1
|
Yoon Y, Song S. Structural Insights into the Lipopolysaccharide Transport (Lpt) System as a Novel Antibiotic Target. J Microbiol 2024; 62:261-275. [PMID: 38816673 DOI: 10.1007/s12275-024-00137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Lipopolysaccharide (LPS) is a critical component of the extracellular leaflet within the bacterial outer membrane, forming an effective physical barrier against environmental threats in Gram-negative bacteria. After LPS is synthesized and matured in the bacterial cytoplasm and the inner membrane (IM), LPS is inserted into the outer membrane (OM) through the ATP-driven LPS transport (Lpt) pathway, which is an energy-intensive process. A trans-envelope complex that contains seven Lpt proteins (LptA-LptG) is crucial for extracting LPS from the IM and transporting it across the periplasm to the OM. The last step in LPS transport involves the mediation of the LptDE complex, facilitating the insertion of LPS into the outer leaflet of the OM. As the Lpt system plays an essential role in maintaining the impermeability of the OM via LPS decoration, the interactions between these interconnected subunits, which are meticulously regulated, may be potential targets for the development of new antibiotics to combat multidrug-resistant Gram-negative bacteria. In this review, we aimed to provide an overview of current research concerning the structural interactions within the Lpt system and their implications to clarify the function and regulation of LPS transport in the overall process of OM biogenesis. Additionally, we explored studies on the development of therapeutic inhibitors of LPS transport, the factors that limit success, and future prospects.
Collapse
Affiliation(s)
- Yurim Yoon
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Saemee Song
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
2
|
Schultz KM, Klug CS. Use of Site-Directed Spin Labeling EPR Spectroscopy to Study Protein-LPS Interactions. Methods Mol Biol 2022; 2548:83-96. [PMID: 36151493 PMCID: PMC10765611 DOI: 10.1007/978-1-0716-2581-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Site-directed spin labeling EPR (electron paramagnetic resonance) spectroscopy is a technique used to identify the local conformational changes at a specific residue of interest within a purified protein in response to a ligand. Here, we describe the site-directed spin labeling EPR spectroscopy methodology to monitor changes in the side-chain motion in soluble lipopolysaccharide transport proteins upon the addition of lipopolysaccharide (LPS). A comparison of the spectral overlays of the spin-labeled protein in the absence and presence of LPS provides a qualitative visualization of how LPS binding affects the motion of each spin-labeled site tested within the protein. No change in the spectral lineshapes of a spin-labeled protein in the absence and presence of LPS indicates that the site is not affected by LPS binding, while differences in the spectral lineshapes indicate that LPS does affect the mobility of the spin label side chain within the protein structure. This is a powerful readout of conformational changes at specific residues of interest that can be used to identify a specific site as a reporter of changes induced by ligand binding and to map out the effects of ligand binding through an array of reporter sites within a protein. With the use of AquaStar tubing, protein concentrations as low as 2 μM allow for up to a 100-fold excess of LPS. This methodology may also be applied to other protein-ligand or protein-protein interactions with minor adaptations.
Collapse
Affiliation(s)
- Kathryn M Schultz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Guest RL, Rutherford ST, Silhavy TJ. Border Control: Regulating LPS Biogenesis. Trends Microbiol 2021; 29:334-345. [PMID: 33036869 PMCID: PMC7969359 DOI: 10.1016/j.tim.2020.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The outer membrane (OM) is a defining feature of Gram-negative bacteria that serves as a permeability barrier and provides rigidity to the cell. Critical to OM function is establishing and maintaining an asymmetrical bilayer structure with phospholipids in the inner leaflet and the complex glycolipid lipopolysaccharide (LPS) in the outer leaflet. Cells ensure this asymmetry by regulating the biogenesis of lipid A, the conserved and essential anchor of LPS. Here we review the consequences of disrupting the regulatory components that control lipid A biogenesis, focusing on the rate-limiting step performed by LpxC. Dissection of these processes provides critical insights into bacterial physiology and potential new targets for antibiotics able to overcome rapidly spreading resistance mechanisms.
