1
|
Hanheiser N, Jiang Y, Zoister C, Dimde M, Achazi K, Nie C, Li Y, Haag R, Singh AK. Modular Synthesis of Dendritic Oligo-Glycerol Cationic Surfactants for Enhanced Antibacterial Efficacy. Angew Chem Int Ed Engl 2025; 64:e202425069. [PMID: 40111145 DOI: 10.1002/anie.202425069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Bacterial infections and antibiotic resistance present an ever-increasing threat to human health worldwide, and medicine urgently needs new alternatives for the successful treatment of bacterial infections. Cationic surfactants have proven to be effective antibacterial agents due to their ability to disrupt bacterial membranes, inhibit biofilm formation, and combat a broad spectrum of pathogens. We employed a orthogonal click chemistry strategy for the efficient modular synthesis of six novel cationic surfactants. Our results emphasize the strong correlation between the surfactant design and its antibacterial potential. Among these six cationic surfactants we identified a prime candidate, which possessed an impressive antibacterial effect against gram-positive and gram-negative bacteria, including drug-resistant strains. We found that our surfactant can prevent biofilm formation and eradicate already existing biofilms. Cryo-TEM imaging was used to reveal the membrane-disrupting properties of the surfactant. In-vivo wound healing experiments underline the surfactants' ability to inhibit wound infections. Cationic surfactants often face the challenge of balancing strong antibacterial activity with minimal cytotoxicity. Our strategic design and orthogonal click chemistry approach have enabled precise fine-tuning of molecular structures to achieve an optimal balance between antibacterial efficacy and biocompatibility, effectively overcoming this critical limitation.
Collapse
Affiliation(s)
- Natalie Hanheiser
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Yuhang Jiang
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Christian Zoister
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Mathias Dimde
- Forschungszentrum für Elektronenmikroskopie, Core-Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 36a, 14195, Berlin, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Yuanyuan Li
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 571199, P.R. China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical, University, Haikou, Hainan, 571199, P.R. China
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Abhishek K Singh
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
2
|
Hafidi Z, García MT, Vazquez S, Martinavarro-Mateos M, Ramos A, Pérez L. Antimicrobial and biofilm-eradicating properties of simple double-chain arginine-based surfactants. Colloids Surf B Biointerfaces 2025; 253:114762. [PMID: 40344742 DOI: 10.1016/j.colsurfb.2025.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/26/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
The increasing emergence of multidrug-resistant bacteria and fungi represents a significant challenge for contemporary medicine. In an effort to design and develop new antimicrobial drugs, we have prepared double chain arginine-based surfactants using a simple and cost-effective procedure. These compounds consist of the cationic arginine linked by amide bonds to two hydrophobic chains, one containing 12 carbon atoms, while the length of the other has been systematically varied. We investigated their self-assembly in an aqueous medium, their antimicrobial efficiency against a panel of clinically relevant bacteria and fungi, their antibiofilm activity, and their cytotoxicity. The results demonstrated that these arginine-based surfactants were effective against a broad spectrum of bacteria and fungi, including methicillin-resistant strains. Their antimicrobial activity depends on their hydrophobic content, with the LANHC5 and LANHC6 homologs being the most effective. Notably, these compounds can eradicate mature biofilms of MRSA C. albicans and C. tropicalis at low concentrations. Furthermore, they induced cell lysis only at concentrations exceeding their MIC values against both bacteria and fungi. The findings presented here provide valuable insights into the structure-activity relationships underlying the toxicity of cationic surfactants, which must be better understood to facilitate their transition from bench research to pharmaceutical applications.
Collapse
Affiliation(s)
- Zakaria Hafidi
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Maria Teresa García
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Sergio Vazquez
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Marta Martinavarro-Mateos
- While Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Anderson Ramos
- While Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Lourdes Pérez
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| |
Collapse
|
3
|
Gao Q, Yang H, Sheiber J, Bartolomeu Halicki PC, Liu K, Blanco D, Milhous S, Jin S, Rohde KH, Fleeman RM, Huigens Iii RW. Identification of 6,8-ditrifluoromethyl halogenated phenazine as a potent bacterial biofilm-eradicating agent. Org Biomol Chem 2025; 23:3342-3357. [PMID: 39841058 PMCID: PMC11753200 DOI: 10.1039/d4ob02011a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/05/2025] [Indexed: 01/23/2025]
Abstract
Bacterial biofilms are surface-attached communities consisting of non-replicating persister cells encased within an extracellular matrix of biomolecules. Unlike bacteria that have acquired resistance to antibiotics, persister cells enable biofilms to demonstrate innate tolerance toward all classes of conventional antibiotic therapies. It is estimated that 50-80% of bacterial infections are biofilm associated, which is considered the underlying cause of chronic and recurring infections. Herein, we report a modular three-step synthetic route to new halogenated phenazine (HP) analogues from diverse aniline and nitroarene building blocks. The HPs were evaluated for antibacterial and biofilm-killing properties against a panel of lab strains and multidrug-resistant clinical isolates. Several HPs demonstrated potent antibacterial (MIC ≤ 0.39 μM) and biofilm-eradicating activities (MBEC < 10 μM) with 6,8-ditrifluoromethyl-HP 15 demonstrated remarkable biofilm-killing potencies (MBEC = 0.15-1.17 μM) against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus clinical isolates. Confocal microscopy showed HP 15 induced significant losses in the polysaccharide matrix in MRSA biofilms. In addition, HP 15 showed increased antibacterial activities against dormant Mycobacterium tuberculosis (Mtb, MIC = 1.35 μM) when compared to replicating Mtb (MIC = 3.69 μM). Overall, this new modular route has enabled rapid access to an interesting series of potent halogenated phenazine analogues to explore their unique antibacterial and biofilm-killing properties.
Collapse
Affiliation(s)
- Qiwen Gao
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, USA.
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Hongfen Yang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Jeremy Sheiber
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA.
| | - Priscila Cristina Bartolomeu Halicki
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA.
| | - Ke Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - David Blanco
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Sadie Milhous
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA.
| | - Kyle H Rohde
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA.
| | - Renee M Fleeman
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA.
| | - Robert W Huigens Iii
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, USA.
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
4
|
López-Fernández AM, Neto JC, de Llanos R, Miravet JF, Galindo F. Minimalistic bis-triarylpyridinium cations: effective antimicrobials against bacterial and fungal pathogens. RSC Med Chem 2025:d4md00902a. [PMID: 40190417 PMCID: PMC11969996 DOI: 10.1039/d4md00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/17/2025] [Indexed: 04/09/2025] Open
Abstract
A series of twelve compounds from the family of 2,4,6-triarylpyridinium cations have been synthesized, chemically characterized (1H, 13C NMR, HRMS), and microbiologically evaluated (MIC determination against S. aureus, E. faecalis, E. coli, P. aeruginosa, and C. albicans). These compounds are quaternary ammonium cations (QACs), classified as either mono-QACs or bis-QACs. The mono-QACs are further divided into those with short (three-carbon) and long (twelve-carbon) pendant chains. An additional structural variable is the number of bromine atoms attached to the aromatic rings, ranging from zero to three. The major findings of this study are: (a) bis-QACs exhibit notably higher antimicrobial activity than mono-QACs; (b) an increased number of bromine atoms on the structure appears to diminish antimicrobial properties and (c) one of the compounds (1a) shows particularly promising properties as a broad spectrum antimicrobial, given its low MICs across all five pathogenic microorganisms studied. Preliminary assays with C. albicans show that 1a has a strong mitochondrial activity, causing a remarkable mitochondrial membrane depolarization in this organelle. Taken together, this study positions triarylpyridinium cations-previously unexplored as antimicrobials-as promising candidates for future drug development, especially in light of the growing concern over drug-resistant microorganisms.
Collapse
Affiliation(s)
- Ana M López-Fernández
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Jean C Neto
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Rosa de Llanos
- Unidad Predepartamental de Medicina, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Juan F Miravet
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| |
Collapse
|
5
|
Xie Y, Liu H, Teng Z, Ma J, Liu G. Nanomaterial-enabled anti-biofilm strategies: new opportunities for treatment of bacterial infections. NANOSCALE 2025; 17:5605-5628. [PMID: 39918303 DOI: 10.1039/d4nr04774e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Biofilms play a pivotal role in bacterial pathogenicity and antibiotic resistance, representing a major challenge in the treatment of bacterial infections. The limited diffusion and inactivation efficacy of antibiotics within biofilms hinder their clearance, and while increasing dosage may enhance effectiveness, it also promotes antibiotic resistance. Nano-delivery systems that target antimicrobial agents directly to biofilms offer a promising strategy to overcome this challenge. This review summarizes the resistance mechanisms and therapeutic challenges associated with biofilms, with a focus on recent advances in nano-delivery systems such as liposomes, nanoemulsions, cell membrane vesicles (CMVs), polymers, dendrimers, nanogels, inorganic nanoparticles, and metal-organic frameworks (MOFs). Furthermore, the review explores the potential applications and challenges of nano-delivery systems in biofilm treatment and provides recommendations to guide future research and development in this field.
