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/29/2015] [Accepted: 07/04/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Edema formation, inflammation and increased blood-brain barrier permeability contribute to poor outcomes after intracerebral hemorrhage (ICH). This study examined the therapeutic effect of dimethyl fumarate (DMF), a fumaric acid ester that activates nuclear factor erythroid-2 related factor 2 (Nrf2) and Nrf2 heterodimerization effector protein musculo-aponeurotic fibrosarcoma-G (MAFG) in a murine ICH model. METHODS Male CD-1 mice (n=176) were subjected to intrastriatal infusion of bacterial collagenase (n=126), autologous blood (n=18) or sham surgery (n=32). Four (4) animals not subjected to ICH (naive) were also included in the study. After ICH, animals either received vehicle, dimethyl fumarate (10 mg or 100 mg/kg) or casein kinase 2 inhibitor (E)-3-(2,3,4,5-tetrabromophenyl)acrylic acid (TBCA). Thirty-two mice also received scrambled siRNA or MAFG siRNA 24h before ICH. Brain water content and neurological function were evaluated. RESULTS Dimethyl fumarate reduced Evans blue dye extravasation, decreased brain water content, and improved neurological deficits at 24 and 72 h after ICH. Casein kinase 2 inhibitor TBCA and MAFG siRNA prevented the effect of dimethyl fumarate on brain edema and neurological function. After ICH, ICAM-1 levels increased and casein kinase 2 levels decreased. Dimethyl fumarate reduced ICAM-1 but enhanced casein kinase 2 levels. Again, casein kinase 2 inhibitor TBCA and MAFG siRNA abolished the effect of dimethyl fumarate on ICAM-1 and casein kinase 2. Dimethyl fumarate preserved pNrf2 and MAFG expression in the nuclear lysate after ICH and the effect of dimethyl fumarate was abolished by casein kinase 2 inhibitor TBCA and MAFG siRNA. Dimethyl fumarate reduced microglia activation in peri-hematoma areas after ICH. The protective effect of dimethyl fumarate on brain edema and neurological function was also observed in a blood injection mouse model. CONCLUSION Dimethyl fumarate ameliorated inflammation, reduced blood-brain barrier permeability, and improved neurological outcomes by casein kinase 2 and Nrf2 signaling pathways after experimental ICH in mice.
Collapse
Affiliation(s)
- Loretta O Iniaghe
- Department of Physiology and Pharmacology, Loma Linda University, USA; Department of Pharmacology and Toxicology, University of Benin, Nigeria
| | - Paul R Krafft
- Department of Physiology and Pharmacology, Loma Linda University, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Damon W Klebe
- Department of Physiology and Pharmacology, Loma Linda University, USA
| | - Eric K I Omogbai
- Department of Pharmacology and Toxicology, University of Benin, Nigeria
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, USA.
| |
Collapse
|
42
|
Xu M, Cooper EC. An Ankyrin-G N-terminal Gate and Protein Kinase CK2 Dually Regulate Binding of Voltage-gated Sodium and KCNQ2/3 Potassium Channels. J Biol Chem 2015; 290:16619-32. [PMID: 25998125 DOI: 10.1074/jbc.m115.638932] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/06/2022] Open
Abstract
In many mammalian neurons, fidelity and robustness of action potential generation and conduction depends on the co-localization of voltage-gated sodium (Nav) and KCNQ2/3 potassium channel conductance at the distal axon initial segment (AIS) and nodes of Ranvier in a ratio of ∼40 to 1. Analogous "anchor" peptides within intracellular domains of vertebrate KCNQ2, KCNQ3, and Nav channel α-subunits bind Ankyrin-G (AnkG), thereby mediating concentration of those channels at AISs and nodes of Ranvier. Here, we show that the channel anchors bind at overlapping but distinct sites near the AnkG N terminus. In pulldown assays, the rank order of AnkG binding strength is Nav1.2 ≫ KCNQ3 > KCNQ2. Phosphorylation of KCNQ2 and KCNQ3 anchor domains by protein kinase CK2 (CK2) augments binding, as previously shown for Nav1.2. An AnkG fragment comprising ankyrin repeats 1 through 7 (R1-7) binds phosphorylated Nav or KCNQ anchors robustly. However, mutational analysis of R1-7 reveals differences in binding mechanisms. A smaller fragment, R1-6, exhibits much-diminished KCNQ3 binding but binds Nav1.2 well. Two lysine residues at the tip of repeat 2-3 β-hairpin (residues 105-106) are critical for Nav1.2 but not KCNQ3 channel binding. Another dibasic motif (residues Arg-47, Arg-50) in the repeat 1 front α-helix is crucial for KCNQ2/3 but not Nav1.2 binding. AnkG's alternatively spliced N terminus selectively gates access to those sites, blocking KCNQ but not Nav channel binding. These findings suggest that the 40:1 Nav:KCNQ channel conductance ratio at the distal AIS and nodes arises from the relative strength of binding to AnkG.
