1
|
Li B, Shen X, Liu R, Zhao Y, Cao H, Wang D. Quantification of Tryptophan Enantiomers in a Single Cell by β-Cyclodextrin-Modified Carbon Nanopipettes. Anal Chem 2025. [PMID: 40418680 DOI: 10.1021/acs.analchem.4c06914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Tryptophan levels in the human body are closely related to disease development and metabolic processes, but identification and quantification of tryptophan enantiomers at the single-cell level is still very challenging now. Herein, the mono-(6-ethanediamine-6-deoxy)-β-cyclodextrin (β-CD)-modified carbon nanopipet (CNP) was fabricated, and high-enantioselective electrochemical detection of tryptophan was achieved. Interestingly, the selectivity of the prepared CNP toward l-tryptophan (l-Trp) and d-Tryptophan (d-Trp) could be modulated by adjusting the solution pH. Moreover, besides measuring the l-Trp concentration in a preserved cell environment, the fabricated tip could also be used to monitor the dynamics of l-Trp metabolism in the presence of representative amino acids. This work would offer a new approach to measure Trp enantiomers and reveal tryptophan metabolic pathways at the single-cell level.
Collapse
Affiliation(s)
- Binghan Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyue Shen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingjie Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongli Cao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, Shandong Province, P. R. China
| |
Collapse
|
2
|
Ushakova V, Zorkina Y, Abramova O, Kuanaeva R, Barykin E, Vaneev A, Timoshenko R, Gorelkin P, Erofeev A, Zubkov E, Valikhov M, Gurina O, Mitkevich V, Chekhonin V, Morozova A. Beta-Amyloid and Its Asp7 Isoform: Morphological and Aggregation Properties and Effects of Intracerebroventricular Administration. Brain Sci 2024; 14:1042. [PMID: 39452054 PMCID: PMC11506273 DOI: 10.3390/brainsci14101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES One of the hallmarks of Alzheimer's disease (AD) is the accumulation of aggregated beta-amyloid (Aβ) protein in the form of senile plaques within brain tissue. Senile plaques contain various post-translational modifications of Aβ, including prevalent isomerization of Asp7 residue. The Asp7 isomer has been shown to exhibit increased neurotoxicity and induce amyloidogenesis in brain tissue of transgenic mice. The toxicity of Aβ peptides may be partly mediated by their structure and morphology. In this respect, in this study we analyzed the structural and aggregation characteristics of the Asp7 isoform of Aβ42 and compared them to those of synthetic Aβ42. We also investigated the effects of intracerebroventricular (i.c.v.) administration of these peptides, a method often used to induce AD-like symptoms in rodent models. METHODS Atomic force microscopy (AFM) was conducted to compare the morphological and aggregation properties of Aβ42 and Asp7 iso-Aβ42. The effects of i.c.v. stereotaxic administration of the proteins were assessed via behavioral analysis and reactive oxygen species (ROS) estimation in vivo using a scanning ion-conductance microscope with a confocal module. RESULTS AFM measurements revealed structural differences between the two peptides, most notably in their soluble toxic oligomeric forms. The i.c.v. administration of Asp7 iso-Aβ42 induced spatial memory deficits in rats and elevated oxidative stress levels in vivo, suggesting a potential of ROS in the pathogenic mechanism of the peptide. CONCLUSIONS The findings support the further investigation of Asp7 iso-Aβ42 in translational research on AD and suggest its involvement in neurodegenerative processes.
Collapse
Affiliation(s)
- Valeriya Ushakova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
- Department of Higher Nervous Function, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yana Zorkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Olga Abramova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Regina Kuanaeva
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
| | - Evgeny Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.B.)
| | - Alexander Vaneev
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman Timoshenko
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
| | - Peter Gorelkin
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
| | - Alexander Erofeev
- Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119049 Moscow, Russia; (R.K.); (A.V.); (R.T.); (P.G.); (A.E.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Marat Valikhov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.B.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (E.B.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
- Department of Medical Nanobiotechnology, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, 117513 Moscow, Russia
| | - Anna Morozova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, 119034 Moscow, Russia; (Y.Z.); (O.A.); (E.Z.); (M.V.); (A.M.)
| |
Collapse
|
3
|
Pleskova SN, Vaneev AN, Bezrukov NA, Erofeev AS, Bobyk SZ, Kolmogorov VS, Gorelkin PV, Mamed-Nabizade VV, Gorshkova EN. Changes in ROS/RNS Levels in Endothelial Cells in Experimental Bacteremia. Chembiochem 2024; 25:e202400341. [PMID: 39016541 DOI: 10.1002/cbic.202400341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/18/2024]
Abstract
A high-precision system was developed for the quantification of biological analytes in single cells (reactive oxygen species (ROS) and reactive nitrogen species (RNS)) based on the electrochemical amperometric method. The efficacy of this system was evaluated using an experimental bacteremia model. Endothelial cells exhibited increased ROS/RNS production when stimulated by Staphylococcus aureus. However, they remained inactive when exposed to either unprimed or primed neutrophils that had been pre-incubated with bacteria. It is noteworthy that the sequential stimulation of endothelial cells with bacteria followed by neutrophils resulted in a significant increase in the ROS/RNS level, which demonstrated a correlation with the number of neutrophils in contact with the endothelial cells. These results highlight the potential of our system to quantitatively assess ROS/RNS dynamics in complex biological systems. They also offer insights into the interplay between various cellular components in experimental bacteremia.
Collapse
Affiliation(s)
- Svetlana N Pleskova
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, Gagarina Ave. 23, Build. 3, Nizhny Novgorod, 603950, Russia
- Department "Nanotechnology and Biotechnology", Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minina St. 24, Nizhny Novgorod, 603155, Russia
| | - Alexander N Vaneev
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Ave. 4, Moscow, 119049, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow, 119991, Russia
| | - Nikolay A Bezrukov
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, Gagarina Ave. 23, Build. 3, Nizhny Novgorod, 603950, Russia
| | - Alexander S Erofeev
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Ave. 4, Moscow, 119049, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow, 119991, Russia
| | - Sergey Z Bobyk
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, Gagarina Ave. 23, Build. 3, Nizhny Novgorod, 603950, Russia
| | - Vasilii S Kolmogorov
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Ave. 4, Moscow, 119049, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow, 119991, Russia
| | - Petr V Gorelkin
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Ave. 4, Moscow, 119049, Russia
| | - Vugara V Mamed-Nabizade
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Ave. 4, Moscow, 119049, Russia
| | - Ekaterina N Gorshkova
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, Gagarina Ave. 23, Build. 3, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
4
|
Schanne G, Demignot S, Policar C, Delsuc N. Cellular evaluation of superoxide dismutase mimics as catalytic drugs: Challenges and opportunities. Coord Chem Rev 2024; 514:215906. [DOI: 10.1016/j.ccr.2024.215906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Kumar R, Kushawaha PK. Interferon inducible guanylate-binding protein 1 modulates the lipopolysaccharide-induced cytokines/chemokines and mitogen-activated protein kinases in macrophages. Microbiol Immunol 2024; 68:185-195. [PMID: 38462687 DOI: 10.1111/1348-0421.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
Guanylate-binding proteins (GBPs) are a family of interferon (IFN)-inducible GTPases and play a pivotal role in the host immune response to microbial infections. These are upregulated in immune cells after recognizing the lipopolysaccharides (LPS), the major membrane component of Gram-negative bacteria. In the present study, the expression pattern of GBP1-7 was initially mapped in phorbol 12-myristate 13-acetate-differentiated human monocytes THP-1 and mouse macrophages RAW 264.7 cell lines stimulated with LPS. A time-dependent significant expression of GBP1-7 was observed in these cells. Moreover, among the various GBPs, GBP1 has emerged as a central player in regulating innate immunity and inflammation. Therefore, to study the specific role of GBP1 in LPS-induced inflammation, knockdown of the Gbp1 gene was carried out in both cells using small interfering RNA interference. Altered levels of different cytokines (interleukin [IL]-4, IL-10, IL-12β, IFN-γ, tumor necrosis factor-α), inducible nitric oxide synthase, histocompatibility 2, class II antigen A, protein kinase R, and chemokines (chemokine (C-X-C motif) ligand 9 [CXCL9], CXCL10, and CXCL11) in GBP1 knockdown cells were reported compared to control cells. Interestingly, the extracellular-signal-regulated kinase 1/2 mitogen-activated protein (MAP) kinases and signal transducer and activator of transcription 1 (STAT1) transcription factor levels were considerably induced in knockdown cells compared to the control cells. However, no change in the level of phosphorylated nuclear factor-kB, c-Jun, and p38 transcription factors was observed in GBP1 knockdown cells compared to the control cells. This study concludes that GBP1 may alter the expression of cytokines, chemokines, and effector molecules mediated by MAP kinases and STAT1 transcription factors.