Collapse
Affiliation(s)
- Yijia Xie
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Huanhuan Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zihao Teng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiaxin Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
6
|
Vermeeren B, Van Praet S, Arts W, Narmon T, Zhang Y, Zhou C, Steenackers HP, Sels BF. From sugars to aliphatic amines: as sweet as it sounds? Production and applications of bio-based aliphatic amines. Chem Soc Rev 2024; 53:11804-11849. [PMID: 39365265 DOI: 10.1039/d4cs00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Aliphatic amines encompass a diverse group of amines that include alkylamines, alkyl polyamines, alkanolamines and aliphatic heterocyclic amines. Their structural diversity and distinctive characteristics position them as indispensable components across multiple industrial domains, ranging from chemistry and technology to agriculture and medicine. Currently, the industrial production of aliphatic amines is facing pressing sustainability, health and safety issues which all arise due to the strong dependency on fossil feedstock. Interestingly, these issues can be fundamentally resolved by shifting toward biomass as the feedstock. In this regard, cellulose and hemicellulose, the carbohydrate fraction of lignocellulose, emerge as promising feedstock for the production of aliphatic amines as they are available in abundance, safe to use and their aliphatic backbone is susceptible to chemical transformations. Consequently, the academic interest in bio-based aliphatic amines via the catalytic reductive amination of (hemi)cellulose-derived substrates has systematically increased over the past years. From an industrial perspective, however, the production of bio-based aliphatic amines will only be the middle part of a larger, ideally circular, value chain. This value chain additionally includes, as the first part, the refinery of the biomass feedstock to suitable substrates and, as the final part, the implementation of these aliphatic amines in various applications. Each part of the bio-based aliphatic amine value chain will be covered in this Review. Applying a holistic perspective enables one to acknowledge the requirements and limitations of each part and to efficiently spot and potentially bridge knowledge gaps between the different parts.
Collapse
Affiliation(s)
- Benjamin Vermeeren
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Sofie Van Praet
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Wouter Arts
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Thomas Narmon
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Yingtuan Zhang
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Cheng Zhou
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | | | - Bert F Sels
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| |
Collapse
|
7
|
Jandl B, Dighe S, Baumgartner M, Makristathis A, Gasche C, Muttenthaler M. Gastrointestinal Biofilms: Endoscopic Detection, Disease Relevance, and Therapeutic Strategies. Gastroenterology 2024; 167:1098-1112.e5. [PMID: 38876174 DOI: 10.1053/j.gastro.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 06/16/2024]
Abstract
Gastrointestinal biofilms are matrix-enclosed, highly heterogenic and spatially organized polymicrobial communities that can cover large areas in the gastrointestinal tract. Gut microbiota dysbiosis, mucus disruption, and epithelial invasion are associated with pathogenic biofilms that have been linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel diseases, gastric cancer, and colorectal cancer. Intestinal biofilms are highly prevalent in ulcerative colitis and irritable bowel syndrome patients, and most endoscopists will have observed such biofilms during colonoscopy, maybe without appreciating their biological and clinical importance. Gut biofilms have a protective extracellular matrix that renders them challenging to treat, and effective therapies are yet to be developed. This review covers gastrointestinal biofilm formation, growth, appearance and detection, biofilm architecture and signalling, human host defence mechanisms, disease and clinical relevance of biofilms, therapeutic approaches, and future perspectives. Critical knowledge gaps and open research questions regarding the biofilm's exact pathophysiological relevance and key hurdles in translating therapeutic advances into the clinic are discussed. Taken together, this review summarizes the status quo in gut biofilm research and provides perspectives and guidance for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Bernhard Jandl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry, Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Maximillian Baumgartner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Athanasios Makristathis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 3, Medical University of Vienna, Vienna, Austria; Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
8
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
10
|
Jin Y, Liu Y, Zhu J, Liu H. Pillararenes: a new frontier in antimicrobial therapy. Org Biomol Chem 2024; 22:4202-4211. [PMID: 38727528 DOI: 10.1039/d4ob00396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Pillararenes have gained great interest among researchers in many fields due to their symmetric structure and facile functionalization. In this review, we summarize recent progress for pillararenes as antimicrobial agents, ranging from cationic pillararenes and peptide-modified pillararenes to sugar-functionalized pillararenes. Moreover, their structure-activity relationships are presented, and their mechanisms of action are discussed. As a state-of-the-art technology, their opportunities and outlook are also outlined in this emerging field. Overall, their potent inhibitory activity and high biocompatibility give them potential for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Yanqing Jin
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan 430073, P. R. China.
| | - Yisu Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan 430073, P. R. China.
| | - Jiang Zhu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical college, Nanchong 637000, Sichuan, P. R. China
| | - Hui Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, 693 Xiongchu Avenue, Wuhan 430073, P. R. China.
| |
Collapse
|
11
|
Breunig J, Valdes-Pena MA, Ratchford AW, Pierce JG. Total Synthesis and Microbiological Evaluation of Leopolic Acid A and Analogues. ACS BIO & MED CHEM AU 2024; 4:95-99. [PMID: 38645927 PMCID: PMC11027124 DOI: 10.1021/acsbiomedchemau.3c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 04/23/2024]
Abstract
New antimicrobial scaffolds are scarce, and there is a great need for the development of novel therapeutics. In this study, we report a convergent 9-step synthesis of leopolic acid A and a series of targeted analogues. The designed compounds allowed for incorporation of non-natural ureido dipeptide moieties and 4- and 5-position substituents around the 2,3-pyrrolidinedione of leopolic acid A. Leopolic acid A displayed modest antimicrobial activity (32 μg/mL) against MRSA, while the most active analogues displayed slightly improved activity (8-16 μg/mL). Additionally, several of the leopolic acid A analogues displayed promising antibiofilm activity, most notably having an MBEC:MIC ratio of ∼1. Overall, this work represents an initial SAR of the natural product and a framework for further optimization of these bioactive scaffolds within the context of bioactive pyrrolidinediones.
Collapse
Affiliation(s)
- Jamie
L. Breunig
- Department of Chemistry, Comparative
Medicine Institute, and Integrative Sciences Initiative, NC State University, Raleigh, North Carolina 27695, United States
| | - M. Alejandro Valdes-Pena
- Department of Chemistry, Comparative
Medicine Institute, and Integrative Sciences Initiative, NC State University, Raleigh, North Carolina 27695, United States
| | - Andrew W. Ratchford
- Department of Chemistry, Comparative
Medicine Institute, and Integrative Sciences Initiative, NC State University, Raleigh, North Carolina 27695, United States
| | - Joshua G. Pierce
- Department of Chemistry, Comparative
Medicine Institute, and Integrative Sciences Initiative, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
12
|
Limwongyut J, Moreland AS, Zhang K, Raynor M, Chattagul S, Fitzgerald TA, Le Breton Y, Zurawski DV, Bazan GC. Amidine-Based Cationic Conjugated Oligoelectrolytes with Antimicrobial Activity against Pseudomonas aeruginosa Biofilms. J Med Chem 2023; 66:14303-14314. [PMID: 37798258 DOI: 10.1021/acs.jmedchem.3c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that can cause high-morbidity infections. Due to its robust, flexible genome and ability to form biofilms, it can evade and rapidly develop resistance to antibiotics. Cationic conjugated oligoelectrolytes (COEs) have emerged as a promising class of antimicrobials. Herein, we report a series of amidine-containing COEs with high selectivity for bacteria. From this series, we identified 1b as the most active compound against P. aeruginosa (minimum inhibitory concentration (MIC) = 2 μg/mL) with low cytotoxicity (IC50 (HepG2) = 1024 μg/mL). The activity of 1b was not affected by known drug-resistant phenotypes of 100 diverse P. aeruginosa isolates. Moreover, 1b is bactericidal with a low propensity for P. aeruginosa to develop resistance. Furthermore, 1b is also able to inhibit biofilm formation at subinhibitory concentrations and kills P. aeruginosa in established biofilms. The in vivo efficacy of 1b was demonstrated in biofilm-associated murine wound infection models.
Collapse
Affiliation(s)
- Jakkarin Limwongyut
- Department of Chemistry, National University of Singapore, 117544 Singapore
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Alex S Moreland
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Kaixi Zhang
- Department of Chemistry, National University of Singapore, 117544 Singapore
| | - Malik Raynor
- Experimental Therapeutics Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Supaksorn Chattagul
- Experimental Therapeutics Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Timothy A Fitzgerald
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Yoann Le Breton
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Daniel V Zurawski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, 117544 Singapore
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
13
|
Kavanaugh LG, Mahoney AR, Dey D, Wuest WM, Conn GL. Di-berberine conjugates as chemical probes of Pseudomonas aeruginosa MexXY-OprM efflux function and inhibition. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:12. [PMID: 39843773 PMCID: PMC11721654 DOI: 10.1038/s44259-023-00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/17/2023] [Indexed: 01/24/2025]
Abstract
The Resistance-Nodulation-Division (RND) efflux pump superfamily is pervasive among Gram-negative pathogens and contributes extensively to clinical antibiotic resistance. The opportunistic pathogen Pseudomonas aeruginosa contains 12 RND-type efflux systems, with four contributing to resistance including MexXY-OprM which is uniquely able to export aminoglycosides. At the site of initial substrate recognition, small molecule probes of the inner membrane transporter (e.g., MexY) have potential as important functional tools to understand substrate selectivity and a foundation for developing adjuvant efflux pump inhibitors (EPIs). Here, we optimized the scaffold of berberine, a known but weak MexY EPI, using an in-silico high-throughput screen to identify di-berberine conjugates with enhanced synergistic action with aminoglycosides. Further, docking and molecular dynamics simulations of di-berberine conjugates reveal unique contact residues and thus sensitivities of MexY from distinct P. aeruginosa strains. This work thereby reveals di-berberine conjugates to be useful probes of MexY transporter function and potential leads for EPI development.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA, USA.
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA, USA.
