1
|
Dziadas M, Pachura N, Duda-Madej A, Garbicz M, Gębarowski T, Dominguez-Martin A, Rowińska-Żyrek M. Chloramphenicol glycoside derivative: A way to overcome its antimicrobial resistance and toxicity. Carbohydr Res 2025; 550:109387. [PMID: 39862554 DOI: 10.1016/j.carres.2025.109387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Triggered by the urgent need to tackle the global crisis of multidrug-resistant bacterial infections, in this work, we present a way to overcome chloramphenicol resistance by introducing modifications based on the glycosylation of its hydroxyl groups. The synthesized derivatives demonstrate complete resistance to the action of recombinant chloramphenicol acetyltransferase (CAT) from Escherichia coli and efficacy against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli ESBL, and Pseudomonas aeruginosa ATCC 27853. Glycosylation gives chloramphenicol an additional advantage - the stable glycosidic form is less toxic to human dermal fibroblasts and has significantly better water solubility than non-glycosylated chloramphenicol. Using a specific glycosidase, chloramphenicol can be almost immediately released from the stable prodrug at the site of polybacterial infections.
Collapse
Affiliation(s)
- Mariusz Dziadas
- Faculty of Chemistry, University of Wrocław, Wrocław, 50-383, Poland.
| | - Natalia Pachura
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, 50-375, Poland
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wrocław, 50-368, Poland
| | - Mateusz Garbicz
- Faculty of Chemistry, University of Wrocław, Wrocław, 50-383, Poland
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, Wrocław, 51-631, Poland
| | - Alicia Dominguez-Martin
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, Granada, E-18071, Spain
| | | |
Collapse
|
2
|
Peng Z, Xiao Q, Xia Y, Xia M, Yu J, Fang P, Tang Y, Yu B. Stereoselective chemical N-glycoconjugation of amines via CO 2 incorporation. Nat Commun 2024; 15:10373. [PMID: 39613767 DOI: 10.1038/s41467-024-54523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
Chemical N-glycoconjugation can provide a unique way to tailor the properties of the ubiquitous amines for further expending their diverse functions and applications. Nevertheless, effective methodology for glycoconjugation of amines remains largely underdeveloped. Inspired by a biotransformation pathway of amine-containing drugs in vivo, we have developed an effective protocol that enables one-step chemical N-glycoconjugation of amines in high stereoselectivity under mild conditions. This protocol involves conversion of the amine moiety into the corresponding carbamate anion under CO2 atmosphere and a subsequent SN2 type reaction with glycosyl halides. This work provides an example of using CO2 as the coupling unit in chemical glycoconjugation reactions. A case study on the resulting N-glycoconjugates of Crizotinib, an anticancer drug, demonstrates a quick cleavage of the glucosyl carbamate linkage, testifying that this N-glyconjugation method could serve as a general approach to procure novel prodrugs.
Collapse
Affiliation(s)
- Zihan Peng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qian Xiao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mingyu Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jia Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Pengfei Fang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yu Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
3
|
Kazakova ED, Yashunsky DV, Nifantiev NE. The Synthesis of Blood Group Antigenic A Trisaccharide and Its Biotinylated Derivative. Molecules 2021; 26:5887. [PMID: 34641431 PMCID: PMC8512078 DOI: 10.3390/molecules26195887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
Blood group antigenic A trisaccharide represents the terminal residue of all A blood group antigens and plays a key role in blood cell recognition and blood group compatibility. Herein, we describe the synthesis of the spacered A trisaccharide by means of an assembly scheme that employs in its most complex step the recently proposed glycosyl donor of the 2-azido-2-deoxy-selenogalactoside type, bearing stereocontrolling 3-O-benzoyl and 4,6-O-(di-tert-butylsilylene)-protecting groups. Its application provided efficient and stereoselective formation of the required α-glycosylation product, which was then deprotected and subjected to spacer biotinylation to give both target products, which are in demand for biochemical studies.
Collapse
Affiliation(s)
| | | | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia; (E.D.K.); (D.V.Y.)
| |
Collapse
|
4
|
Meiers J, Zahorska E, Röhrig T, Hauck D, Wagner S, Titz A. Directing Drugs to Bugs: Antibiotic-Carbohydrate Conjugates Targeting Biofilm-Associated Lectins of Pseudomonas aeruginosa. J Med Chem 2020; 63:11707-11724. [PMID: 32924479 PMCID: PMC7586336 DOI: 10.1021/acs.jmedchem.0c00856] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic infections by Pseudomonas aeruginosa are characterized by biofilm formation, which effectively enhances resistance toward antibiotics. Biofilm-specific antibiotic delivery could locally increase drug concentration to break antimicrobial resistance and reduce the drug's peripheral side effects. Two extracellular P. aeruginosa lectins, LecA and LecB, are essential structural components for biofilm formation and thus render a possible anchor for biofilm-targeted drug delivery. The standard-of-care drug ciprofloxacin suffers from severe systemic side effects and was therefore chosen for this approach. We synthesized several ciprofloxacin-carbohydrate conjugates and established a structure-activity relationship. Conjugation of ciprofloxacin to lectin probes enabled biofilm accumulation in vitro, reduced the antibiotic's cytotoxicity, but also reduced its antibiotic activity against planktonic cells due to a reduced cell permeability and on target activity. This work defines the starting point for new biofilm/lectin-targeted drugs to modulate antibiotic properties and ultimately break antimicrobial resistance.