Collapse
Affiliation(s)
- Ravindra Kumar
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
6
|
Qi YT, Zhang FL, Tian SY, Wu HQ, Zhao Y, Zhang XW, Liu YL, Fu P, Amatore C, Huang WH. Nanosensor detection of reactive oxygen and nitrogen species leakage in frustrated phagocytosis of nanofibres. NATURE NANOTECHNOLOGY 2024; 19:524-533. [PMID: 38172432 DOI: 10.1038/s41565-023-01575-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Exposure to widely used inert fibrous nanomaterials (for example, glass fibres or carbon nanotubes) may result in asbestos-like lung pathologies, becoming an important environmental and health concern. However, the origin of the pathogenesis of such fibres has not yet been clearly established. Here we report an electrochemical nanosensor that is used to monitor and quantitatively characterize the flux and dynamics of reactive species release during the frustrated phagocytosis of glass nanofibres by single macrophages. We show the existence of an intense prolonged release of reactive oxygen and nitrogen species by single macrophages near their phagocytic cups. This continued massive leakage of reactive oxygen and nitrogen species damages peripheral cells and eventually translates into chronic inflammation and lung injury, as seen during in vitro co-culture and in vivo experiments.
Collapse
Affiliation(s)
- Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Fu-Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Si-Yu Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hui-Qian Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, People's Republic of China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China.
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne University, Paris, France.
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
7
|
Garcia EM, Cordero PA, Kazemeini S, Murillo-Soto A, Gonzalez KA, McClement A, Rusinek CA. Platinum and palladium nanoparticles on boron-doped diamond for the electrochemical detection of hydrogen peroxide: a comparison study. Anal Bioanal Chem 2023; 415:5781-5795. [PMID: 37498327 DOI: 10.1007/s00216-023-04859-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Hydrogen peroxide (H2O2) plays a role in many facets - a household item, an important industrial chemical, a biomarker in vivo, and several others. For this reason, its measurement and quantification in a variety of media are important. While spectroscopic detection is primarily used for H2O2, electrochemical methods offer advantages in versatility, cost, and sensitivity. In this work, we investigate a 2-step surface metal nanoparticle (NP) modification for platinum (Pt) and palladium (Pd) on boron-doped diamond (BDD) electrodes for the detection of H2O2. Several parameters such as the metal salt concentration and electrodeposition charge in the 2-step modification were varied to find an optimum. Using cyclic voltammetry (CV), the BDD-PdNP electrode types were found to yield a sharper, more well-resolved H2O2 oxidation peak compared to the BDD-PtNP electrodes. Both metal NP electrode types significantly improved the response compared to the bare BDD electrode; a 150-200× improvement in sensitivity was observed across all modified electrode types. Calibration experiments were completed at both low and high concentration ranges in stagnant and flow-based solutions. The lowest limit of detection (LOD) obtained was 50 nM (5E-08 M) on a BDD-PdNP electrode modified with 1.0 mM PdCl2 to 5.0 mC in the wet chemical seeding and electrodeposition steps. 0.25 mM PdCl2 to 3.23 mC and 0.25 mM HPtCl6- to 3.23 mC also yielded a sufficient response for low-level H2O2, with LODs around 100 nM (1E-07 M). Overall, this work exemplifies the wide applicability of BDD and achieves sub-μM H2O2 LODs with a non-enzymatic electrode material.
Collapse
Affiliation(s)
- Elizabeth M Garcia
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Paula A Cordero
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Sarah Kazemeini
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Andrea Murillo-Soto
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Karen A Gonzalez
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Alexander McClement
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Cory A Rusinek
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
8
|
Pleskova SN, Erofeev AS, Vaneev AN, Gorelkin PV, Bobyk SZ, Kolmogorov VS, Bezrukov NA, Lazarenko EV. ROS Production by a Single Neutrophil Cell and Neutrophil Population upon Bacterial Stimulation. Biomedicines 2023; 11:biomedicines11051361. [PMID: 37239032 DOI: 10.3390/biomedicines11051361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The reactive oxygen species (ROS) production by a single neutrophil after stimulation with S. aureus and E. coli was estimated by an electrochemical amperometric method with a high time resolution. This showed significant variability in the response of a single neutrophil to bacterial stimulation, from a "silent cell" to a pronounced response manifested by a series of chronoamperometric spikes. The amount of ROS produced by a single neutrophil under the influence of S. aureus was 5.5-fold greater than that produced under the influence of E. coli. The response of a neutrophil granulocyte population to bacterial stimulation was analyzed using luminol-dependent biochemiluminescence (BCL). The stimulation of neutrophils with S. aureus, as compared to stimulation with E. coli, caused a total response in terms of ROS production that was seven-fold greater in terms of the integral value of the light sum and 13-fold greater in terms of the maximum peak value. The method of ROS detection at the level of a single cell indicated the functional heterogeneity of the neutrophil population, but the specificity of the cellular response to different pathogens was the same at the cellular and population levels.