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Kavanaugh LG, Mahoney AR, Dey D, Wuest WM, Conn GL. Di-berberine conjugates as chemical probes of Pseudomonas aeruginosa MexXY-OprM efflux function and inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.533986. [PMID: 37425949 PMCID: PMC10327050 DOI: 10.1101/2023.03.24.533986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The Resistance-Nodulation-Division (RND) efflux pump superfamily is pervasive among Gram-negative pathogens and contributes extensively to clinical antibiotic resistance. The opportunistic pathogen Pseudomonas aeruginosa contains 12 RND-type efflux systems, with four contributing to resistance including MexXY-OprM which is uniquely able to export aminoglycosides. At the site of initial substrate recognition, small molecule probes of the inner membrane transporter (e.g., MexY) have potential as important functional tools to understand substrate selectivity and a foundation for developing adjuvant efflux pump inhibitors (EPIs). Here, we optimized the scaffold of berberine, a known but weak MexY EPI, using an in-silico high-throughput screen to identify di-berberine conjugates with enhanced synergistic action with aminoglycosides. Further, docking and molecular dynamics simulations of di-berberine conjugates reveal unique contact residues and thus sensitivities of MexY from distinct P. aeruginosa strains. This work thereby reveals di-berberine conjugates to be useful probes of MexY transporter function and potential leads for EPI development.
Collapse
Affiliation(s)
- Logan G. Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
| | | | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, GA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA
| |
Collapse
|
15
|
de Sousa FFO, Pinazo A, Hafidi Z, García MT, Bautista E, Moran MDC, Pérez L. Arginine Gemini-Based Surfactants for Antimicrobial and Antibiofilm Applications: Molecular Interactions, Skin-Related Anti-Enzymatic Activity and Cytotoxicity. Molecules 2023; 28:6570. [PMID: 37764346 PMCID: PMC10536132 DOI: 10.3390/molecules28186570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The antimicrobial and antibiofilm properties of arginine-based surfactants have been evaluated. These two biological properties depend on both the alkyl chain length and the spacer chain nature. These gemini surfactants exhibit good activity against a wide range of bacteria, including some problematic resistant microorganisms such us methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Moreover, surfactants with a C10 alkyl chain and C3 spacer inhibit the (MRSA) and Pseudomonas aeruginosa biofilm formation at concentrations as low as 8 µg/mL and are able to eradicate established biofilms of these two bacteria at 32 µg/mL. The inhibitory activities of the surfactants over key enzymes enrolled in the skin repairing processes (collagenase, elastase and hyaluronidase) were evaluated. They exhibited moderate anti-collagenase activity while the activity of hyaluronidase was boosted by the presence of these surfactants. These biological properties render these gemini arginine-based surfactants as perfect promising candidates for pharmaceutical and biological properties.
Collapse
Affiliation(s)
- Francisco Fábio Oliveira de Sousa
- Laboratory of Quality Control, Bromatology & Microbiology, Department of Biological & Health Sciences, School of Pharmacy, Federal University of Amapá, Rodovia Juscelino Kubitscheck, km 02, Macapá 68903-419, Brazil
| | - Aurora Pinazo
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain; (A.P.); (Z.H.); (M.T.G.); (E.B.)
| | - Zakaria Hafidi
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain; (A.P.); (Z.H.); (M.T.G.); (E.B.)
| | - María Teresa García
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain; (A.P.); (Z.H.); (M.T.G.); (E.B.)
| | - Elena Bautista
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain; (A.P.); (Z.H.); (M.T.G.); (E.B.)
| | - Maria del Carmen Moran
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain;
- Institut de Nanociència i Nanotecnologia—IN2UB, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | - Lourdes Pérez
- Department of Surfactants and Nanobiotechnology, Instituto de Química Avanzada de Cataluña, Centro Superior de Investigaciones Científicas IQAC-CSIC, 08035 Barcelona, Spain; (A.P.); (Z.H.); (M.T.G.); (E.B.)
| |
Collapse
|
16
|
Liu K, Xiao T, Yang H, Chen M, Gao Q, Brummel BR, Ding Y, Huigens RW. Design, synthesis and evaluation of halogenated phenazine antibacterial prodrugs targeting nitroreductase enzymes for activation. RSC Med Chem 2023; 14:1472-1481. [PMID: 37593580 PMCID: PMC10429720 DOI: 10.1039/d3md00204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/01/2023] [Indexed: 08/19/2023] Open
Abstract
It is of great importance to develop new strategies to combat antibiotic resistance. Our lab has discovered halogenated phenazine (HP) analogues that are highly active against multidrug-resistant bacterial pathogens. Here, we report the design, synthesis, and study of a new series of nitroarene-based HP prodrugs that leverage intracellular nitroreductase (NTR) enzymes for activation and subsequent release of active HP agents. Our goals of developing HP prodrugs are to (1) mitigate off-target metal chelation (potential toxicity), (2) possess motifs to facilitate intracellular, bacterial-specific HP release, (3) improve water solubility, and (4) prevent undesirable metabolism (e.g., glucuronidation of HP's phenol). Following the synthesis of HP-nitroarene prodrugs bearing a sulfonate ester linker, NTR-promoted release experiments demonstrated prodrug HP-1-N released 70.1% of parent HP-1 after 16 hours (with only 6.8% HP-1 release without NTR). In analogous in vitro experiments, no HP release was observed for control sulfonate ester compounds lacking the critical nitro group. When compared to parent HP compounds, nitroarene prodrugs evaluated during these studies demonstrate similar antibacterial activities in MIC and zone of inhibition assays (against lab strains and clinical isolates). In conclusion, HP-nitroarene prodrugs could provide a future avenue to develop potent agents that target antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Ke Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| | - Tao Xiao
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| | - Hongfen Yang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| | - Qiwen Gao
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| | - Beau R Brummel
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida Gainesville Florida 32610 USA
| |
Collapse
|
17
|
Brčić J, Tong A, Wender PA, Cegelski L. Conjugation of Vancomycin with a Single Arginine Improves Efficacy against Mycobacteria by More Effective Peptidoglycan Targeting. J Med Chem 2023; 66:10226-10237. [PMID: 37477249 PMCID: PMC10783851 DOI: 10.1021/acs.jmedchem.3c00565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Drug resistant bacterial infections have emerged as one of the greatest threats to public health. The discovery and development of new antimicrobials and anti-infective strategies are urgently needed to address this challenge. Vancomycin is one of the most important antibiotics for the treatment of Gram-positive infections. Here, we introduce the vancomycin-arginine conjugate (V-R) as a highly effective antimicrobial against actively growing mycobacteria and difficult-to-treat mycobacterial biofilm populations. Further improvement in efficacy through combination treatment of V-R to inhibit peptidoglycan synthesis and ethambutol to inhibit arabinogalactan synthesis underscores the ability to identify compound synergies to more effectively target the Achilles heel of the cell-wall assembly. Moreover, we introduce mechanistic activity data and a molecular model derived from a d-Ala-d-Ala-bound vancomycin structure that we hypothesize underlies the molecular basis for the antibacterial improvement attributed to the arginine modification that is specific to peptidoglycan chemistry employed by mycobacteria and distinct from Gram-positive pathogens.
Collapse
Affiliation(s)
- Jasna Brčić
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Alan Tong
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
García MT, Bautista E, de la Fuente A, Pérez L. Cholinium-Based Ionic Liquids as Promising Antimicrobial Agents in Pharmaceutical Applications: Surface Activity, Antibacterial Activity and Ecotoxicological Profile. Pharmaceutics 2023; 15:1806. [PMID: 37513993 PMCID: PMC10385515 DOI: 10.3390/pharmaceutics15071806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Cholinium-based ionic liquids are compounds increasingly studied in pharmaceutics and biomedicine to enhance bioavailability in drug delivery systems and as bioactive ingredients in pharmaceutical formulations. However, their potential as antimicrobial agents has scarcely been investigated. Herein, we explored the antimicrobial activity of a series of surface-active cholinium-based ionic liquids (Chol-ILs). For this purpose, Chol-ILs with alkyl chains of 10-16 carbon atoms were synthesized and their self-assembly in aqueous medium was investigated. Subsequently, their antimicrobial activity against a panel of clinically relevant bacteria and their ability to eradicate MRSA and P. aeruginosa PAO1 biofilms was evaluated. Finally, we analyzed the ecotoxicological profile of Chol-ILs in terms of susceptibility to aerobic biodegradation and acute aquatic toxicity against D. magna and V. fisheri. Our results reveal that cholinium-based ILs with alkyl chain lengths ≥12 C show a broad spectrum of antibacterial activity. Their antimicrobial efficacy depends on their hydrophobicity, with the C14-C16 homologs being the most effective compounds. These ILs exhibit antimicrobial activity similar to that of imidazolium ILs and quaternary ammonium antiseptics. Moreover, the longer alkyl chain Chol-ILs are able to eradicate established biofilms at concentrations as low as 16-32 µg/mL. The biodegradation rate of cholinium-based ILs decreases with alkyl chain elongation. Our results reinforce the suitability of Chol-ILs as promising multifunctional compounds for application in pharmaceutical and biomedical formulation.