Collapse
Affiliation(s)
- Mingxuan Xu
- From the Molecular Neuropharmacology Laboratory, Department of Neurology,
| | - Edward C Cooper
- From the Molecular Neuropharmacology Laboratory, Department of Neurology, Department of Neuroscience, and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
43
|
Quantitative and dynamic analysis of PTEN phosphorylation by NMR. Methods 2015; 77-78:82-91. [DOI: 10.1016/j.ymeth.2014.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 12/15/2022] Open
|
44
|
Regulation and function of phosphorylation on VP8, the major tegument protein of bovine herpesvirus 1. J Virol 2015; 89:4598-611. [PMID: 25673708 DOI: 10.1128/jvi.03180-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED The major tegument protein of bovine herpesvirus 1 (BoHV-1), VP8, is essential for virus replication in cattle. VP8 is phosphorylated in vitro by casein kinase 2 (CK2) and BoHV-1 unique short protein 3 (US3). In this study, VP8 was found to be phosphorylated in both transfected and infected cells but was detected as a nonphosphorylated form in mature virions. This suggests that phosphorylation of VP8 is strictly controlled during different stages of the viral life cycle. The regulation and function of VP8 phosphorylation by US3 and CK2 were further analyzed. An in vitro kinase assay, site-directed mutagenesis, and liquid chromatography-mass spectrometry were used to identify the active sites for US3 and CK2. The two kinases phosphorylate VP8 at different sites, resulting in distinct phosphopeptide patterns. S(16) is a primary phosphoreceptor for US3, and it subsequently triggers phosphorylation at S(32). CK2 has multiple active sites, among which T(107) appears to be the preferred residue. Additionally, CK2 consensus motifs in the N terminus of VP8 are essential for phosphorylation. Based on these results, a nonphosphorylated VP8 mutant was constructed and used for further studies. In transfected cells phosphorylation was not required for nuclear localization of VP8. Phosphorylated VP8 appeared to recruit promyelocytic leukemia (PML) protein and to remodel the distribution of PML in the nucleus; however, PML protein did not show an association with nonphosphorylated VP8. This suggests that VP8 plays a role in resisting PML-related host antiviral defenses by redistributing PML protein and that this function depends on the phosphorylation of VP8. IMPORTANCE The progression of VP8 phosphorylation over time and its function in BoHV-1 replication have not been characterized. This study demonstrates that activation of S(16) initiates further phosphorylation at S(32) by US3. Additionally, VP8 is phosphorylated by CK2 at several residues, with T(107) having the highest level of phosphorylation. Evidence for a difference in the phosphorylation status of VP8 in host cells and mature virus is presented for the first time. Phosphorylation was found to be a critical modification, which enables VP8 to attract and to redistribute PML protein in the nucleus. This might promote viral replication through interference with a PML-mediated antiviral defense. This study provides new insights into the regulation of VP8 phosphorylation and suggests a novel, phosphorylation-dependent function for VP8 in the life cycle of BoHV-1, which is important in view of the fact that VP8 is essential for virus replication in vivo.