Collapse
Affiliation(s)
- Svetlana N Pleskova
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
- Department "Nanotechnology and Biotechnology", R.E. Alekseev Technical State University of Nizhny Novgorod, 603155 Nizhny Novgorod, Russia
| | - Alexander S Erofeev
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexander N Vaneev
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Petr V Gorelkin
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Sergey Z Bobyk
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Vasilii S Kolmogorov
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Nikolay A Bezrukov
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Ekaterina V Lazarenko
- Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
9
|
Abakumova T, Vaneev A, Naumenko V, Shokhina A, Belousov V, Mikaelyan A, Balysheva K, Gorelkin P, Erofeev A, Zatsepin T. Intravital electrochemical nanosensor as a tool for the measurement of reactive oxygen/nitrogen species in liver diseases. J Nanobiotechnology 2022; 20:497. [PMID: 36424605 DOI: 10.1186/s12951-022-01688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractReactive oxygen/nitrogen species (ROS/RNS) are formed during normal cellular metabolism and contribute to its regulation, while many pathological processes are associated with ROS/RNS imbalances. Modern methods for measuring ROS/RNS are mainly based on the use of inducible fluorescent dyes and protein-based sensors, which have several disadvantages for in vivo use. Intravital electrochemical nanosensors can be used to quantify ROS/RNS with high sensitivity without exogenous tracers and allow dynamic ROS/RNS measurements in vivo. Here, we developed a method for quantifying total ROS/RNS levels in the liver and evaluated our setup in live mice using three common models of liver disease associated with ROS activation: acute liver injury with CCl4, partial hepatectomy (HE), and induced hepatocellular carcinoma (HCC). We have demonstrated using intravital electrochemical detection that any exposure to the peritoneum in vivo leads to an increase in total ROS/RNS levels, from a slight increase to an explosion, depending on the procedure. Analysis of the total ROS/RNS level in a partial hepatectomy model revealed oxidative stress, both in mice 24 h after HE and in sham-operated mice. We quantified dose-dependent ROS/RNS production in CCl4-induced injury with underlying neutrophil infiltration and cell death. We expect that in vivo electrochemical measurements of reactive oxygen/nitrogen species in the liver may become a routine approach that provides valuable data in research and preclinical studies.
Collapse
|
10
|
Qi YT, Jiang H, Wu WT, Zhang FL, Tian SY, Fan WT, Liu YL, Amatore C, Huang WH. Homeostasis inside Single Activated Phagolysosomes: Quantitative and Selective Measurements of Submillisecond Dynamics of Reactive Oxygen and Nitrogen Species Production with a Nanoelectrochemical Sensor. J Am Chem Soc 2022; 144:9723-9733. [PMID: 35617327 DOI: 10.1021/jacs.2c01857] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen and nitrogen species (ROS/RNS) are generated by macrophages inside their phagolysosomes. This production is essential for phagocytosis of damaged cells and pathogens, i.e., protecting the organism and maintaining immune homeostasis. The ability to quantitatively and individually monitor the four primary ROS/RNS (ONOO-, H2O2, NO, and NO2-) with submillisecond resolution is clearly warranted to elucidate the still unclear mechanisms of their rapid generation and to track their concentration variations over time inside phagolysosomes, in particular, to document the origin of ROS/RNS homeostasis during phagocytosis. A novel nanowire electrode has been specifically developed for this purpose. It consisted of wrapping a SiC nanowire with a mat of 3 nm platinum nanoparticles whose high electrocatalytic performances allow the characterization and individual measurements of each of the four primary ROS/RNS. This allowed, for the first time, a quantitative, selective, and statistically robust determination of the individual amounts of ROS/RNS present in single dormant phagolysosomes. Additionally, the submillisecond resolution of the nanosensor allowed confirmation and measurement of the rapid ability of phagolysosomes to differentially mobilize their enzyme pools of NADPH oxidases and inducible nitric oxide synthases to finely regulate their homeostasis. This reveals an essential key to immune responses and immunotherapies and rationalizes its biomolecular origin.
Collapse
Affiliation(s)
- Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fu-Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Si-Yu Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.,PASTEUR, Départment de Chimie, École Normale Supérieure, PSL Research University, Sorbonne University, UPMC Univ. Paris 06, CNRS 24 rue Lhomond, Paris 75005, France
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
11
|
Nitric oxide precipitates catastrophic chromosome fragmentation by bolstering both hydrogen peroxide and Fe(II) Fenton reactants in E. coli. J Biol Chem 2022; 298:101825. [PMID: 35288189 PMCID: PMC9018393 DOI: 10.1016/j.jbc.2022.101825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Immune cells kill invading microbes by producing reactive oxygen and nitrogen species, primarily hydrogen peroxide (H2O2) and nitric oxide (NO). We previously found that NO inhibits catalases in Escherichia coli, stabilizing H2O2 around treated cells and promoting catastrophic chromosome fragmentation via continuous Fenton reactions generating hydroxyl radicals. Indeed, H2O2-alone treatment kills catalase-deficient (katEG) mutants similar to H2O2+NO treatment. However, the Fenton reaction, in addition to H2O2, requires Fe(II), which H2O2 excess instantly converts into Fenton-inert Fe(III). For continuous Fenton when H2O2 is stable, a supply of reduced iron becomes necessary. We show here that this supply is ensured by Fe(II) recruitment from ferritins and Fe(III) reduction by flavin reductase. Our observations also concur with NO-mediated respiration inhibition that drives Fe(III) reduction. We modeled this NO-mediated inhibition via inactivation of ndh and nuo respiratory enzymes responsible for the step of NADH oxidation, which results in increased NADH pools driving flavin reduction. We found that, like the katEG mutant, the ndh nuo double mutant is similarly sensitive to H2O2-alone and H2O2+NO treatments. Moreover, the quadruple katEG ndh nuo mutant lacking both catalases and efficient respiration was rapidly killed by H2O2-alone, but this killing was delayed by NO, rather than potentiated by it. Taken together, we conclude that NO boosts the levels of both H2O2 and Fe(II) Fenton reactants, making continuous hydroxyl-radical production feasible and resulting in irreparable oxidative damage to the chromosome.
Collapse
|
12
|
Ben Trad F, Wieczny V, Delacotte J, Morel M, Guille-Collignon M, Arbault S, Lemaître F, Sojic N, Labbé E, Buriez O. Dynamic Electrochemiluminescence Imaging of Single Giant Liposome Opening at Polarized Electrodes. Anal Chem 2022; 94:1686-1696. [DOI: 10.1021/acs.analchem.1c04238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fatma Ben Trad
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Vincent Wieczny
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Jérôme Delacotte
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Mathieu Morel
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Manon Guille-Collignon
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Stéphane Arbault
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248 CNRS, F-33600 Pessac, France
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Neso Sojic
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR CNRS 5255, 33607 Pessac, France
| | - Eric Labbé
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Olivier Buriez
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
13
|
Lefrançois P, Santolini J, Arbault S. Electroanalysis at a Single Giant Vesicle Generating Enzymatically a Reactive Oxygen Species. Anal Chem 2021; 93:13143-13151. [PMID: 34546719 DOI: 10.1021/acs.analchem.1c01208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the framework of artificial or synthetic cell development, giant liposomes are common basic structures. Their enclosed membrane allows encapsulating proteins, DNA, reactants, etc., while its phospholipid nature allows some exchanges with the surrounding medium. Biochemical reactions induced inside giant liposomes or vesicles are often monitored or imaged by fluorescence microscopy techniques. Here, we show that electrochemistry performed with ultramicroelectrodes is perfectly suitable to monitor an enzymatic reaction occurring in a single giant unilamellar vesicle. Glucose oxidase (GOx) was microinjected inside individual vesicles containing 1 mM glucose. H2O2 was thus generated in the vesicle and progressively diffused across the membrane toward the surrounding environment. An ultramicroelectrode sensitive to H2O2 (black platinum-modified carbon surface) was placed next to the membrane and provided a direct detection of the hydrogen peroxide flux generated by the enzyme activity. Electrochemistry offered a highly sensitive (in situ detection), selective (potential applied at the electrode), time-resolved analysis (chronoamperometry) of the GOx activity over an hour duration, without modifying the internal giant unilamellar vesicles (GUV) medium. These results demonstrate that electroanalysis with microsensors is well adapted and complementary to fluorescence microscopy to sense enzymatic activities, for instance, generating reactive oxygen species, at single vesicles further used to develop artificial cells.