Collapse
Affiliation(s)
- María Teresa García
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Elena Bautista
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Ana de la Fuente
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Lourdes Pérez
- Department of Surfactants and Nanobiotechnology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| |
Collapse
|
19
|
Xiao T, Liu K, Gao Q, Chen M, Kim YS, Jin S, Ding Y, Huigens RW. Design, Synthesis, and Evaluation of Carbonate-Linked Halogenated Phenazine-Quinone Prodrugs with Improved Water-Solubility and Potent Antibacterial Profiles. ACS Infect Dis 2023; 9:899-915. [PMID: 36867688 PMCID: PMC10551733 DOI: 10.1021/acsinfecdis.2c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Pathogenic bacteria have devastating impacts on human health as a result of acquired antibiotic resistance and innate tolerance. Every class of our current antibiotic arsenal was initially discovered as growth-inhibiting agents that target actively replicating (individual, free-floating) planktonic bacteria. Bacteria are notorious for utilizing a diversity of resistance mechanisms to overcome the action of conventional antibiotic therapies and forming surface-attached biofilm communities enriched in (non-replicating) persister cells. To address problems associated with pathogenic bacteria, our group is developing halogenated phenazine (HP) molecules that demonstrate potent antibacterial and biofilm-eradicating activities through a unique iron starvation mode of action. In this study, we designed, synthesized, and investigated a focused collection of carbonate-linked HP prodrugs bearing a quinone trigger to target the reductive cytoplasm of bacteria for bioactivation and subsequent HP release. The quinone moiety also contains a polyethylene glycol group, which dramatically enhances the water-solubility properties of the HP-quinone prodrugs reported herein. We found carbonate-linked HP-quinone prodrugs 11, 21-23 to demonstrate good linker stability, rapid release of the active HP warhead following dithiothreitol (reductive) treatment, and potent antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis, and Enterococcus faecalis. In addition, HP-quinone prodrug 21 induced rapid iron starvation in MRSA and S. epidermidis biofilms, illustrating prodrug action within these surface-attached communities. Overall, we are highly encouraged by these findings and believe that HP prodrugs have the potential to address antibiotic resistant and tolerant bacterial infections.
Collapse
Affiliation(s)
- Tao Xiao
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Ke Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Qiwen Gao
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Young S Kim
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
20
|
Jonkergouw C, Beyeh NK, Osmekhina E, Leskinen K, Taimoory SM, Fedorov D, Anaya-Plaza E, Kostiainen MA, Trant JF, Ras RHA, Saavalainen P, Linder MB. Repurposing host-guest chemistry to sequester virulence and eradicate biofilms in multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Nat Commun 2023; 14:2141. [PMID: 37059703 PMCID: PMC10104825 DOI: 10.1038/s41467-023-37749-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
The limited diversity in targets of available antibiotic therapies has put tremendous pressure on the treatment of bacterial pathogens, where numerous resistance mechanisms that counteract their function are becoming increasingly prevalent. Here, we utilize an unconventional anti-virulence screen of host-guest interacting macrocycles, and identify a water-soluble synthetic macrocycle, Pillar[5]arene, that is non-bactericidal/bacteriostatic and has a mechanism of action that involves binding to both homoserine lactones and lipopolysaccharides, key virulence factors in Gram-negative pathogens. Pillar[5]arene is active against Top Priority carbapenem- and third/fourth-generation cephalosporin-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, suppressing toxins and biofilms and increasing the penetration and efficacy of standard-of-care antibiotics in combined administrations. The binding of homoserine lactones and lipopolysaccharides also sequesters their direct effects as toxins on eukaryotic membranes, neutralizing key tools that promote bacterial colonization and impede immune defenses, both in vitro and in vivo. Pillar[5]arene evades both existing antibiotic resistance mechanisms, as well as the build-up of rapid tolerance/resistance. The versatility of macrocyclic host-guest chemistry provides ample strategies for tailored targeting of virulence in a wide range of Gram-negative infectious diseases.
Collapse
Affiliation(s)
- Christopher Jonkergouw
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland.
| | - Ngong Kodiah Beyeh
- Oakland University, Department of Chemistry, 146 Library Drive, Rochester, MI, 48309-4479, USA
- Aalto University, School of Science, Department of Applied Physics, Puumiehenkuja 2, Espoo, Finland
| | - Ekaterina Osmekhina
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Katarzyna Leskinen
- University of Helsinki, Translational Immunology Research Program, Haartmaninkatu 8, 0014, Helsinki, Finland
| | - S Maryamdokht Taimoory
- University of Windsor, Department of Chemistry and Biochemistry, Windsor, ON, N9B 3P4, Canada
- University of Michigan, Department of Chemistry, Ann Arbor, MI, USA
| | - Dmitrii Fedorov
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Eduardo Anaya-Plaza
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Mauri A Kostiainen
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - John F Trant
- University of Windsor, Department of Chemistry and Biochemistry, Windsor, ON, N9B 3P4, Canada
| | - Robin H A Ras
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
- Aalto University, School of Science, Department of Applied Physics, Puumiehenkuja 2, Espoo, Finland
| | - Päivi Saavalainen
- University of Helsinki, Translational Immunology Research Program, Haartmaninkatu 8, 0014, Helsinki, Finland.
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
| | - Markus B Linder
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland.
| |
Collapse
|
21
|
Gao S, Sun Y, Lu Z, Jiang N, Yao H. Synergistic antibacterial and biofilm eradication activity of quaternary-ammonium compound with copper ion. J Inorg Biochem 2023; 243:112190. [PMID: 36965431 DOI: 10.1016/j.jinorgbio.2023.112190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
Antibiotics overuse and misuse increase the emergence of multidrug-resistant bacterial strains, which often leads to the failure of conventional antibiotic therapies. Even worse, the tendency of bacteria to form biofilms further increases the therapeutic difficulty, because the extracellular matrix prevents the penetration of antibiotics and triggers bacterial tolerance. Therefore, developing novel antibacterial agents or therapeutic strategies with diverse antibacterial mechanisms and destruction of bacteria biofilm is a promising way to combat bacterial infections. In the present study, the combination of quaternary ammonium compound poly(diallyl dimethyl ammonium chloride) (PDDA) with Cu2+ was screened out to fight common pathogenic Staphylococcus aureus (S. aureus) through multi-mechanisms. This combination appeared strong synergistic antibacterial activity, and the fractional inhibitory concentration index was as low as 0.032. The synergistic antibacterial mechanism involved the destruction of the membrane function, generation of intracellular reactive oxygen, and promotion more Cu2+ into the cytoplasm. Further, the combination of PDDA and Cu2+ reduced the extracellular polysaccharide matrix, meanwhile killing the bacteria embedded in the biofilm. The biocompatibility study in vitro revealed this combination exhibited low cytotoxicity and hemolysis ratio even at 8 times of minimum bactericidal concentration. This work provides a novel antibacterial agents combination with higher efficiency to fight planktonic and biofilm conditions of S. aureus.
Collapse
Affiliation(s)
- Songtai Gao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yujun Sun
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhong Lu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Nan Jiang
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
22
|
Thierer LM, Petersen AA, Michaud ME, Sanchez CA, Brayton SR, Wuest WM, Minbiole KPC. Atom Economical QPCs: Phenyl-Free Biscationic Quaternary Phosphonium Compounds as Potent Disinfectants. ACS Infect Dis 2023; 9:609-616. [PMID: 36757826 PMCID: PMC10032568 DOI: 10.1021/acsinfecdis.2c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Quaternary ammonium compounds (QACs) are vital disinfectants for the neutralization of pathogenic bacteria in clinical, domestic, and commercial settings. After decades of dependence on QACs, the emergence of antimicrobial resistance to this class of compounds threatens the ability of existing QAC products to effectively manage rising bacterial threats. The need for new disinfectants is therefore urgent, with quaternary phosphonium compounds (QPCs) emerging as a new class of promising antimicrobials that boast significant activity against highly resistant bacteria. Reported here is a series of twenty-one novel QPCs that replace phenyl substituents on the phosphorus center with alkyl groups yet allow for rapid synthetic routes in high yields. Within this series are structures containing methyl, ethyl, or cyclohexyl phosphonium substituents on bisphosphane scaffolds bearing ethyl linkers, affording atom economical structures and ones that represent exact analogs to nitrogenous amphiphiles. The resultant bisQPC structures display high antibacterial efficacy enjoyed by comparably constructed QACs, with three structures in the single-digit micromolar activity range despite structural simplification.
Collapse
Affiliation(s)
- Laura M Thierer
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States of America
| | - Ashley A Petersen
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States of America
| | - Marina E Michaud
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States of America
| | - Christian A Sanchez
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States of America
| | - Samantha R Brayton
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States of America
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States of America
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States of America
| |
Collapse
|
23
|
Su Y, Yrastorza JT, Matis M, Cusick J, Zhao S, Wang G, Xie J. Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203291. [PMID: 36031384 PMCID: PMC9561771 DOI: 10.1002/advs.202203291] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Indexed: 05/28/2023]
Abstract
Due to the continuous rise in biofilm-related infections, biofilms seriously threaten human health. The formation of biofilms makes conventional antibiotics ineffective and dampens immune clearance. Therefore, it is important to understand the mechanisms of biofilm formation and develop novel strategies to treat biofilms more effectively. This review article begins with an introduction to biofilm formation in various clinical scenarios and their corresponding therapy. Established biofilm models used in research are then summarized. The potential targets which may assist in the development of new strategies for combating biofilms are further discussed. The novel technologies developed recently for the prevention and treatment of biofilms including antimicrobial surface coatings, physical removal of biofilms, development of new antimicrobial molecules, and delivery of antimicrobial agents are subsequently presented. Finally, directions for future studies are pointed out.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jaime T. Yrastorza
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mitchell Matis
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jenna Cusick
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Siwei Zhao
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Guangshun Wang
- Department of Pathology and MicrobiologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| |
Collapse
|
24
|
Dan W, Gao J, Qi X, Wang J, Dai J. Antibacterial quaternary ammonium agents: Chemical diversity and biological mechanism. Eur J Med Chem 2022; 243:114765. [PMID: 36116235 DOI: 10.1016/j.ejmech.2022.114765] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/04/2023]
Abstract
Bacterial infections have seriously threatened public health especially with the increasing resistance and the cliff-like decline of the number of newly approved antibacterial agents. Quaternary ammonium compounds (QACs) possess potent medicinal properties with 95 successfully marketed drugs, which also have a long history as antibacterial agents. In this review, we summarize the chemical diversity of antibacterial QACs, divided into chain-like and aromatic ring, reported over the past decade (2012 to mid-2022). Additionally, the structure-activity relationships, mainly covering hydrophobicity, charges and skeleton features, are discussed. In the cases where sufficient information is available, antibacterial mechanisms including biofilm, cell membrane, and intracellular targets are presented. It is hoped that this review will provide sufficient information for medicinal chemists to discover the new generation of antibacterial agents based on QACs.