Collapse
Affiliation(s)
- Randi L Guest
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
4
|
Sperandeo P, Polissi A, De Fabiani E. Fat Matters for Bugs: How Lipids and Lipid Modifications Make the Difference in Bacterial Life. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paola Sperandeo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoVia Balzaretti 920133MilanoItaly
| | - Alessandra Polissi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoVia Balzaretti 920133MilanoItaly
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoVia Balzaretti 920133MilanoItaly
| |
Collapse
|
5
|
The Lpt ABC transporter for lipopolysaccharide export to the cell surface. Res Microbiol 2019; 170:366-373. [PMID: 31376484 DOI: 10.1016/j.resmic.2019.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 10/26/2022]
Abstract
The surface of the outer membrane of Gram-negative bacteria is covered by a tightly packed layer of lipopolysaccharide molecules which provide a barrier against many toxic compounds and antibiotics. Lipopolysaccharide, synthesized in the cytoplasm, is assembled in the periplasmic leaflet of the inner membrane where the intermembrane Lpt system mediates its transport to the cell surface. The first step of lipopolysaccharide transport is its extraction from the outer leaflet of inner membrane powered by the atypical LptB2FGC ABC transporter. Here we review latest advances leading to understanding at molecular level how lipopolysaccharide is transported irreversibly to the outer membrane.
Collapse
|
6
|
Schultz KM, Klug CS. Characterization of and lipopolysaccharide binding to the E. coli LptC protein dimer. Protein Sci 2018; 27:381-389. [PMID: 29024084 PMCID: PMC5775163 DOI: 10.1002/pro.3322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/22/2017] [Accepted: 10/08/2017] [Indexed: 01/15/2023]
Abstract
Lipopolysaccharide (LPS, endotoxin) is the major component of the outer leaflet of the outer membrane of Gram-negative bacteria such as Escherichia coli and Salmonella typhimurium. LPS is a large lipid containing several acyl chains as its hydrophobic base and numerous sugars as its hydrophilic core and O-antigen domains, and is an essential element of the organisms' natural defenses in adverse environmental conditions. LptC is one of seven members of the lipopolysaccharide transport (Lpt) protein family that functions to transport LPS from the inner membrane (IM) to the outer leaflet of the outer membrane of the bacterium. LptC is anchored to the IM and associated with the IM LptFGB2 complex. It is hypothesized that LPS binds to LptC at the IM, transfers to LptA to cross the periplasm, and is inserted by LptDE into the outer leaflet of the outer membrane. The studies described here comprehensively characterize and quantitate the binding of LPS to LptC. Site-directed spin labeling electron paramagnetic resonance spectroscopy was utilized to characterize the LptC dimer in solution and monitor spin label mobility changes at 10 sites across the protein upon addition of exogenous LPS. The results indicate that soluble LptC forms concentration-independent N-terminal dimers in solution, LptA binding does not change the conformation of the LptC dimer nor appreciably disrupt the LptC dimer in vitro, and LPS binding affects the entire LptC protein, with the center and C-terminal regions showing a greater affinity for LPS than the N-terminal domain, which has similar dissociation constants to LptA.
Collapse
Affiliation(s)
- Kathryn M. Schultz
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsin53226
| | - Candice S. Klug
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsin53226
| |
Collapse
|
7
|
Sperandeo P, Martorana AM, Polissi A. The lipopolysaccharide transport (Lpt) machinery: A nonconventional transporter for lipopolysaccharide assembly at the outer membrane of Gram-negative bacteria. J Biol Chem 2017; 292:17981-17990. [PMID: 28878019 DOI: 10.1074/jbc.r117.802512] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The outer membrane (OM) of Gram-negative is a unique lipid bilayer containing LPS in its outer leaflet. Because of the presence of amphipathic LPS molecules, the OM behaves as an effective permeability barrier that makes Gram-negative bacteria inherently resistant to many antibiotics. This review focuses on LPS biogenesis and discusses recent advances that have contributed to our understanding of how this complex molecule is transported across the cellular envelope and is assembled at the OM outer leaflet. Clearly, this knowledge represents an important platform for the development of novel therapeutic options to manage Gram-negative infections.