Collapse
Affiliation(s)
- Pauline Lefrançois
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 CNRS, F-33400 Talence, France
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, F-91198 Gif-sur-Yvette Cedex, France
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 CNRS, F-33400 Talence, France.,Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248 CNRS, F-33600 Pessac, France
| |
Collapse
|
14
|
Xiong-Hang K, Haynes CL. Plasmodium chabaudi Affects Mast Cell Degranulation as Measured by Carbon-Fiber Microelectrode Amperometry. ACS Infect Dis 2021; 7:1650-1656. [PMID: 33856187 DOI: 10.1021/acsinfecdis.0c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mast cells (MCs) are effector cells of the immune system commonly known for their role in asthma and allergy. They are present throughout biological systems in various tissues, serving as an interface between the biological system and environment. Previous work characterizing the impact of malaria on MCs revealed contradictory results, showing minimal to strong correlation between MC degranulation and disease progression. This work seeks to reveal how MC degranulation is impacted in the presence of malaria, induced by Plasmodium chabaudi, using a mouse model and a single cell measurement technique that reveals exquisite biophysical detail about any impacts to the degranulation process. It was hypothesized that the malaria parasites would impact MC degranulation response during live infection, and the differences would be revealed via carbon-fiber microelectrode amperometry. In fact, the data collected show that different stages of malaria infection affect MC degranulation differently, affirming the importance of considering different infection stages in future studies of malarial immune response. Furthermore, a comparison of MC degranulation response to that measured from platelets under similar circumstances shows similar trends in quantitative degranulation, suggesting that MC and platelet exocytosis machinery are affected similarly despite their distinct biological roles. However, based on the small number of mouse replicates, the studies herein suggest that there should be further study about cellular and disease processes. Overall, the work herein reveals important details about the role of MCs in malaria progression, relevant during treatment decisions, as well as a potentially generalizable impact on chemical messenger secretion from cells during malarial progression.
Collapse
Affiliation(s)
- Kang Xiong-Hang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Vajrala VS, Alric B, Laborde A, Colin C, Suraniti E, Temple-Boyer P, Arbault S, Delarue M, Launay J. Microwell Array Based Opto-Electrochemical Detections Revealing Co-Adaptation of Rheological Properties and Oxygen Metabolism in Budding Yeast. Adv Biol (Weinh) 2021; 5:e2100484. [PMID: 33969641 DOI: 10.1002/adbi.202100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/29/2021] [Indexed: 11/08/2022]
Abstract
Microdevices composed of microwell arrays integrating nanoelectrodes (OptoElecWell) are developed to achieve dual high-resolution optical and electrochemical detections on single Saccharomyces cerevisiae yeast cells. Each array consists of 1.6 × 105 microwells measuring 8 µm in diameter and 5 µm height, with a platinum nanoring electrode for in situ electrochemistry, all integrated on a transparent thin wafer for further high-resolution live-cell imaging. After optimizing the filling rate, 32% of cells are effectively trapped within microwells. This allows to analyse S. cerevisiae metabolism associated with basal respiration while simultaneously measuring optically other cellular parameters. In this study, the impact of glucose concentration on respiration and intracellular rheology is focused. It is found that while the oxygen uptake rate decreases with increasing glucose concentration, diffusion of tracer nanoparticles increases. The OptoElecWell-based respiration methodology provides similar results compared to the commercial gold-standard Seahorse XF analyzer, while using 20 times fewer biological samples, paving the way to achieve single cell metabolomics. In addition, it facilitates an optical route to monitor the contents within single cells. The proposed device, in combination with the dual detection analysis, opens up new avenues for measuring cellular metabolism, and relating it to cellular physiological indicators at single cell level.
Collapse
Affiliation(s)
| | - Baptiste Alric
- CNRS, LAAS, 7 avenue du colonel Roche, Toulouse, F-31400, France.,Université de Toulouse, UPS, LAAS, Toulouse, F-31400, France
| | - Adrian Laborde
- CNRS, LAAS, 7 avenue du colonel Roche, Toulouse, F-31400, France.,Université de Toulouse, UPS, LAAS, Toulouse, F-31400, France
| | - Camille Colin
- Univ. Bordeaux, ISM, CNRS UMR 5255, INP Bordeaux, Pessac, 33607, France
| | - Emmanuel Suraniti
- Univ. Bordeaux, ISM, CNRS UMR 5255, INP Bordeaux, Pessac, 33607, France
| | | | - Stephane Arbault
- Univ. Bordeaux, ISM, CNRS UMR 5255, INP Bordeaux, Pessac, 33607, France
| | - Morgan Delarue
- CNRS, LAAS, 7 avenue du colonel Roche, Toulouse, F-31400, France
| | - Jérôme Launay
- CNRS, LAAS, 7 avenue du colonel Roche, Toulouse, F-31400, France.,Université de Toulouse, UPS, LAAS, Toulouse, F-31400, France
| |
Collapse
|
16
|
Duanghathaipornsuk S, Farrell EJ, Alba-Rubio AC, Zelenay P, Kim DS. Detection Technologies for Reactive Oxygen Species: Fluorescence and Electrochemical Methods and Their Applications. BIOSENSORS 2021; 11:30. [PMID: 33498809 PMCID: PMC7911324 DOI: 10.3390/bios11020030] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) have been found in plants, mammals, and natural environmental processes. The presence of ROS in mammals has been linked to the development of severe diseases, such as diabetes, cancer, tumors, and several neurodegenerative conditions. The most common ROS involved in human health are superoxide (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). Organic and inorganic molecules have been integrated with various methods to detect and monitor ROS for understanding the effect of their presence and concentration on diseases caused by oxidative stress. Among several techniques, fluorescence and electrochemical methods have been recently developed and employed for the detection of ROS. This literature review intends to critically discuss the development of these techniques to date, as well as their application for in vitro and in vivo ROS detection regarding free-radical-related diseases. Moreover, important insights into and further steps for using fluorescence and electrochemical methods in the detection of ROS are presented.
Collapse
Affiliation(s)
| | - Eveline J Farrell
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ana C Alba-Rubio
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
17
|
Lefrançois P, Girard‐Sahun F, Badets V, Clément F, Arbault S. Electroactivity of Superoxide Anion in Aqueous Phosphate Buffers Analyzed with Platinized Microelectrodes. ELECTROANAL 2020. [DOI: 10.1002/elan.202060456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pauline Lefrançois
- Univ. Bordeaux Bordeaux INP CNRS UMR 5255 ISM, groupe NSysA 33400 Talence France
- Department of Biochemistry University of Groningen Groningen Biomolecular Sciences and Biotechnology Institute Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Fanny Girard‐Sahun
- Univ. Bordeaux Bordeaux INP CNRS UMR 5255 ISM, groupe NSysA 33400 Talence France
- UPPA IPREM CNRS UMR 5254 2 avenue Président Angot 64000 Pau France
- Chemistry Department University of Antwerp Campus Drie Eiken Universiteitsplein 1 Belgium
| | - Vasilica Badets
- Univ. Bordeaux Bordeaux INP CNRS UMR 5255 ISM, groupe NSysA 33400 Talence France
- University of Strasbourg Chemistry Institute UMR CNRS 7177 4 rue Blaise Pascal CS 90032, 67081 Strasbourg cedex France
| | - Franck Clément
- UPPA IPREM CNRS UMR 5254 2 avenue Président Angot 64000 Pau France
| | - Stéphane Arbault
- Univ. Bordeaux Bordeaux INP CNRS UMR 5255 ISM, groupe NSysA 33400 Talence France
| |
Collapse
|
18
|
Chen R, Alanis K, Welle TM, Shen M. Nanoelectrochemistry in the study of single-cell signaling. Anal Bioanal Chem 2020; 412:6121-6132. [PMID: 32424795 DOI: 10.1007/s00216-020-02655-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
Label-free biosensing has been the dream of scientists and biotechnologists as reported by Vollmer and Arnold (Nat Methods 5:591-596, 2008). The ability of examining living cells is crucial to cell biology as noted by Fang (Int J Electrochem 2011:460850, 2011). Chemical measurement with electrodes is label-free and has demonstrated capability of studying living cells. In recent years, nanoelectrodes of different functionality have been developed. These nanometer-sized electrodes, coupled with scanning electrochemical microscopy (SECM), have further enabled nanometer spatial resolution study in aqueous environments. Developments in the field of nanoelectrochemistry have allowed measurement of signaling species at single cells, contributing to better understanding of cell biology. Leading studies using nanoelectrochemistry of a variety of cellular signaling molecules, including redox-active neurotransmitter (e.g., dopamine), non-redox-active neurotransmitter (e.g., acetylcholine), reactive oxygen species (ROS), and reactive nitrogen species (RNS), are reviewed here.