Collapse
Affiliation(s)
- Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jixiang Gao
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Xiaohui Qi
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Junru Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| |
Collapse
|
25
|
|
26
|
Hale SJM, Wagner Mackenzie B, Lux CA, Biswas K, Kim R, Douglas RG. Topical Antibiofilm Agents With Potential Utility in the Treatment of Chronic Rhinosinusitis: A Narrative Review. Front Pharmacol 2022; 13:840323. [PMID: 35770097 PMCID: PMC9234399 DOI: 10.3389/fphar.2022.840323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The role of bacterial biofilms in chronic and recalcitrant diseases is widely appreciated, and the treatment of biofilm infection is an increasingly important area of research. Chronic rhinosinusitis (CRS) is a complex disease associated with sinonasal dysbiosis and the presence of bacterial biofilms. While most biofilm-related diseases are associated with highly persistent but relatively less severe inflammation, the presence of biofilms in CRS is associated with greater severity of inflammation and recalcitrance despite appropriate treatment. Oral antibiotics are commonly used to treat CRS but they are often ineffective, due to poor penetration of the sinonasal mucosa and the inherently antibiotic resistant nature of bacteria in biofilms. Topical non-antibiotic antibiofilm agents may prove more effective, but few such agents are available for sinonasal application. We review compounds with antibiofilm activity that may be useful for treating biofilm-associated CRS, including halogen-based compounds, quaternary ammonium compounds and derivatives, biguanides, antimicrobial peptides, chelating agents and natural products. These include preparations that are currently available and those still in development. For each compound, antibiofilm efficacy, mechanism of action, and toxicity as it relates to sinonasal application are summarised. We highlight the antibiofilm agents that we believe hold the greatest promise for the treatment of biofilm-associated CRS in order to inform future research on the management of this difficult condition.
Collapse
Affiliation(s)
- Samuel J M Hale
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Brett Wagner Mackenzie
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christian A Lux
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kristi Biswas
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Raymond Kim
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard G Douglas
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Ndukwe ARN, Wiedbrauk S, Boase NRB, Fairfull‐Smith KE. Strategies to Improve the Potency of Oxazolidinones towards Bacterial Biofilms. Chem Asian J 2022; 17:e202200201. [PMID: 35352479 PMCID: PMC9321984 DOI: 10.1002/asia.202200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Biofilms are part of the natural lifecycle of bacteria and are known to cause chronic infections that are difficult to treat. Most antibiotics are developed and tested against bacteria in the planktonic state and are ineffective against bacterial biofilms. The oxazolidinones, including the last resort drug linezolid, are one of the main classes of synthetic antibiotics progressed to clinical use in the last 50 years. They have a unique mechanism of action and only develop low levels of resistance in the clinical setting. With the aim of providing insight into strategies to design more potent antibiotic compounds with activity against bacterial biofilms, we review the biofilm activity of clinically approved oxazolidinones and report on structural modifications to oxazolidinones and their delivery systems which lead to enhanced anti-biofilm activity.
Collapse
Affiliation(s)
- Audrey R. N. Ndukwe
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Nathan R. B. Boase
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Kathryn E. Fairfull‐Smith
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| |
Collapse
|
28
|
Barakat A, Kamoun EA, El-Moslamy SH, Ghazy MB, Fahmy A. Photo-curable carboxymethylcellulose composite hydrogel as a promising biomaterial for biomedical applications. Int J Biol Macromol 2022; 207:1011-1021. [PMID: 35381281 DOI: 10.1016/j.ijbiomac.2022.03.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 11/05/2022]
Abstract
A series of carboxymethylcellulose (CMC) functionalized with glycidyl methacrylate (GMA) was successfully synthesized for producing of CMC-g-GMA copolymer. Water-soluble CMC-g-GMA copolymer was photo-crosslinked while Irgacure-2959 was used as a UV-photo-initiator at 365 nm. On the other hand, cellulose nanocrystals (CNCs) from sugarcane were graft-copolymerized in an aqueous solution utilizing cerium ammonium nitrate (CAN) as an initiator in a redox-initiated free-radical approach. CNCs were grafted with GMA to enhance their physicochemical and biological characteristics. Factors affecting hydrogel formation, e.g. CMC-g-GMA copolymer concentration, irradiation time and incorporation of different concentration of CNCs-g-GMA nano-filler, were discussed in dependance on the swelling degree and gel fraction of the produced hydrogels. Notably, the addition of CNCs-g-GMA nanofillers increased progressively thermal stability of the prepared hydrogel. CMC-g-GMA filled with CNCs-g-GMA composite hydrogel showed antimicrobial activity against multidrug resistance pathogens. Thus, CMC-g-GMA filled with CNCs-g-GMA composite hydrogel could be endorsed as compatible biomaterials for versatile biomedical applications.
Collapse
Affiliation(s)
| | - Elbadawy A Kamoun
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt; Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo 11837, Egypt.
| | - Shahira H El-Moslamy
- Bioprocess Development Dep., Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt
| | - M B Ghazy
- Chemistry Dep., Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Alaa Fahmy
- Chemistry Dep., Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
29
|
Chanawanno K, Thuptimdang P, Chantrapromma S, Fun HK. New tunable pyridinium benzenesulfonate amphiphiles as anti-MRSA quaternary ammonium compounds (QACs). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Zhang B, Zhang M, Lin M, Dong X, Ma X, Xu Y, Sun J. Antibacterial Copolypeptoids with Potent Activity against Drug Resistant Bacteria and Biofilms, Excellent Stability, and Recycling Property. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106936. [PMID: 35142040 DOI: 10.1002/smll.202106936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The preparation of a type of innovative cationic copolypeptoid antimicrobials containing various hydrophobic moieties that resemble both structure and membrane-lytic antibacterial mechanism of natural antimicrobial peptides (AMPs) is reported. By finely tuning the hydrophilic/hydrophobic balance, the polypeptoids exhibit a wide spectrum of antibacterial activity against both Gram-positive bacteria and Gram-negative bacteria with the lowest minimum inhibitory concentration (MIC) at only 2 µg mL-1 , whereas they also show low haemolytic properties. In particular, high selectivity (>128) is achieved from the polymers with butyl moieties. Moreover, the polypeptoids can readily inhibit the formation of biofilms and effectively eradicate the bacteria embedded in the mature biofilms, which is superior to many natural AMPs and vancomycin. Unlike conventional antibiotics, the polypeptoids possess potent activity against drug-resistant bacteria without visible resistance development after repeated usage. Notably, the polypeptoid antimicrobials not only have inherently fast bactericidal properties and excellent stability against incubation with human plasma, but also show excellent in vivo antibacterial effect. The prepared antimicrobials, coated onto magnetic nanospheres show recycling properties and enhanced antibacterial activity as combined with near-infrared (NIR)-induced photothermal antibacterial therapy.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Meng Zhang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xinzhe Dong
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250000, China
| | - Xutao Ma
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
31
|
Verderosa A, Hawas S, Harris J, Totsika M, Fairfull-Smith KE. Isothiazolone-Nitroxide Hybrids with Activity against Antibiotic-Resistant Staphylococcus aureus Biofilms. ACS OMEGA 2022; 7:5300-5310. [PMID: 35187345 PMCID: PMC8851655 DOI: 10.1021/acsomega.1c06433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Isothiazolones are widely used as biocides in industrial processing systems and personal care products, but their use to treat infections in humans has been hampered by their inherent cytotoxicity. Herein, we report a strategy to alleviate isothiazolone toxicity and improve antibacterial and antibiofilm potency by functionalization with a nitroxide moiety. Isothiazolone-nitroxide hybrids 6 and 22 were prepared over three steps in moderate yields (58 and 36%, respectively) from (Z)-3-(benzylsulfanyl)-propenoic acid. Hybrid 22 displayed better activity (minimum inhibitory concentration (MIC) = 35 μM) than the widely used methylisothiazolinone (MIT 1, MIC = 280 μM) against methicillin-susceptible Staphylococcus aureus (MSSA). Hybrid 22 was even more active against drug-resistant strains, such as vancomycin-resistant Staphylococcus aureus (VRSA, MIC = 8.75 μM) over MIT 1 (MIC = 280 μM). The enhanced antibacterial activity of hybrid 22 over MIT 1 was retained against established MSSA and VRSA biofilms, with minimum biofilm eradication concentration (MBEC) values of 35 and 70 μM, respectively, for 22 (the MBEC value for MIT 1 against both strains was ≥280 μM). No toxicity was observed in human epithelial T24 cells treated with hybrid 22 in concentrations up to 560 μM using a lactate dehydrogenase assay.