Collapse
Affiliation(s)
- Paola Sperandeo
- From the Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan and
| | - Alessandra M Martorana
- the Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | - Alessandra Polissi
- From the Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan and
| |
Collapse
|
8
|
Laguri C, Sperandeo P, Pounot K, Ayala I, Silipo A, Bougault CM, Molinaro A, Polissi A, Simorre JP. Interaction of lipopolysaccharides at intermolecular sites of the periplasmic Lpt transport assembly. Sci Rep 2017; 7:9715. [PMID: 28852068 PMCID: PMC5575297 DOI: 10.1038/s41598-017-10136-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023] Open
Abstract
Transport of lipopolysaccharides (LPS) to the surface of the outer membrane is essential for viability of Gram-negative bacteria. Periplasmic LptC and LptA proteins of the LPS transport system (Lpt) are responsible for LPS transfer between the Lpt inner and outer membrane complexes. Here, using a monomeric E. coli LptA mutant, we first show in vivo that a stable LptA oligomeric form is not strictly essential for bacteria. The LptC-LptA complex was characterized by a combination of SAXS and NMR methods and a low resolution model of the complex was determined. We were then able to observe interaction of LPS with LptC, the monomeric LptA mutant as well as with the LptC-LptA complex. A LptC-LPS complex was built based on NMR data in which the lipid moiety of the LPS is buried at the interface of the two β-jellyrolls of the LptC dimer. The selectivity of LPS for this intermolecular surface and the observation of such cavities at homo- or heteromolecular interfaces in LptC and LptA suggests that intermolecular sites are essential for binding LPS during its transport.
Collapse
Affiliation(s)
- Cedric Laguri
- Université Grenoble Alpes, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France. .,CEA, DSV, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France. .,CNRS, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France.
| | - Paola Sperandeo
- University of Milano, Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, Milano, Italy
| | - Kevin Pounot
- Université Grenoble Alpes, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France.,CEA, DSV, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France.,CNRS, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France
| | - Isabel Ayala
- Université Grenoble Alpes, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France.,CEA, DSV, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France.,CNRS, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France
| | - Alba Silipo
- University of Naples Federico II, Department of Chemical Sciences, via cinthia 4, Napoli, Italy
| | - Catherine M Bougault
- Université Grenoble Alpes, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France.,CEA, DSV, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France.,CNRS, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France
| | - Antonio Molinaro
- University of Naples Federico II, Department of Chemical Sciences, via cinthia 4, Napoli, Italy
| | - Alessandra Polissi
- University of Milano, Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, Milano, Italy.
| | - Jean-Pierre Simorre
- Université Grenoble Alpes, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France.,CEA, DSV, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France.,CNRS, Institut de Biologie Structurale, 71 avenue des Martyrs - CS10090, 38044, Grenoble cedex 9, France
| |
Collapse
|
9
|
Dong H, Tang X, Zhang Z, Dong C. Structural insight into lipopolysaccharide transport from the Gram-negative bacterial inner membrane to the outer membrane. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1461-1467. [PMID: 28821406 DOI: 10.1016/j.bbalip.2017.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 11/17/2022]
Abstract
Lipopolysaccharide (LPS) is an important component of the outer membrane (OM) of Gram-negative bacteria, playing essential roles in protecting bacteria from harsh environments, in drug resistance and in pathogenesis. LPS is synthesized in the cytoplasm and translocated to the periplasmic side of the inner membrane (IM), where it matures. Seven lipopolysaccharide transport proteins, LptA-G, form a trans‑envelope complex that is responsible for LPS extraction from the IM and transporting it across the periplasm to the OM. The LptD/E of the complex transports LPS across the OM and inserts it into the outer leaflet of the OM. In this review we focus upon structural and mechanistic studies of LPS transport proteins, with a particular focus upon the LPS ABC transporter LptB2FG. This ATP binding cassette transporter complex consists of twelve transmembrane segments and has a unique mechanism whereby it extracts LPS from the periplasmic face of the IM through a pair of lateral gates and then powers trans‑periplasmic transport to the OM through a slide formed by either of the periplasmic domains of LptF or LptG, LptC, LptA and the N-terminal domain of LptD. The structural and functional studies of the seven lipopolysaccharide transport proteins provide a platform to explore the unusual mechanisms of LPS extraction, transport and insertion from the inner membrane to the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Haohao Dong
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Xiaodi Tang
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Zhengyu Zhang
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Changjiang Dong