Collapse
Affiliation(s)
- Ran Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Kristen Alanis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Theresa M Welle
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
19
|
Electrochemical monitoring of reactive oxygen/nitrogen species and redox balance in living cells. Anal Bioanal Chem 2019; 411:4365-4374. [PMID: 31011787 DOI: 10.1007/s00216-019-01734-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
Levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in cells and cell redox balance are of great interest in live cells as they are correlated to several pathological and physiological conditions of living cells. ROS and RNS detection is limited due to their spatially restricted abundance: they are usually located in sub-cellular areas (e.g., in specific organelles) at low concentration. In this work, we will review and highlight the electrochemical approach to this bio-analytical issue. Combining electrochemical methods and miniaturization strategies, specific, highly sensitive, time, and spatially resolved measurements of cellular oxidative stress and redox balance analysis are possible. Graphical abstract In this work, we highlight and review the use of electrochemistry for the highly spatial and temporal resolved detection of ROS/RNS levels and of redox balance in living cells. These levels are central in several pathological and physiological conditions and the electrochemical approach is a vibrant bio-analytical trend in this field.
Collapse
|
20
|
Hu K, Li Y, Rotenberg SA, Amatore C, Mirkin MV. Electrochemical Measurements of Reactive Oxygen and Nitrogen Species inside Single Phagolysosomes of Living Macrophages. J Am Chem Soc 2019; 141:4564-4568. [DOI: 10.1021/jacs.9b01217] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keke Hu
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Yun Li
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
| | - Susan A. Rotenberg
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Christian Amatore
- CNRS, PASTEUR, Département de chimie, École normale supérieure, PSL Research University, Sorbonne Universités, UPMC Univ. Paris 06, 24 rue Lhomond, 75005 Paris, France
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Michael V. Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
21
|
Vajrala VS, Sekli Belaidi F, Lemercier G, Zigah D, Rigoulet M, Devin A, Sojic N, Temple-Boyer P, Launay J, Arbault S. Microwell array integrating nanoelectrodes for coupled opto-electrochemical monitorings of single mitochondria. Biosens Bioelectron 2019; 126:672-678. [DOI: 10.1016/j.bios.2018.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022]
|
22
|
Chen HY, Guo D, Gan ZF, Jiang L, Chang S, Li DW. A phenylboronate-based SERS nanoprobe for detection and imaging of intracellular peroxynitrite. Mikrochim Acta 2018; 186:11. [DOI: 10.1007/s00604-018-3129-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
|
23
|
Bozem M, Knapp P, Mirčeski V, Slowik EJ, Bogeski I, Kappl R, Heinemann C, Hoth M. Electrochemical Quantification of Extracellular Local H 2O 2 Kinetics Originating from Single Cells. Antioxid Redox Signal 2018; 29:501-517. [PMID: 28314376 PMCID: PMC6056260 DOI: 10.1089/ars.2016.6840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIMS H2O2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local hydrogen peroxide concentrations ([H2O2]) originating from single cells is required. RESULTS Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H2O2] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H2O2] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H2O2] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H2O2 to an unstimulated MC, the local [H2O2] decreased on average by 4.2 nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H2O2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H2O2 separately. Local extracellular [H2O2] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 29, 501-517.
Collapse
Affiliation(s)
- Monika Bozem
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Phillip Knapp
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Valentin Mirčeski
- 2 Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss Kiril i Metodij University , Skopje, Macedonia
| | - Ewa J Slowik
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | - Ivan Bogeski
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany .,3 Cardiovascular Physiology, University Medical Center, University of Göttingen , Göttingen, Germany
| | - Reinhard Kappl
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| | | | - Markus Hoth
- 1 Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University , Homburg, Germany
| |
Collapse
|
24
|
Dumitrescu E, Wallace KN, Andreescu S. Real time electrochemical investigation of the release, distribution and modulation of nitric oxide in the intestine of individual zebrafish embryos. Nitric Oxide 2018; 74:32-38. [DOI: 10.1016/j.niox.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 12/16/2022]
|
25
|
Li Y, Hu K, Yu Y, Rotenberg SA, Amatore C, Mirkin MV. Direct Electrochemical Measurements of Reactive Oxygen and Nitrogen Species in Nontransformed and Metastatic Human Breast Cells. J Am Chem Soc 2017; 139:13055-13062. [DOI: 10.1021/jacs.7b06476] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yun Li
- Department
of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
| | - Keke Hu
- Department
of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Yun Yu
- Department
of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Susan A. Rotenberg
- Department
of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Christian Amatore
- PASTEUR,
Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 24 rue Lhomond, Paris 75005, France
- State
Key Laboratory of Structural Chemistry, Fujian Institute
of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Michael V. Mirkin
- Department
of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
26
|
Abstract
Recent progress in the electrochemical field enabled development of miniaturized sensing devices that can be used in biological settings to obtain fundamental and practical biochemically relevant information on physiology, metabolism, and disease states in living systems. Electrochemical sensors and biosensors have demonstrated potential for rapid, real-time measurements of biologically relevant molecules. This chapter provides an overview of the most recent advances in the development of miniaturized sensors for biological investigations in living systems, with focus on the detection of neurotransmitters and oxidative stress markers. The design of electrochemical (bio)sensors, including their detection mechanism and functionality in biological systems, is described as well as their advantages and limitations. Application of these sensors to studies in live cells, embryonic development, and rodent models is discussed.