Collapse
Affiliation(s)
- Joscha Meiers
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany.,Department of Pharmacy and Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| | - Eva Zahorska
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany.,Department of Pharmacy and Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| | - Teresa Röhrig
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany.,Drug Design and Optimization (DDOP), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
| | - Dirk Hauck
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
| | - Stefanie Wagner
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany.,Department of Pharmacy and Department of Chemistry, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
5
|
Howse GL, Bovill RA, Stephens PJ, Osborn HM. Synthesis and antibacterial profiles of targeted triclosan derivatives. Eur J Med Chem 2019; 162:51-58. [DOI: 10.1016/j.ejmech.2018.10.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/22/2018] [Indexed: 01/29/2023]
|
6
|
Wang X, Borges CA, Ning X, Rafi M, Zhang J, Park B, Takemiya K, Sterzo CL, Taylor WR, Riley L, Murthy N. A Trimethoprim Conjugate of Thiomaltose Has Enhanced Antibacterial Efficacy In Vivo. Bioconjug Chem 2018; 29:1729-1735. [PMID: 29660287 PMCID: PMC5966298 DOI: 10.1021/acs.bioconjchem.8b00177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trimethoprim is one of the most widely used antibiotics in the world. However, its efficacy is frequently limited by its poor water solubility and dose limiting toxicity. Prodrug strategies based on conjugation of oligosaccharides to trimethoprim have great potential for increasing the solubility of trimethoprim and lowering its toxicity, but they have been challenging to develop due to the sensitivity of trimethoprim to chemical modifications, and the rapid degradation of oligosaccharides in serum. In this report, we present a trimethoprim conjugate of maltodextrin termed TM-TMP, which increased the water solubility of trimethoprim by over 100 times, was stable to serum enzymes, and was active against urinary tract infections in mice. TM-TMP is composed of thiomaltose conjugated to trimethoprim, via a self-immolative disulfide linkage, and releases 4'-OH-trimethoprim (TMP-OH) after disulfide cleavage, which is a known metabolic product of trimethoprim and is as potent as trimethoprim. TM-TMP also contains a new maltodextrin targeting ligand composed of thiomaltose, which is stable to hydrolysis by serum amylases and therefore has the metabolic stability needed for in vivo use. TM-TMP has the potential to significantly improve the treatment of a wide number of infections given its high water solubility and the widespread use of trimethoprim.
Collapse
Affiliation(s)
- Xiaojian Wang
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Clarissa A. Borges
- School of Public Health, University of California, Berkeley, California 94720, United States
| | - Xinghai Ning
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Mohammad Rafi
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Jingtuo Zhang
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Bora Park
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Kiyoko Takemiya
- Emory University School of Medicine, Department of Medicine, Division of Cardiology, Atlanta, Georgia 30322, United States
| | - Carlo Lo Sterzo
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - W. Robert Taylor
- Emory University School of Medicine, Department of Medicine, Division of Cardiology, Atlanta, Georgia 30322, United States
- Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, Georgia 30332, United States
- Atlanta Veterans Affairs Medical Center, Cardiology Division, Atlanta, Georgia 30033, United States
| | - Lee Riley
- School of Public Health, University of California, Berkeley, California 94720, United States
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem 2018; 146:599-612. [PMID: 29407984 DOI: 10.1016/j.ejmech.2018.01.078] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Bacterial infections represent a significant health threat globally, and are responsible for the majority of hospital-acquired infections, leading to extensive mortality and burden on global healthcare systems. The second generation fluoroquinolone ciprofloxacin which exhibits excellent antimicrobial activity and pharmacokinetic properties as well as few side effects is introduced into clinical practice for the treatment of various bacterial infections for around 3 decades. The emergency and widely spread of drug-resistant pathogens making ciprofloxacin more and more ineffective, so it's imperative to develop novel antibacterials. Numerous of ciprofloxacin derivatives have been synthesized for seeking for new antibacterials, and some of them exhibited promising potency. This review aims to summarize the recent advances made towards the discovery of ciprofloxacin derivatives as antibacterial agents and the structure-activity relationship of these derivatives was also discussed.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Hubei, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China.
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China.
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Ming-Liang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
8
|
Bovill R, Evans PG, Howse GL, Osborn HMI. Synthesis and biological analysis of novel glycoside derivatives of l-AEP, as targeted antibacterial agents. Bioorg Med Chem Lett 2016; 26:3774-9. [PMID: 27268308 DOI: 10.1016/j.bmcl.2016.05.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 11/19/2022]
Abstract
To develop targeted methods for treating bacterial infections, the feasibility of using glycoside derivatives of the antibacterial compound l-R-aminoethylphosphonic acid (l-AEP) has been investigated. These derivatives are hypothesized to be taken up by bacterial cells via carbohydrate uptake mechanisms, and then hydrolyzed in situ by bacterial borne glycosidase enzymes, to selectively afford l-AEP. Therefore the synthesis and analysis of ten glycoside derivatives of l-AEP, for selective targeting of specific bacteria, is reported. The ability of these derivatives to inhibit the growth of a panel of Gram-negative bacteria in two different media is discussed. β-Glycosides (12a) and (12b) that contained l-AEP linked to glucose or galactose via a carbamate linkage inhibited growth of a range of organisms with the best MICs being <0.75mg/ml; for most species the inhibition was closely related to the hydrolysis of the equivalent chromogenic glycosides. This suggests that for (12a) and (12b), release of l-AEP was indeed dependent upon the presence of the respective glycosidase enzyme.
Collapse
Affiliation(s)
- Richard Bovill
- Thermofisher Scientific, Wade Road, Basingstoke, Hampshire RG24 8PW, UK
| | - Philip G Evans
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Gemma L Howse
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Helen M I Osborn
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| |
Collapse
|