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
10
|
Schultz KM, Lundquist TJ, Klug CS. Lipopolysaccharide binding to the periplasmic protein LptA. Protein Sci 2017; 26:1517-1523. [PMID: 28419595 PMCID: PMC5521551 DOI: 10.1002/pro.3177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/13/2017] [Indexed: 11/12/2022]
Abstract
Lipopolysaccharide (LPS) and the periplasmic protein, LptA, are two essential components of Gram-negative bacteria. LPS, also known as endotoxin, is found asymmetrically distributed in the outer leaflet of the outer membrane of Gram-negative bacteria such as Escherichia coli and plays a role in the organism's natural defense in adverse environmental conditions. LptA is a member of the lipopolysaccharide transport protein (Lpt) family, which also includes LptC, LptDE, and LptBFG2 , that functions to transport LPS through the periplasm to the outer leaflet of the outer membrane after MsbA flips LPS across the inner membrane. It is hypothesized that LPS binds to LptA to cross the periplasm and that the acyl chains of LPS bind to the central pocket of LptA. The studies described here are the first to comprehensively characterize and quantitate the binding of LPS by LptA. Using site-directed spin-labeling electron paramagnetic resonance (EPR) spectroscopy, data were collected for 15 spin-labeled residues in and around the proposed LPS binding pocket on LptA to observe the mobility changes caused by the presence of exogenous LPS and identify the binding location of LPS to LptA. The EPR data obtained suggest a 1:1 ratio for the LPS:LptA complex and allow the first calculation of dissociation constants for the LptA-LPS interaction. The results indicate that the entire protein is affected by LPS binding, the N-terminus unfolds in the presence of LPS, and a mutant LptA protein unable to form oligomers has an altered affinity for LPS.
Collapse
Affiliation(s)
- Kathryn M. Schultz
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsin53226
| | | | - Candice S. Klug
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsin53226
| |
Collapse
|
11
|
Sperandeo P, Martorana AM, Polissi A. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1451-1460. [PMID: 27760389 DOI: 10.1016/j.bbalip.2016.10.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/10/2023]
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer containing a unique glycolipid, lipopolysaccharide (LPS) in its outer leaflet. LPS molecules confer to the OM peculiar permeability barrier properties enabling Gram-negative bacteria to exclude many toxic compounds, including clinically useful antibiotics, and to survive harsh environments. Transport of LPS poses several problems to the cells due to the amphipatic nature of this molecule. In this review we summarize the current knowledge on the LPS transport machinery, discuss the challenges associated with this process and present the solutions that bacterial cells have evolved to address the problem of LPS transport and assembly at the cell surface. Finally, we discuss how knowledge on LPS biogenesis can be translated for the development of novel antimicrobial therapies. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Paola Sperandeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Alessandra M Martorana
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Alessandra Polissi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
12
|
Benedet M, Falchi FA, Puccio S, Di Benedetto C, Peano C, Polissi A, Dehò G. The Lack of the Essential LptC Protein in the Trans-Envelope Lipopolysaccharide Transport Machine Is Circumvented by Suppressor Mutations in LptF, an Inner Membrane Component of the Escherichia coli Transporter. PLoS One 2016; 11:e0161354. [PMID: 27529623 PMCID: PMC4986956 DOI: 10.1371/journal.pone.0161354] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/03/2016] [Indexed: 12/29/2022] Open
Abstract
The lipopolysaccharide (LPS) transport (Lpt) system is responsible for transferring LPS from the periplasmic surface of the inner membrane (IM) to the outer leaflet of the outer membrane (OM), where it plays a crucial role in OM selective permeability. In E. coli seven essential proteins are assembled in an Lpt trans-envelope complex, which is conserved in γ-Proteobacteria. LptBFG constitute the IM ABC transporter, LptDE form the OM translocon for final LPS delivery, whereas LptC, an IM-anchored protein with a periplasmic domain, interacts with the IM ABC transporter, the periplasmic protein LptA, and LPS. Although essential, LptC can tolerate several mutations and its role in LPS transport is unclear. To get insights into the functional role of LptC in the Lpt machine we searched for viable mutants lacking LptC by applying a strong double selection for lptC deletion mutants. Genome sequencing of viable ΔlptC mutants revealed single amino acid substitutions at a unique position in the predicted large periplasmic domain of the IM component LptF (LptFSupC). In complementation tests, lptFSupC mutants suppress lethality of both ΔlptC and lptC conditional expression mutants. Our data show that mutations in a specific residue of the predicted LptF periplasmic domain can compensate the lack of the essential protein LptC, implicate such LptF domain in the formation of the periplasmic bridge between the IM and OM complexes, and suggest that LptC may have evolved to improve the performance of an ancestral six-component Lpt machine.