Collapse
|
27
|
Nanomaterial-based electrochemical sensors and optical probes for detection and imaging of peroxynitrite: a review. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2093-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Fagan-Murphy A, Hachoumi L, Yeoman M, Patel B. Electrochemical sensor for the detection of multiple reactive oxygen and nitrogen species from ageing central nervous system homogenates. Mech Ageing Dev 2016; 160:28-31. [DOI: 10.1016/j.mad.2016.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/01/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
|
29
|
Prasad A, Kikuchi H, Inoue KY, Suzuki M, Sugiura Y, Sugai T, Tomonori A, Tada M, Kobayashi M, Matsue T, Kasai S. Simultaneous Real-Time Monitoring of Oxygen Consumption and Hydrogen Peroxide Production in Cells Using Our Newly Developed Chip-Type Biosensor Device. Front Physiol 2016; 7:109. [PMID: 27065878 PMCID: PMC4810025 DOI: 10.3389/fphys.2016.00109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
All living organisms bear its defense mechanism. Immune cells during invasion by foreign body undergoes phagocytosis during which monocyte and neutrophil produces reactive oxygen species (ROS). The ROS generated in animal cells are known to be involved in several diseases and ailments, when generated in excess. Therefore, if the ROS generated in cells can be measured and analyzed precisely, it can be employed in immune function evaluation and disease detection. The aim of the current study is to introduce our newly developed chip-type biosensor device with high specificity and sensitivity. It comprises of counter electrode and working electrodes I and II. The counter electrode is a platinum plate while the working electrodes I and II are platinum microelectrode and osmium-horseradish peroxidase modified gold electrode, respectively which acts as oxygen and hydrogen peroxide (H2O2) detection sensors. Simultaneous measurement of oxygen consumption and H2O2 generation were measured in animal cells under the effect of exogenous addition of differentiation inducer, phorbol 12-myristate 13-acetate. The results obtained showed considerable changes in reduction currents in the absence and presence of inducer. Our newly developed chip-type biosensor device is claimed to be a useful tool for real-time monitoring of the respiratory activity and precise detection of H2O2 in cells. It can thus be widely applied in biomedical research and in clinical trials being an advancement over other H2O2 detection techniques.
Collapse
Affiliation(s)
- Ankush Prasad
- Biomedical Engineering Research Center, Tohoku Institute of Technology Sendai, Japan
| | - Hiroyuki Kikuchi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Kumi Y Inoue
- Graduate School of Environmental Studies, School of Engineering, Advanced Institute for Materials Research, Tohoku University Sendai, Japan
| | - Makoto Suzuki
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Yamato Sugiura
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Tomoya Sugai
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Amano Tomonori
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Mika Tada
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan; Center for General Education, Tohoku Institute of TechnologySendai, Japan
| | - Masaki Kobayashi
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan; Graduate Department of Electronics, Tohoku Institute of TechnologySendai, Japan
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, School of Engineering, Advanced Institute for Materials Research, Tohoku University Sendai, Japan
| | - Shigenobu Kasai
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan; Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| |
Collapse
|
30
|
Li Y, Meunier A, Fulcrand R, Sella C, Amatore C, Thouin L, Lemaître F, Guille-Collignon M. Multi-chambers Microsystem for Simultaneous and Direct Electrochemical Detection of Reactive Oxygen and Nitrogen Species Released by Cell Populations. ELECTROANAL 2016. [DOI: 10.1002/elan.201501157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yun Li
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| | - Anne Meunier
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| | - Rémy Fulcrand
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| | - Catherine Sella
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| | - Christian Amatore
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| | - Laurent Thouin
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| | - Frédéric Lemaître
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| | - Manon Guille-Collignon
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| |
Collapse
|
31
|
Filice FP, Li MSM, Henderson JD, Ding Z. Mapping Cd²⁺-induced membrane permeability changes of single live cells by means of scanning electrochemical microscopy. Anal Chim Acta 2016; 908:85-94. [PMID: 26826690 DOI: 10.1016/j.aca.2015.12.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/12/2015] [Accepted: 12/29/2015] [Indexed: 12/22/2022]
Abstract
Scanning Electrochemical Microscopy (SECM) is a powerful, non-invasive, analytical methodology that can be used to investigate live cell membrane permeability. Depth scan SECM imaging allowed for the generation of 2D current maps of live cells relative to electrode position in the x-z or y-z plane. Depending on resolution, one depth scan image can contain hundreds of probe approach curves (PACs). Individual PACs were obtained by simply extracting vertical cross-sections from the 2D image. These experimental PACs were overlaid onto theoretically generated PACs simulated at specific geometry conditions. Simulations were carried out using 3D models in COMSOL Multiphysics to determine the cell membrane permeability coefficients at different locations on the surface of the cells. Common in literature, theoretical PACs are generated using a 2D axially symmetric geometry. This saves on both compute time and memory utilization. However, due to symmetry limitations of the model, only one experimental PAC right above the cell can be matched with simulated PAC data. Full 3D models in this article were developed for the SECM system of live cells, allowing all experimental PACs over the entire cell to become usable. Cd(2+)-induced membrane permeability changes of single human bladder (T24) cells were investigated at several positions above the cell, displaced from the central axis. The experimental T24 cells under study were incubated with Cd(2+) in varying concentrations. It is experimentally observed that 50 and 100 μM Cd(2+) caused a decrease in membrane permeability, which was uniform across all locations over the cell regardless of Cd(2+) concentration. The Cd(2+) was found to have detrimental effects on the cell, with cells shrinking in size and volume, and the membrane permeability decreasing. A mapping technique for the analysis of the cell membrane permeability under the Cd(2+) stress is realized by the methodology presented.
Collapse
Affiliation(s)
- Fraser P Filice
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Michelle S M Li
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Jeffrey D Henderson
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada.
| |
Collapse
|
32
|
Li L, Li Q, Chen P, Li Z, Chen Z, Tang B. Consecutive Gated Injection-Based Microchip Electrophoresis for Simultaneous Quantitation of Superoxide Anion and Nitric Oxide in Single PC-12 Cells. Anal Chem 2015; 88:930-6. [DOI: 10.1021/acs.analchem.5b03664] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lu Li
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry
of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Qingling Li
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry
of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Peilin Chen
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry
of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Zhongyi Li
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry
of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Zhenzhen Chen
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry
of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Bo Tang
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry
of Education, Shandong Normal University, Jinan, 250014, P.R. China
| |
Collapse
|
33
|
Chen Z, Li J, Chen X, Cao J, Zhang J, Min Q, Zhu JJ. Single gold@silver nanoprobes for real-time tracing the entire autophagy process at single-cell level. J Am Chem Soc 2015; 137:1903-8. [PMID: 25606663 DOI: 10.1021/ja5112628] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article describes a multimodified core-shell gold@silver nanoprobe for real-time monitoring the entire autophagy process at single-cell level. Autophagy is vital for understanding the mechanisms of human pathologies, developing novel drugs, and exploring approaches for autophagy controlling. A major challenge for autophagy study lies in real-time monitoring. One solution might come from real-time detection of in situ superoxide radicals (O2(•-)), because it is the main regulator of autophagy. In this work, our proposed nanoprobes were etched by O2(•-) and gave a notable wavelength change in the plasmon resonance scattering spectra. Both the experimental and simulated results suggested the wavelength change rate correlated well with O2(•-) level. This response enabled its application in real-time in situ quantification of O2(•-) during autophagy course. More importantly, with the introduction of "relay probe" operation, two types of O2(•-)-regulating autophagy processes were successfully traced from the beginning to the end, and the possible mechanism was also proposed.