Collapse
|
45
|
Casein kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm. Oncogene 2014; 34:4702-12. [PMID: 25486430 PMCID: PMC4459945 DOI: 10.1038/onc.2014.395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 08/04/2014] [Accepted: 09/05/2014] [Indexed: 02/07/2023]
Abstract
Nuclear Foxc2 is a transcriptional regulator of mesenchymal transformation during developmental epithelial-mesenchymal transition (EMT) and has been associated with EMT in malignant epithelia. Our laboratory has shown that in normal epithelial cells Foxc2 is maintained in the cytoplasm where it promotes an epithelial phenotype. The Foxc2 amino terminus has a consensus casein kinase 2 (CK2) phosphorylation site at serine 124, and we now show that CK2 associates with Foxc2 and phosphorylates this site in vitro. Knockdown or inhibition of the CK2α/α' kinase subunit in epithelial cells causes de novo accumulation of Foxc2 in the nucleus. Mutation of serine 124 to leucine promotes constitutive nuclear localization of Foxc2 and expression of mesenchymal genes, whereas an S124D phosphomimetic leads to constitutive cytoplasmic localization and epithelial maintenance. In malignant breast cancer cells, the CK2β regulatory subunit is downregulated and FOXC2 is found in the nucleus, correlating with an increase in α-smooth muscle actin (SMA) expression. Restoration of CK2β expression in these cells results in cytoplasmic localization of Foxc2, decreased α-SMA expression and reduced cell migration and invasion. In contrast, knockdown of CK2β in normal breast epithelial cells leads to FOXC2 nuclear localization, decreased E-cadherin expression, increased α-SMA and vimentin expression, and enhanced cell migration and invasion. Based on these findings, we propose that Foxc2 is functionally maintained in the cytoplasm of normal epithelial cells by CK2α/α'-mediated phosphorylation at serine 124, which is dependent on proper targeting of the holoenzyme via the CK2β regulatory subunit.
Collapse
|
46
|
Kim S, Jin B, Choi SH, Han KH, Ahn SH. Casein kinase II inhibitor enhances production of infectious genotype 1a hepatitis C virus (H77S). PLoS One 2014; 9:e113938. [PMID: 25464014 PMCID: PMC4252060 DOI: 10.1371/journal.pone.0113938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/31/2014] [Indexed: 01/11/2023] Open
Abstract
Genotype 2a JFH1 virus has substantially contributed to the progress of HCV biology by allowing entire viral life cycle of HCV in cell culture. Using this genotype 2a virus, casein kinase II (CKII) was previously identified as a crucial host factor in virus assembly by phosphorylating NS5A. Since most of the prior studies employed genotype 2a JFH1 or JFH1-based intragenotypic chimera, we used genotype 1a H77S to study virus assembly. CKII inhibition by chemical inhibitors enhanced H77S virus production in contrast to that of JFH1 virus, but genetic inhibition of CKII by siRNA did not change H77S virus titer significantly. The different outcomes from these two approaches of CKII inhibition suggested that nonspecific target kinase of CKII inhibitors plays a role in increasing H77S virus production and both viral and host factors were investigated in this study. Our results emphasize substantial differences among the HCV genotypes that should be considered in both basic research and clinical practices.
Collapse
Affiliation(s)
- Seungtaek Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| | - Bora Jin
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Hoon Choi
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang-Hyub Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Ahn
- Institute of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Jin CH, Jun KY, Lee E, Kim S, Kwon Y, Kim K, Na Y. Ethyl 2-(benzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate analogues as a new scaffold for protein kinase casein kinase 2 inhibitor. Bioorg Med Chem 2014; 22:4553-65. [PMID: 25131958 DOI: 10.1016/j.bmc.2014.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
Protein kinase casein kinase 2 (PKCK2) is a constitutively active, growth factor-independent serine/threonine kinase, and changes in PKCK2 expression or its activity are reported in many cancer cells. To develop a novel PKCK2 inhibitor(s), we first performed cell-based phenotypic screening using 4000 chemicals purchased from ChemDiv chemical libraries (2000: randomly selected; 2000: kinase-biased) and performed in vitro kinase assay-based screening using hits found from the first screening. We identified compound 24 (C24)[(Z)-ethyl 5-(4-chlorophenyl)-2-(3,4-dihydroxybenzylidene)-7-methyl-3-oxo-3,5-dihydro-2H-thiazolo[3,2-a] pyrimidine-6-carboxylate] as a novel inhibitor of PKCK2 that is more potent and selective than 4,5,6,7-tetrabromobenzotriazole (TBB). In particular, compound 24 [half maximal inhibitory concentration (IC50)=0.56μM] inhibited PKCK2 2.2-fold more efficiently than did TBB (IC50=1.24μM), which is quite specific toward PKCK2 with respect to ATP binding, in a panel of 31 human protein kinases. The Ki values of compound 24 and TBB for PKCK2 were 0.78μM and 2.70μM, respectively. Treatment of cells with compound 24 inhibited endogenous PKCK2 activity and showed anti-proliferative and pro-apoptotic effects against stomach and hepatocellular cancer cell lines more efficiently than did TBB. As expected, compound 24 also enabled tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-resistant cancer cells to be sensitive toward TRAIL. In comparing the molecular docking of compound 24 bound to PKCK2α versus previously reported complexes of PKCK2 with other inhibitors, our findings suggest a new scaffold for specific PKCK2α inhibitors. Thus, compound 24 appears to be a selective, cell-permeable, potent, and novel PKCK2 inhibitor worthy of further characterization.