Collapse
Affiliation(s)
- Anthony
D. Verderosa
- School
of Biomedical Sciences, Centre for Immunology and Infection Control,
Faculty of Health, Queensland University
of Technology, 300 Herston Rd, Brisbane, Queensland 4006, Australia
| | - Sophia Hawas
- School
of Biomedical Sciences, Centre for Immunology and Infection Control,
Faculty of Health, Queensland University
of Technology, 300 Herston Rd, Brisbane, Queensland 4006, Australia
| | - Jessica Harris
- School
of Chemistry and Physics, Centre for Materials Science, Faculty of
Science, Queensland University of Technology, 2 George St, Brisbane, Queensland 4001, Australia
| | - Makrina Totsika
- School
of Biomedical Sciences, Centre for Immunology and Infection Control,
Faculty of Health, Queensland University
of Technology, 300 Herston Rd, Brisbane, Queensland 4006, Australia
| | - Kathryn E. Fairfull-Smith
- School
of Chemistry and Physics, Centre for Materials Science, Faculty of
Science, Queensland University of Technology, 2 George St, Brisbane, Queensland 4001, Australia
| |
Collapse
|
32
|
Liu K, Brivio M, Xiao T, Norwood VM, Kim YS, Jin S, Papagni A, Vaghi L, Huigens RW. Modular Synthetic Routes to Fluorine-Containing Halogenated Phenazine and Acridine Agents That Induce Rapid Iron Starvation in Methicillin-Resistant Staphylococcus aureus Biofilms. ACS Infect Dis 2022; 8:280-295. [PMID: 35089005 PMCID: PMC9004446 DOI: 10.1021/acsinfecdis.1c00402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During infection, bacteria use an arsenal of resistance mechanisms to negate antibiotic therapies. In addition, pathogenic bacteria form surface-attached biofilms bearing enriched populations of metabolically dormant persister cells. Bacteria develop resistance in response to antibiotic insults; however, nonreplicating biofilms are innately tolerant to all classes of antibiotics. As such, molecules that can eradicate antibiotic-resistant and antibiotic-tolerant bacteria are of importance. Here, we report modular synthetic routes to fluorine-containing halogenated phenazine (HP) and halogenated acridine (HA) agents with potent antibacterial and biofilm-killing activities. Nine fluorinated phenazines were rapidly accessed through a synthetic strategy involving (1) oxidation of fluorinated anilines to azobenzene intermediates, (2) SNAr with 2-methoxyaniline, and (3) cyclization to phenazines upon treatment with trifluoroacetic acid. Five structurally related acridine heterocycles were synthesized using SNAr and Buchwald-Hartwig approaches. From this focused collection, phenazines 5g, 5h, 5i, and acridine 9c demonstrated potent antibacterial activities against Gram-positive pathogens (MIC = 0.04-0.78 μM). Additionally, 5g and 9c eradicated Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis biofilms with excellent potency (5g, MBEC = 4.69-6.25 μM; 9c, MBEC = 4.69-50 μM). Using real-time quantitative polymerase chain reaction (RT-qPCR), 5g, 5h, 5i, and 9c rapidly induce the transcription of iron uptake biomarkers isdB and sbnC in methicillin-resistant S. aureus (MRSA) biofilms, and we conclude that these agents operate through iron starvation. Overall, fluorinated phenazine and acridine agents could lead to ground-breaking advances in the treatment of challenging bacterial infections.
Collapse
Affiliation(s)
- Ke Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Massimiliano Brivio
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - Tao Xiao
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Verrill M. Norwood
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Young S. Kim
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Antonio Papagni
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - Luca Vaghi
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - Robert W. Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
33
|
Cationic gemini surfactant properties, its potential as a promising bioapplication candidate, and strategies for improving its biocompatibility: A review. Adv Colloid Interface Sci 2022; 299:102581. [PMID: 34891074 DOI: 10.1016/j.cis.2021.102581] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
Gemini surfactants consist of two cationic monomers of a surfactant linked together with a spacer. The specific structure of a cationic gemini surfactant is the reason for both its high surface activity and its ability to decrease the surface tension of water. The high surface activity and unique structure of gemini surfactants result in outstanding properties, including antibacterial and antifungal activity, anticorrosion properties, unique aggregation behaviour, the ability to form various structures reversibly in response to environmental conditions, and interactions with biomacromolecules such as DNA and proteins. These properties can be tailored by selecting the optimal structure of a gemini surfactant in terms of the nature and length of its alkyl substituents, spacer, and head group. Additionally, regarding their properties, comparison with their monomeric counterparts demonstrates that gemini surfactants have higher performance efficacy at lower concentrations. Hence, less material is needed, and the toxicity is lower. However, there are some limitations regarding their biocompatibility that have led researchers to develop amino acid-based and sugar-based gemini surfactants. Owing to their remarkable properties, cationic gemini surfactants are promising candidates for bioapplications such as drug delivery systems, gene carriers, and biomaterial surface modification.
Collapse
|
34
|
Nicolas M, Beito B, Oliveira M, Tudela Martins M, Gallas B, Salmain M, Boujday S, Humblot V. Strategies for Antimicrobial Peptides Immobilization on Surfaces to Prevent Biofilm Growth on Biomedical Devices. Antibiotics (Basel) 2021; 11:13. [PMID: 35052891 PMCID: PMC8772980 DOI: 10.3390/antibiotics11010013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023] Open
Abstract
Nosocomial and medical device-induced biofilm infections affect millions of lives and urgently require innovative preventive approaches. These pathologies have led to the development of numerous antimicrobial strategies, an emergent topic involving both natural and synthetic routes, among which some are currently under testing for clinical approval and use. Antimicrobial peptides (AMPs) are ideal candidates for this fight. Therefore, the strategies involving surface functionalization with AMPs to prevent bacterial attachment/biofilms formation have experienced a tremendous development over the last decade. In this review, we describe the different mechanisms of action by which AMPs prevent bacterial adhesion and/or biofilm formation to better address their potential as anti-infective agents. We additionally analyze AMP immobilization techniques on a variety of materials, with a focus on biomedical applications. Furthermore, we summarize the advances made to date regarding the immobilization strategies of AMPs on various surfaces and their ability to prevent the adhesion of various microorganisms. Progress toward the clinical approval of AMPs in antibiotherapy is also reviewed.
Collapse
Affiliation(s)
- Mathieu Nicolas
- Sorbonne Université, UMR 7197, Laboratoire de Réactivité de Surface, Centre National de la Recherche Scientifique (CNRS), 4 Place Jussieu, F-75005 Paris, France;
- Sorbonne Université, Institute of Nanosciences Paris (INSP), Centre National de la Recherche Scientifique (CNRS), 4 Place Jussieu, F-75005 Paris, France;
| | - Bruno Beito
- Sorbonne Université, Master de Chimie, Profil MatNanoBio, Faculté des Sciences et Ingénierie of Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France; (B.B.); (M.O.); (M.T.M.)
| | - Marta Oliveira
- Sorbonne Université, Master de Chimie, Profil MatNanoBio, Faculté des Sciences et Ingénierie of Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France; (B.B.); (M.O.); (M.T.M.)
| | - Maria Tudela Martins
- Sorbonne Université, Master de Chimie, Profil MatNanoBio, Faculté des Sciences et Ingénierie of Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France; (B.B.); (M.O.); (M.T.M.)
| | - Bruno Gallas
- Sorbonne Université, Institute of Nanosciences Paris (INSP), Centre National de la Recherche Scientifique (CNRS), 4 Place Jussieu, F-75005 Paris, France;
| | - Michèle Salmain
- Sorbonne Université, Institut Parisien de Chimie Moléculaire (IPCM), Centre National de la Recherche Scientifique (CNRS), 4 Place Jussieu, F-75005 Paris, France;
| | - Souhir Boujday
- Sorbonne Université, UMR 7197, Laboratoire de Réactivité de Surface, Centre National de la Recherche Scientifique (CNRS), 4 Place Jussieu, F-75005 Paris, France;
| | - Vincent Humblot
- Sorbonne Université, UMR 7197, Laboratoire de Réactivité de Surface, Centre National de la Recherche Scientifique (CNRS), 4 Place Jussieu, F-75005 Paris, France;
- Franche-Comté Électronique Mécanique Thermique et Optique-Sciences et Technologies (FEMTO-ST) Institute, Centre National de la Recherche Scientifique (CNRS), UMR 6174, Université Bourgogne Franche-Comté, 15B Avenue des Montboucons, F-25030 Besançon, France
| |
Collapse
|
35
|
|
36
|
Assessment of nonreleasing antifungal surface coatings bearing covalently attached pharmaceuticals. Biointerphases 2021; 16:061001. [PMID: 34794317 DOI: 10.1116/6.0001099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There are many reports of antimicrobial coatings bearing immobilized active agents on surfaces; however, strong analytical evidence is required to verify that the agents are indeed covalently attached to the surface. In the absence of such evidence, antimicrobial activity could result from a release of active agents. We report a detailed assessment of antifungal surface coatings prepared using covalent attachment chemistries, with the aim of establishing a set of instrumental and biological evidence required to convincingly demonstrate antimicrobial activity due to nonreleasing, surface active compounds and to exclude the alternate possibility of activity due to release. The strongest biological evidence initially supporting permanent antifungal activity was the demonstration of the ability to reuse samples in multiple, sequential pathogen challenges. However, additional supporting evidence from washing studies and instrumental analysis is also required to probe the possibility of gradual desorption of strongly physisorbed compounds versus covalently attached compounds. Potent antifungal surface coatings were prepared from approved pharmaceutical compounds from the echinocandin drug class (caspofungin, anidulafungin, and micafungin) and assessed by microbiological tests and instrumental methods. Carbonyl diimidazole linking chemistry enabled covalent attachment of caspofungin, anidulafungin, and micafungin to plasma polymer surfaces, with antifungal surface activity likely caused by molecular orientations that present the lipophilic tail toward interfacing fungal cells. This study demonstrates the instrumental and biological evidence required to convincingly ascertain activity due to nonreleasing, surface active compounds and summarize these as three criteria for assessing other reports on surface-immobilized antimicrobial compounds.