Collapse
Affiliation(s)
- Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Synergetic Innovation Center of Chemistry for Life Science, Nanjing University , Nanjing 210093, PR China
| | | | | | | | | | | | | |
Collapse
|
34
|
Wang Y, Shan X, Cui F, Li J, Wang S, Tao N. Electrochemical Reactions in Subfemtoliter-Droplets Studied with Plasmonics-Based Electrochemical Current Microscopy. Anal Chem 2014; 87:494-8. [DOI: 10.1021/ac5036692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yixian Wang
- Center
for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5706, United States
| | - Xiaonan Shan
- Center
for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5706, United States
| | - Fengjuan Cui
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shaopeng Wang
- Center
for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5706, United States
| | - Nongjian Tao
- Center
for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287-5706, United States
| |
Collapse
|
35
|
Lee SH, Boire TC, Lee JB, Gupta MK, Zachman AL, Rath R, Sung HJ. ROS-cleavable proline oligomer crosslinking of polycaprolactone for pro-angiogenic host response. J Mater Chem B 2014; 2:7109-7113. [PMID: 25343029 PMCID: PMC4203664 DOI: 10.1039/c4tb01094a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reactive oxygen species (ROS)-degradable scaffold is fabricated by crosslinking biocompatible, hydrolytically-degradable poly(ε-caprolactone) (PCL) with a ROS-degradable oligoproline peptide, KP7K. The ROS-mediated degradability triggers favorable host responses of the scaffold including improved cell infiltration and angiogenesis in vivo, indicating its unique advantages for tissue engineering applications.
Collapse
Affiliation(s)
- Sue Hyun Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Timothy C. Boire
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Jung Bok Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Angela L. Zachman
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Rutwik Rath
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235, USA. Tel: +1-6153226986
| |
Collapse
|
36
|
Electrochemical Detection of Nitric Oxide and Peroxynitrite Anion in Microchannels at Highly Sensitive Platinum-Black Coated Electrodes. Application to ROS and RNS Mixtures prior to Biological Investigations. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.08.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
|
38
|
Peteu SF, Boukherroub R, Szunerits S. Nitro-oxidative species in vivo biosensing: Challenges and advances with focus on peroxynitrite quantification. Biosens Bioelectron 2014; 58:359-73. [DOI: 10.1016/j.bios.2014.02.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 12/28/2022]
|
39
|
Lu C, Heldt JM, Guille-Collignon M, Lemaître F, Jaouen G, Vessières A, Amatore C. Quantitative analyses of ROS and RNS production in breast cancer cell lines incubated with ferrocifens. ChemMedChem 2014; 9:1286-93. [PMID: 24803138 DOI: 10.1002/cmdc.201402016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Indexed: 11/10/2022]
Abstract
Ferrocifens are an original class of ferrocifen-type breast cancer drugs. They possess anti-proliferative effects due to the association of the ferrocene moiety and the tamoxifen skeleton. In this work, fluorescence measurements indicated the production of reactive oxygen species (ROS) if hormone-dependent or -independent breast cancer cells were incubated with three hit ferrocifen compounds. Additionally, amperometry at ultramicroelectrodes was carried out to identify and quantify ROS and reactive nitrogen species (RNS) under stress conditions. Videomicroscopy was used to optimize the conditions employed for electrochemical investigations. Amperometry was then performed on two cell lines pre-incubated with each of the three ferrocifens. Interestingly, these results demonstrate that the presence of an aminoalkyl chain in the ferrocifen structure may confer a unique behavior toward both cell lines, in comparison with the two other compounds that lack this feature.
Collapse
Affiliation(s)
- Cong Lu
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, 24 rue Lhomond, 75005 Paris (France), Fax: (+33) 1-4432-3863; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, 75005, Paris (France); CNRS, UMR 8640 PASTEUR, 75005, Paris (France)
| | | | | | | | | | | | | |
Collapse
|
40
|
Giacovazzi R, Ciofini I, Rao L, Amatore C, Adamo C. Copper–amyloid-β complex may catalyze peroxynitrite production in brain: evidence from molecular modeling. Phys Chem Chem Phys 2014; 16:10169-74. [DOI: 10.1039/c3cp54839b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The facile occurrence of an Aβ-catalyzed generation of peroxynitrite in the brain, alternative to H2O2-route, is proposed on the basis of QM/MM calculations.
Collapse
Affiliation(s)
- Roberto Giacovazzi
- Laboratoire d'Electrochimie
- Chimie des Interfaces et Modélisation pour l'Energie
- CNRS UMR-7575
- Ecole Nationale Supérieure de Chimie de Paris - Chimie-ParisTech
- F-75231 Paris Cedex 05, France
| | - Ilaria Ciofini
- Laboratoire PASTEUR
- Ecole Normale Supérieure CNRS UMR-8640
- F-75231 Paris Cedex 05, France
| | - Li Rao
- Laboratoire PASTEUR
- Ecole Normale Supérieure CNRS UMR-8640
- F-75231 Paris Cedex 05, France
| | - Christian Amatore
- Laboratoire d'Electrochimie
- Chimie des Interfaces et Modélisation pour l'Energie
- CNRS UMR-7575
- Ecole Nationale Supérieure de Chimie de Paris - Chimie-ParisTech
- F-75231 Paris Cedex 05, France
| | - Carlo Adamo
- Laboratoire PASTEUR
- Ecole Normale Supérieure CNRS UMR-8640
- F-75231 Paris Cedex 05, France
- Institut Universitaire de France
- 103 Boulevard Saint Michel
| |
Collapse
|
41
|
Marrakchi M, Liu X, Andreescu S. Oxidative stress and antibiotic resistance in bacterial pathogens: state of the art, methodologies, and future trends. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:483-98. [PMID: 24952198 DOI: 10.1007/978-3-319-06068-2_23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the significant advances of modern medicine and the availability of a wide variety of antibiotics for the treatment of microbial infections, there is an alarming increase of multiresistant bacterial pathogens. This chapter discusses the status of bacterial resistance mechanisms and the relationship with oxidative stress and provides an overview of the methods used to assess oxidative conditions and their contribution to the antibiotic resistance.
Collapse
Affiliation(s)
- Mouna Marrakchi
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, NY, 13699-5810, USA,
| | | | | |
Collapse
|
42
|
Lieb D, Kenkell I, Miljković JL, Moldenhauer D, Weber N, Filipović MR, Gröhn F, Ivanović-Burmazović I. Amphiphilic Pentaazamacrocyclic Manganese Superoxide Dismutase Mimetics. Inorg Chem 2013; 53:1009-20. [DOI: 10.1021/ic402469t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Dominik Lieb
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Isabell Kenkell
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Jan Lj. Miljković
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Daniel Moldenhauer
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Nadine Weber
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Milos R. Filipović
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| |
Collapse
|
43
|
Oprea R, Peteu SF, Subramanian P, Qi W, Pichonat E, Happy H, Bayachou M, Boukherroub R, Szunerits S. Peroxynitrite activity of hemin-functionalized reduced graphene oxide. Analyst 2013; 138:4345-52. [PMID: 23730686 DOI: 10.1039/c3an00678f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Conducting interfaces modified with reduced graphene oxide (rGO) have shown improved electrochemical response for different analytes. The efficient formation of functionalized rGO based materials is thus of current interest for the development of sensitive and selective biosensors. Herein, we report a simple and environmentally friendly method for the formation of a hemin-functionalized rGO hybrid nanomaterial that exhibits remarkable sensitivity to peroxynitrite (ONOO(-)) in solution. The hemin-functionalized rGO hybrid nanomaterial was formed by mixing an aqueous solution of graphene oxide (GO) with hemin and sonicating the suspension for 5 h at room temperature. In addition to playing a key role in biochemical and electrocatalytic reactions, hemin has been proven to be a good reducing agent for GO. The sensitivity of the peroxynitrite sensor is ≈7.5 ± 1.5 nA mM(-1) with a detection limit of 5 ± 1.5 nM.