Collapse
Affiliation(s)
- Mattia Benedet
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Federica A. Falchi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Simone Puccio
- Scuola di Dottorato in Medicina Molecolare e Traslazionale, Università degli Studi di Milano, Segrate, Italy
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Milan, Italy
| | | | - Clelia Peano
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Alessandra Polissi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Gianni Dehò
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
- * E-mail:
| |
Collapse
|
13
|
Barker JH, Kaufman JW, Apicella MA, Weiss JP. Evidence Suggesting That Francisella tularensis O-Antigen Capsule Contains a Lipid A-Like Molecule That Is Structurally Distinct from the More Abundant Free Lipid A. PLoS One 2016; 11:e0157842. [PMID: 27326857 PMCID: PMC4915664 DOI: 10.1371/journal.pone.0157842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 01/13/2023] Open
Abstract
Francisella tularensis, the Gram-negative bacterium that causes tularemia, produces a high molecular weight capsule that is immunologically distinct from Francisella lipopolysaccharide but contains the same O-antigen tetrasaccharide. To pursue the possibility that the capsule of Francisella live vaccine strain (LVS) has a structurally unique lipid anchor, we have metabolically labeled Francisella with [14C]acetate to facilitate highly sensitive compositional analysis of capsule-associated lipids. Capsule was purified by two independent methods and yielded similar results. Autoradiographic and immunologic analysis confirmed that this purified material was largely devoid of low molecular weight LPS and of the copious amounts of free lipid A that the Francisellae accumulate. Chemical hydrolysis yielded [14C]-labeled free fatty acids characteristic of Francisella lipid A but with a different molar ratio of 3-OH C18:0 to 3-OH C16:0 and different composition of non-hydroxylated fatty acids (mainly C14:0 rather than C16:0) than that of free Francisella lipid A. Mild acid hydrolysis to induce selective cleavage of KDO-lipid A linkage yielded a [14C]-labeled product that partitioned during Bligh/Dyer extraction and migrated during thin-layer chromatography like lipid A. These findings suggest that the O-antigen capsule of Francisella contains a covalently linked and structurally distinct lipid A species. The presence of a discrete lipid A-like molecule associated with capsule raises the possibility that Francisella selectively exploits lipid A structural heterogeneity to regulate synthesis, transport, and stable bacterial surface association of the O-antigen capsular layer.
Collapse
Affiliation(s)
- Jason H. Barker
- Inflammation Program and Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
- * E-mail:
| | - Justin W. Kaufman
- Inflammation Program and Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - Michael A. Apicella
- Inflammation Program and Department of Microbiology, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - Jerrold P. Weiss
- Inflammation Program and Department of Microbiology, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
| |
Collapse
|
14
|
Tavares-Carreón F, Fathy Mohamed Y, Andrade A, Valvano MA. ArnT proteins that catalyze the glycosylation of lipopolysaccharide share common features with bacterial N-oligosaccharyltransferases. Glycobiology 2015; 26:286-300. [PMID: 26515403 DOI: 10.1093/glycob/cwv095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
ArnT is a glycosyltransferase that catalyzes the addition of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipid A moiety of the lipopolysaccharide. This is a critical modification enabling bacteria to resist killing by antimicrobial peptides. ArnT is an integral inner membrane protein consisting of 13 predicted transmembrane helices and a large periplasmic C-terminal domain. We report here the identification of a functional motif with a canonical consensus sequence DEXRYAX(5)MX(3)GXWX(9)YFEKPX(4)W spanning the first periplasmic loop, which is highly conserved in all ArnT proteins examined. Site-directed mutagenesis demonstrated the contribution of this motif in ArnT function, suggesting that these proteins have a common mechanism. We also demonstrate that the Burkholderia cenocepacia and Salmonella enterica serovar Typhimurium ArnT C-terminal domain is required for polymyxin B resistance in vivo. Deletion of the C-terminal domain in B. cenocepacia ArnT resulted in a protein with significantly reduced in vitro binding to a lipid A fluorescent substrate and unable to catalyze lipid A modification with l-Ara4N. An in silico predicted structural model of ArnT strongly resembled the tertiary structure of Campylobacter lari PglB, a bacterial oligosaccharyltransferase involved in protein N-glycosylation. Therefore, distantly related oligosaccharyltransferases from ArnT and PglB families operating on lipid and polypeptide substrates, respectively, share unexpected structural similarity that could not be predicted from direct amino acid sequence comparisons. We propose that lipid A and protein glycosylation enzymes share a conserved catalytic mechanism despite their evolutionary divergence.