Collapse
Affiliation(s)
- Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea
| | - Kyu-Yeon Jun
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eunjung Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea
| | - Seongrak Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea; Integrated Genomic Research Center for Metabolic Regulation, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Kunhong Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea; Integrated Genomic Research Center for Metabolic Regulation, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 487-010, Republic of Korea.
| |
Collapse
|
48
|
Spring K, Lapointe L, Caron C, Langlois S, Royal I. Phosphorylation of DEP-1/PTPRJ on threonine 1318 regulates Src activation and endothelial cell permeability induced by vascular endothelial growth factor. Cell Signal 2014; 26:1283-93. [DOI: 10.1016/j.cellsig.2014.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/18/2014] [Indexed: 12/23/2022]
|
49
|
CK2 activates kinesin via induction of a conformational change. Proc Natl Acad Sci U S A 2014; 111:7000-5. [PMID: 24782540 DOI: 10.1073/pnas.1321419111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinesin is the canonical plus-end microtubule motor and has been the focus of intense study since its discovery in 1985. We previously demonstrated a time-dependent inactivation of kinesin in vitro that was fully reversible by the addition of purified casein kinase 2 (CK2) and showed that this inactivation/reactivation pathway was relevant in cells. Here we show that kinesin inactivation results from a conformational change that causes the neck linker to be positioned closer to the motor domain. Furthermore, we show that treatment of kinesin with CK2 prevents and reverses this repositioning. Finally, we demonstrate that CK2 treatment facilitates ADP dissociation from the motor, resulting in a nucleotide-free state that promotes microtubule binding. Thus, we propose that kinesin inactivation results from neck-linker repositioning and that CK2-mediated reactivation results from CK2's dual ability to reverse this repositioning and to promote ADP release.
Collapse
|
50
|
Identification of a novel function of CX-4945 as a splicing regulator. PLoS One 2014; 9:e94978. [PMID: 24743259 PMCID: PMC3990583 DOI: 10.1371/journal.pone.0094978] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/21/2014] [Indexed: 12/25/2022] Open
Abstract
Alternative splicing is a nearly ubiquitous versatile process that controls gene expression and creates numerous protein isoforms with different functions from a single gene. The significance of alternative splicing has been confirmed by the increasing number of human diseases that are caused by misregulation of splicing events. Very few compounds, however, have been reported to act as inhibitors of alternative splicing, and their potential clinical use needs to be evaluated. Here, we report that CX-4945, a previously well-characterized inhibitor of casein kinase 2 (CK2) and a molecule currently in clinical trials (Phase II) for cancer treatment, regulates splicing in mammalian cells in a CK2-independent manner. Transcriptome-wide analysis using exon array also showed a widespread alteration in alternative splicing of numerous genes. We found that CX-4945 potently inhibits the Cdc2-like kinases (Clks) in vitro and in turn, leads to suppression of the phosphorylation of serine/arginine-rich (SR) proteins in mammalian cells. Surprisingly, the overall efficacy of CX-4945 on Clks (IC50 = 3-90 nM) was stronger than that of TG-003, the strongest inhibitor reported to date. Of the Clks, Clk2 was most strongly inhibited by CX-4945 in an ATP-competitive manner. Our research revealed an unexpected activity of the drug candidate CX-4945 as a potent splicing modulator and also suggested a potential application for therapy of diseases caused by abnormal splicing.
Collapse
|