Collapse
Affiliation(s)
- Raluca Oprea
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille1, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
González-Sánchez MI, González-Macia L, Pérez-Prior MT, Valero E, Hancock J, Killard AJ. Electrochemical detection of extracellular hydrogen peroxide in Arabidopsis thaliana: a real-time marker of oxidative stress. PLANT, CELL & ENVIRONMENT 2013; 36:869-878. [PMID: 23057760 DOI: 10.1111/pce.12023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An electrochemical approach to directly measure the dynamic process of H2 O2 release from cultures of Arabidopsis thaliana cells is reported. This approach is based on H2 O2 oxidation on a Pt electrode in conjunction with continuous measurement of sample pH. For [H2 O2 ] <1 mm, calibration plots were linear and the amperometric response of the electrode was maximum at pH 6. At higher concentrations ([H2 O2 ] >1 mm), the amperometric response can be described by Michaelian-type kinetics and a mathematical expression relating current intensity and pH was obtained to quantitatively determine H2 O2 concentration. At pH 5.5, the detection limit of the sensor was 3.1 µm (S/N = 3), with a response sensitivity of 0.16 Am(-1 ) cm(-2) and reproducibility was within 6.1% in the range 1-5 × 10(-3 ) m (n = 5). Cell suspensions under normal physiological conditions had a pH between 5.5-5.7 and H2 O2 concentrations in the range 7.0-20.5 µm (n = 5). The addition of exogenous H2 O2 , as well as other potential stress stimuli, was made to the cells and the change in H2 O2 concentration was monitored. This real-time quantitative H2 O2 analysis is a potential marker for the evaluation of oxidative stress in plant cell cultures.
Collapse
Affiliation(s)
- M I González-Sánchez
- Departamento de Química-Física, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain.
| | | | | | | | | | | |
Collapse
|
45
|
Hunter RA, Storm WL, Coneski PN, Schoenfisch MH. Inaccuracies of nitric oxide measurement methods in biological media. Anal Chem 2013; 85:1957-63. [PMID: 23286383 PMCID: PMC3565040 DOI: 10.1021/ac303787p] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite growing reports on the biological action of nitric oxide (NO) as a function of NO payload, the validity of such work is often questionable due to the manner in which NO is measured and/or the solution composition in which NO is quantified. To highlight the importance of measurement technique for a given sample type, NO produced from a small-molecule NO donor (N-diazeniumdiolated l-proline, PROLI/NO) and a NO-releasing xerogel film were quantified in a number of physiological buffers and fluids, cell culture media, and bacterial broth by the Griess assay, a chemiluminescence analyzer, and an amperometric NO sensor. Despite widespread use, the Griess assay proved to be inaccurate for measuring NO in many of the media tested. In contrast, the chemiluminescence analyzer provided superb kinetic information in most buffers but was impractical for NO analysis in proteinaceous media. The electrochemical NO sensor enabled greater flexibility across the various media with potential for spatial resolution, albeit at lower than expected NO totals versus either the Griess assay or chemiluminescence. The results of this study highlight the importance of measurement strategy for accurate NO analysis and reporting NO-based biological activity.
Collapse
Affiliation(s)
- Rebecca A Hunter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | |
Collapse
|
46
|
Electrochemical Detection of H2O2 Formation in Isolated Mitochondria. Methods Enzymol 2013. [DOI: 10.1016/b978-0-12-405883-5.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
47
|
Detection of nitric oxide in macrophage cells for the assessment of the cytotoxicity of gold nanoparticles. Talanta 2012; 101:11-6. [DOI: 10.1016/j.talanta.2012.08.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 12/21/2022]
|
48
|
Wang Y, Noël JM, Velmurugan J, Nogala W, Mirkin MV, Lu C, Guille Collignon M, Lemaître F, Amatore C. Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. Proc Natl Acad Sci U S A 2012; 109:11534-9. [PMID: 22615353 PMCID: PMC3406879 DOI: 10.1073/pnas.1201552109] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS) produced by macrophages are essential for protecting a human body against bacteria and viruses. Micrometer-sized electrodes coated with Pt black have previously been used for selective and sensitive detection of ROS and RNS in biological systems. To determine ROS and RNS inside macrophages, one needs smaller (i.e., nanometer-sized) sensors. In this article, the methodologies have been extended to the fabrication and characterization of Pt/Pt black nanoelectrodes. Electrodes with the metal surface flush with glass insulator, most suitable for quantitative voltammetric experiments, were fabricated by electrodeposition of Pt black inside an etched nanocavity under the atomic force microscope control. Despite a nanometer-scale radius, the true surface area of Pt electrodes was sufficiently large to yield stable and reproducible responses to ROS and RNS in vitro. The prepared nanoprobes were used to penetrate cells and detect ROS and RNS inside macrophages. Weak and very short leaks of ROS/RNS from the vacuoles into the cytoplasm were detected, which a macrophage is equipped to clean within a couple of seconds, while higher intensity oxidative bursts due to the emptying of vacuoles outside persist on the time scale of tens of seconds.
Collapse
Affiliation(s)
- Yixian Wang
- Department of Chemistry and Biochemistry, Queens College–City University of New York, Flushing, NY 11367; and
| | - Jean-Marc Noël
- Department of Chemistry and Biochemistry, Queens College–City University of New York, Flushing, NY 11367; and
| | - Jeyavel Velmurugan
- Department of Chemistry and Biochemistry, Queens College–City University of New York, Flushing, NY 11367; and
| | - Wojciech Nogala
- Department of Chemistry and Biochemistry, Queens College–City University of New York, Flushing, NY 11367; and
| | - Michael V. Mirkin
- Department of Chemistry and Biochemistry, Queens College–City University of New York, Flushing, NY 11367; and
| | - Cong Lu
- Unité Mixte de Recherche 8640 “PASTEUR”–Centre National de la Recherche Scientifique–Ecole Normale Supérieure–Université Pierre et Marie Curie Paris 6, 24 Rue Lhomond, 75231 Paris Cedex 5, France
| | - Manon Guille Collignon
- Unité Mixte de Recherche 8640 “PASTEUR”–Centre National de la Recherche Scientifique–Ecole Normale Supérieure–Université Pierre et Marie Curie Paris 6, 24 Rue Lhomond, 75231 Paris Cedex 5, France
| | - Frédéric Lemaître
- Unité Mixte de Recherche 8640 “PASTEUR”–Centre National de la Recherche Scientifique–Ecole Normale Supérieure–Université Pierre et Marie Curie Paris 6, 24 Rue Lhomond, 75231 Paris Cedex 5, France
| | - Christian Amatore
- Unité Mixte de Recherche 8640 “PASTEUR”–Centre National de la Recherche Scientifique–Ecole Normale Supérieure–Université Pierre et Marie Curie Paris 6, 24 Rue Lhomond, 75231 Paris Cedex 5, France
| |
Collapse
|
49
|
Chen Z, Li Q, Sun Q, Chen H, Wang X, Li N, Yin M, Xie Y, Li H, Tang B. Simultaneous Determination of Reactive Oxygen and Nitrogen Species in Mitochondrial Compartments of Apoptotic HepG2 Cells and PC12 Cells Based On Microchip Electrophoresis–Laser-Induced Fluorescence. Anal Chem 2012; 84:4687-94. [DOI: 10.1021/ac300255n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Reduced Fluoresceinamine for Peroxynitrite Quantification in the Presence of Nitric Oxide. J Fluoresc 2012; 22:1127-40. [DOI: 10.1007/s10895-012-1051-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
|