Collapse
Affiliation(s)
- Faviola Tavares-Carreón
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada N6A 5C1 Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. Nuevo León, Mexico
| | - Yasmine Fathy Mohamed
- Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 5GZ, UK Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Angel Andrade
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada N6A 5C1 Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Miguel A Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada N6A 5C1 Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 5GZ, UK
| |
Collapse
|
15
|
Hsueh YC, Brouwer EM, Marzi J, Mirus O, Schleiff E. Functional properties of LptA and LptD in Anabaena sp. PCC 7120. Biol Chem 2015; 396:1151-62. [DOI: 10.1515/hsz-2014-0322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 03/01/2015] [Indexed: 11/15/2022]
Abstract
Abstract
Lipopolysaccharides (LPS) are central components of the outer membrane and consist of Lipid A, the core polysaccharide, and the O-antigen. The synthesis of LPS is initiated at the cytosolic face of the cytoplasmic membrane. The subsequent transport to and across the outer membrane involves multiple lipopolysaccharide transport (Lpt) proteins. Among those proteins, the periplasmic-localized LptA and the outer membrane-embedded LptD participate in the last steps of transfer and insertion of LPS into the outer membrane. While the process is described for proteobacterial model systems, not much is known about the machinery in cyanobacteria. We demonstrate that anaLptD (alr1278) of Anabaena sp. PCC 7120 is important for cell wall function and its pore domain shows a Lipid A sensitive cation-selective gating behavior. The N-terminal domain of anaLptD recognizes anaLptA (alr4067), but not ecLptA. Furthermore, anaLptA specifically interacts with the Lipid A from Anabaena sp. PCC 7120 only, while anaLptD binds to Lipid A isolated from Escherichia coli as well. Based on the comparative analysis of proteins from E. coli and Anabaena sp. we discuss the properties of the cyanobacterial Lpt system.
Collapse
|
16
|
Santambrogio C, Sperandeo P, Barbieri F, Martorana AM, Polissi A, Grandori R. An induced folding process characterizes the partial-loss of function mutant LptAI36D in its interactions with ligands. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1451-7. [PMID: 26123264 DOI: 10.1016/j.bbapap.2015.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 11/15/2022]
Abstract
Lipopolysaccharide (LPS) is an essential glycolipid of the outer membrane (OM) of Gram-negative bacteria with a tripartite structure: lipid A, oligosaccharide core and O antigen. Seven essential LPS-transport proteins (LptABCDEFG) move LPS to the cell surface. Lpt proteins are linked by structural homology, featuring a β-jellyroll domain that mediates protein-protein interactions and LPS binding. Analysis of LptA-LPS interaction by fluorescence spectroscopy is used here to evaluate the contribution of each LPS moiety in protein-ligand interactions, comparing the wild-type (wt) protein to the I36D mutant. In addition to a crucial role of lipid A, an unexpected contribution emerges for the core region in recognition and binding of Lpt proteins.
Collapse
Affiliation(s)
- Carlo Santambrogio
- Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milano, Italy
| | - Paola Sperandeo
- Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milano, Italy
| | - Francesca Barbieri
- Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milano, Italy
| | | | - Alessandra Polissi
- Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milano, Italy.
| | - Rita Grandori
- Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
17
|
Putker F, Bos MP, Tommassen J. Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS Microbiol Rev 2015; 39:985-1002. [DOI: 10.1093/femsre/fuv026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/15/2022] Open
|