Collapse
|
37
|
Green cationic arginine surfactants: Influence of the polar head cationic character on the self-aggregation and biological properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
38
|
Brycki BE, Szulc A, Kowalczyk I, Koziróg A, Sobolewska E. Antimicrobial Activity of Gemini Surfactants with Ether Group in the Spacer Part. Molecules 2021; 26:molecules26195759. [PMID: 34641303 PMCID: PMC8510121 DOI: 10.3390/molecules26195759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
Due to their large possibility of the structure modification, alkylammonium gemini surfactants are a rapidly growing class of compounds. They exhibit significant surface, aggregation and antimicrobial properties. Due to the fact that, in order to achieve the desired utility effect, the minimal concentration of compounds are used, they are in line with the principle of greenolution (green evolution) in chemistry. In this study, we present innovative synthesis of the homologous series of gemini surfactants modified at the spacer by the ether group, i.e., 3-oxa-1,5-pentane-bis(N-alkyl-N,N-dimethylammonium bromides). The critical micelle concentrations were determined. The minimal inhibitory concentrations of the synthesized compounds were determined against bacteria Escherichia coli ATCC 10536 and Staphylococcus aureus ATCC 6538; yeast Candida albicans ATCC 10231; and molds Aspergillus niger ATCC 16401 and Penicillium chrysogenum ATCC 60739. We also investigated the relationship between antimicrobial activity and alkyl chain length or the nature of the spacer. The obtained results indicate that the synthesized compounds are effective microbicides with a broad spectrum of biocidal activity.
Collapse
Affiliation(s)
- Bogumil Eugene Brycki
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (A.S.); (I.K.)
- Correspondence: ; Tel.: +48-61-829-1694
| | - Adrianna Szulc
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (A.S.); (I.K.)
| | - Iwona Kowalczyk
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (A.S.); (I.K.)
| | - Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Ewelina Sobolewska
- Interdisciplinary Doctoral School of the Lodz University of Technology, Lodz University of Technology, 90-924 Lodz, Poland;
| |
Collapse
|
39
|
Schooling SR, Klinger K, Korenevski A, Glasauer S. Reduction of antibiotic-induced biofilm accumulation of Pseudomonas aeruginosa by quaternized phytoglycogen. Lett Appl Microbiol 2021; 73:544-552. [PMID: 34398504 DOI: 10.1111/lam.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
Biofilms are oft cited as a factor in the unwanted persistence and recalcitrance of microbial life and a strong research initiative exists to identify, understand, and target vulnerabilities. Phytoglycogen is a biodegradable nanoparticulate biomaterial that is purified from crop plants. Importantly, the highly branched glucan structure provides a scaffold on which to construct novel polymers. Functionalized phytoglycogen (FP) was synthesized using green chemistry principles. Screening of several molecules identified a form of quaternized phytoglycogen which reduced biofilm formation and accretion by Pseudomonas aeruginosa. Exposing P. aeruginosa to modified phytoglycogen and antibiotic in combination not only substantively reduced biofilms, but also prevented increased biofilm formation, a biological response to suboptimal antibiotic concentrations. Treatment of pregrown biofilms with sub-minimum inhibitory concentration antibiotic alone also led to increased proliferation, whereas FP-antibiotic combinations prevented or reduced the extent of this. Swimming, swarming and twitching motility, all critical for biofilm development, were negatively affected by FP. This work supports phytoglycogen as a promising foundational molecule for novel polymers, including those with anti-biofilm function. Critically, in addition to published reports on how suboptimal antibiotic concentrations promote biofilm formation, we demonstrated a similar effect upon pre-existing biofilms, indicating a further route for the failure of antibiotic therapies.
Collapse
Affiliation(s)
- S R Schooling
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - K Klinger
- Mirexus Biotechnologies Incorporated, Guelph, ON, Canada
| | - A Korenevski
- Mirexus Biotechnologies Incorporated, Guelph, ON, Canada
| | - S Glasauer
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
40
|
Sahoo A, Swain SS, Behera A, Sahoo G, Mahapatra PK, Panda SK. Antimicrobial Peptides Derived From Insects Offer a Novel Therapeutic Option to Combat Biofilm: A Review. Front Microbiol 2021; 12:661195. [PMID: 34248873 PMCID: PMC8265172 DOI: 10.3389/fmicb.2021.661195] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Biofilms form a complex layer with defined structures, that attach on biotic or abiotic surfaces, are tough to eradicate and tend to cause some resistance against most antibiotics. Several studies confirmed that biofilm-producing bacteria exhibit higher resistance compared to the planktonic form of the same species. Antibiotic resistance factors are well understood in planktonic bacteria which is not so in case of biofilm producing forms. This may be due to the lack of available drugs with known resistance mechanisms for biofilms. Existing antibiotics cannot eradicate most biofilms, especially of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). Insects produce complex and diverse set of chemicals for survival and defense. Antimicrobial peptides (AMPs), produced by most insects, generally have a broad spectrum of activity and the potential to bypass the resistance mechanisms of classical antibiotics. Besides, AMPs may well act synergistically with classical antibiotics for a double-pronged attack on infections. Thus, AMPs could be promising alternatives to overcome medically important biofilms, decrease the possibility of acquired resistance and treatment of multidrug-resistant pathogens including ESKAPE. The present review focuses on insect-derived AMPs with special reference to anti-biofilm-based strategies. It covers the AMP composition, pathways and mechanisms of action, the formation of biofilms, impact of biofilms on human diseases, current strategies as well as therapeutic options to combat biofilm with antimicrobial peptides from insects. In addition, the review also illustrates the importance of bioinformatics tools and molecular docking studies to boost the importance of select bioactive peptides those can be developed as drugs, as well as suggestions for further basic and clinical research.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences, SUM Hospital, Siksha O Anusandhan University, Bhubaneswar, India
| | - Shasank Sekhar Swain
- Division of Microbiology & NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Ayusman Behera
- Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, India
| | | | - Sujogya Kumar Panda
- Centre of Environment, Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar, India
| |
Collapse
|
41
|
He D, Tan Y, Li P, Luo Y, Zhu Y, Yu Y, Chen J, Ning N, Zhang S. Surface charge-convertible quaternary ammonium salt-based micelles for in vivo infection therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Abstract
Introduction: As a result of progress in medical care, a huge number of medical devices are used in the treatment of human diseases. In turn, biofilm-related infection has become a growing threat due to the tolerance of biofilms to antimicrobials, a problem magnified by the development of antimicrobial resistance worldwide. As a result, successful treatment of biofilm-disease using only antimicrobials is problematic.Areas covered: We summarize some alternative approaches to classic antimicrobials for the treatment of biofilm disease. This review is not intended to be exhaustive but to give a clinical picture of alternatives to antimicrobial agents to manage biofilm disease. We highlight those strategies that may be closer to application in clinical practice.Expert opinion: There are a number of outstanding challenges in the development of novel antibiofilm therapies. Screening for effective antibiofilm compounds requires models relevant to all clinical scenarios. Although in vitro research of anti-biofilm strategies has progressed significantly over the past decade, there is a lack of in vivo research. In addition, the complexity of biofilm biology makes it difficult to develop a compound that is likely to provide the single 'magic bullet'. The multifaceted nature of biofilms imposes the need for multi-targeted or combinatorial therapies.
Collapse
Affiliation(s)
- Jose L Del Pozo
- Infectious Diseases Division, Clínica Universidad De Navarra, Pamplona, Spain.,Department of Microbiology, Clínica Universidad De Navarra, Pamplona, Spain.,Laboratory of Microbial Biofilms, Clínica Universidad De Navarra, Pamplona, Spain
| |
Collapse
|
43
|
Yang H, Kundra S, Chojnacki M, Liu K, Fuse MA, Abouelhassan Y, Kallifidas D, Zhang P, Huang G, Jin S, Ding Y, Luesch H, Rohde KH, Dunman PM, Lemos JA, Huigens RW. A Modular Synthetic Route Involving N-Aryl-2-nitrosoaniline Intermediates Leads to a New Series of 3-Substituted Halogenated Phenazine Antibacterial Agents. J Med Chem 2021; 64:7275-7295. [PMID: 33881312 DOI: 10.1021/acs.jmedchem.1c00168] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pathogenic bacteria demonstrate incredible abilities to evade conventional antibiotics through the development of resistance and formation of dormant, surface-attached biofilms. Therefore, agents that target and eradicate planktonic and biofilm bacteria are of significant interest. We explored a new series of halogenated phenazines (HP) through the use of N-aryl-2-nitrosoaniline synthetic intermediates that enabled functionalization of the 3-position of this scaffold. Several HPs demonstrated potent antibacterial and biofilm-killing activities (e.g., HP 29, against methicillin-resistant Staphylococcus aureus: MIC = 0.075 μM; MBEC = 2.35 μM), and transcriptional analysis revealed that HPs 3, 28, and 29 induce rapid iron starvation in MRSA biofilms. Several HPs demonstrated excellent activities against Mycobacterium tuberculosis (HP 34, MIC = 0.80 μM against CDC1551). This work established new SAR insights, and HP 29 demonstrated efficacy in dorsal wound infection models in mice. Encouraged by these findings, we believe that HPs could lead to significant advances in the treatment of challenging infections.
Collapse
Affiliation(s)
- Hongfen Yang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Shivani Kundra
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Michaelle Chojnacki
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, United States
| | - Ke Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Marisa A Fuse
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Yasmeen Abouelhassan
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Dimitris Kallifidas
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Peilan Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Guangtao Huang
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville Florida 32610, United States
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville Florida 32610, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Kyle H Rohde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Paul M Dunman
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, United States
| | - José A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
44
|
Kaizerman-Kane D, Hadar M, Joseph R, Logviniuk D, Zafrani Y, Fridman M, Cohen Y. Design Guidelines for Cationic Pillar[n]arenes that Prevent Biofilm Formation by Gram-Positive Pathogens. ACS Infect Dis 2021; 7:579-585. [PMID: 33657813 PMCID: PMC8041275 DOI: 10.1021/acsinfecdis.0c00662] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Bacterial biofilms are a major threat
to human health, causing
persistent infections that lead to millions of fatalities worldwide
every year. Biofilms also cause billions of dollars of damage annually
by interfering with industrial processes. Recently, cationic pillararenes
were found to be potent inhibitors of biofilm formation in Gram-positive
bacteria. To identify the structural features of pillararenes that
result in antibiofilm activity, we evaluated the activity of 16 cationic
pillar[5]arene derivatives including that of the first cationic water-soluble
pillar[5]arene-based rotaxane. Twelve of the derivatives were potent
inhibitors of biofilm formation by Gram-positive pathogens. Structure
activity analyses of our pillararene derivatives indicated that positively
charged head groups are critical for the observed antibiofilm activity.
Although certain changes in the lipophilicity of the substituents
on the positively charged head groups are tolerated, dramatic elevation
in the hydrophobicity of the substituents or an increase in steric
bulk on these positive charges abolishes the antibiofilm activity.
An increase in the overall positive charge from 10 to 20 did not affect
the activity significantly, but pillararenes with 5 positive charges
and 5 long alkyl chains had reduced activity. Surprisingly, the cavity
of the pillar[n]arene is not essential for the observed activity,
although the macrocyclic structure of the pillar[n]arene core, which
facilitates the clustering of the positive charges, appears important.
Interestingly, the compounds found to be efficient inhibitors of biofilm
formation were nonhemolytic at concentrations that are ∼100-fold
of their MBIC50 (the minimal concentration of a compound
at which at least 50% inhibition of biofilm formation was observed
compared to untreated cells). The structure–activity relationship
guidelines established here pave the way for a rational design of
potent cationic pillar[n]arene-based antibiofilm agents.
Collapse
Affiliation(s)
- Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Roymon Joseph
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Dana Logviniuk
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona 74000, Israel
| | - Micha Fridman
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
45
|
Hympanova M, Terlep S, Markova A, Prchal L, Dogsa I, Pulkrabkova L, Benkova M, Marek J, Stopar D. The Antibacterial Effects of New N-Alkylpyridinium Salts on Planktonic and Biofilm Bacteria. Front Microbiol 2020; 11:573951. [PMID: 33193183 PMCID: PMC7606276 DOI: 10.3389/fmicb.2020.573951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/28/2020] [Indexed: 12/03/2022] Open
Abstract
An increasing microbial resistance to known antibiotics raises a demand for new antimicrobials. In this study the antimicrobial properties of a series of new N-Alkylpyridinium quaternary ammonium compounds (QACs) with varying alkyl chain lengths were evaluated for several nosocomial pathogens. The chemical identities of the new QACs were determined by NMR, LC-MS, and HRMS. All the planktonic bacteria tested were susceptible to the new QACs as evaluated by MIC and MBC assays. The antimicrobial effect was most pronounced against Staphylococcus aureus clinical isolates. Live/dead staining CLSM was used to test the effectiveness of the QACs in biofilms. The effectiveness was up to 10-fold lower than in the plankton. When QACs were used as irrigants in Er:YAG – SSP photoacoustic steaming, their effectiveness significantly increased. The combined use of irrigants and photoacoustic streaming increased biofilm removal from the surface and increased the killing rate of the cells remaining on the surface. This may allow for a shorter chemical exposure time and lower dosage of QACs used in applications. The results demonstrate that the new QACs have potential to be applied as antibacterial compounds effective against planktonic and biofilm bacteria as well as irrigants in removal of difficult-to-reach biofilms.
Collapse
Affiliation(s)
- Michaela Hympanova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czechia.,Department of Epidemiology, Faculty of Military Health Sciences, University of Defence in Brno, Brno, Czechia
| | | | - Aneta Markova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czechia.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno, Brno, Czechia
| | - Lukáš Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Iztok Dogsa
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Lenka Pulkrabkova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czechia.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno, Brno, Czechia
| | - Marketa Benkova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Jan Marek
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czechia.,Department of Epidemiology, Faculty of Military Health Sciences, University of Defence in Brno, Brno, Czechia
| | - David Stopar
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
46
|
Khan F, Pham DTN, Tabassum N, Oloketuyi SF, Kim YM. Treatment strategies targeting persister cell formation in bacterial pathogens. Crit Rev Microbiol 2020; 46:665-688. [DOI: 10.1080/1040841x.2020.1822278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| |
Collapse
|
47
|
Pinazo A, Pons R, Marqués A, Farfan M, da Silva A, Perez L. Biocompatible Catanionic Vesicles from Arginine-Based Surfactants: A New Strategy to Tune the Antimicrobial Activity and Cytotoxicity of Vesicular Systems. Pharmaceutics 2020; 12:E857. [PMID: 32916921 PMCID: PMC7557587 DOI: 10.3390/pharmaceutics12090857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 01/30/2023] Open
Abstract
Their stability and low cost make catanionic vesicles suitable for application as drug delivery systems. In this work we prepared catanionic vesicles using biocompatible surfactants: two cationic arginine-based surfactants (the monocatenary Nα-lauroyl-arginine methyl ester-LAM and the gemini Nα,Nϖ-bis(Nα-lauroylarginine) α, ϖ-propylendiamide-C3(CA)2) and three anionic amphiphiles (the single chain sodium dodecanoate, sodium myristate, and the double chain 8-SH). The critical aggregation concentration, colloidal stability, size, and charge density of these systems were comprehensively studied for the first time. These catanionic vesicles, which form spontaneously after mixing two aqueous solutions of oppositely charged surfactants, exhibited a monodisperse population of medium-size aggregates and good stability. The antimicrobial and hemolytic activity of the vesicles can be modulated by changing the cationic/anionic surfactant ratio. Vesicles with a positive charge efficiently killed Gram-negative and Gram-positive bacteria as well as yeasts; the antibacterial activity declined with the decrease of the cationic charge density. The catanionic systems also effectively eradicated MRSA (Methicillin-resistant Staphylococcus Aureus) and Pseudomonas aeruginosa biofilms. Interestingly, the incorporation of cholesterol in the catanionic mixtures improved the stability of these colloidal systems and considerably reduced their cytotoxicity without affecting their antimicrobial activity. Additionally, these catanionic vesicles showed good DNA affinity. Their antimicrobial efficiency and low hemolytic activity render these catanionic vesicles very promising candidates for biomedical applications.
Collapse
Affiliation(s)
- Aurora Pinazo
- Department of Surfactant and Nanobiotecnnology, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain; (A.P.); (R.P.); (A.d.S.)
| | - Ramon Pons
- Department of Surfactant and Nanobiotecnnology, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain; (A.P.); (R.P.); (A.d.S.)
| | - Ana Marqués
- Department of Biology, Healthcare and the Environment, Section Microbiology, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain; (A.M.); (M.F.)
| | - Maribel Farfan
- Department of Biology, Healthcare and the Environment, Section Microbiology, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain; (A.M.); (M.F.)
| | - Anderson da Silva
- Department of Surfactant and Nanobiotecnnology, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain; (A.P.); (R.P.); (A.d.S.)
| | - Lourdes Perez
- Department of Surfactant and Nanobiotecnnology, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain; (A.P.); (R.P.); (A.d.S.)
| |
Collapse
|
48
|
The wide-spectrum antimicrobial effect of novel N-alkyl monoquaternary ammonium salts and their mixtures; the QSAR study against bacteria. Eur J Med Chem 2020; 206:112584. [PMID: 32853858 DOI: 10.1016/j.ejmech.2020.112584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/05/2020] [Accepted: 06/14/2020] [Indexed: 11/23/2022]
Abstract
Quaternary ammonium salts (QASs) have been widely used for disinfection purposes because of their low price, high efficacy and low human toxicity for decades. However, precise mechanisms of action nor the powerful versatile agent against all antimicrobial species are known. In this study we have prepared 43 novel N-alkyl monoquaternary ammonium salts including 7 N,N-dialkyl monoquaternary ammonium salts differing bearing alkyl chain either of 12, 14 or 16 carbons. Together with 15 already published QASs we have studied the antimicrobial efficacy of all water-soluble compounds together with standard benzalkonium salts against Gram-positive (G+) and Gram-negative (G-) bacteria, anaerobic spore-forming Cl. difficile, yeasts, filamentous fungi and enveloped Varicella zoster virus (VZV). To address the mechanism of action, lipophilicity seems to be a key parameter which determines antimicrobial efficacy, however, exceptions are likely to occur and therefore QSAR analysis on the efficacy against G+ and G- bacteria was applied. We showed that antibacterial activity is higher when the molecule is larger, more lipophilic, less polar, and contains fewer oxygen atoms, fewer methyl groups bound to heteroatoms or fewer hydrogen atoms bound to polarized carbon atoms. In addition, from an application point of view, we have formulated mixtures, on the basis of obtained efficiency of individual compounds, in order to receive wide-spectrum agent. All formulated mixtures completely eradicated tested G+ and G- strains, including the multidrug-resistant P. aeruginosa as well as in case of yeasts. However, effect on A. fumigatus, Cl. difficile and VZV the exposition towards mixture resulted in significant reduction only. Finally, 3 out of 4 formulated mixtures were safer than reference commercial agent based on benzalkonium salts only in the skin irritation test using reconstructed human epidermidis.
Collapse
|
49
|
Xu PY, Fu CP, Kankala RK, Wang SB, Chen AZ. Supercritical carbon dioxide-assisted nanonization of dihydromyricetin for anticancer and bacterial biofilm inhibition efficacies. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Tavakolian M, Jafari SM, van de Ven TGM. A Review on Surface-Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials. NANO-MICRO LETTERS 2020; 12:73. [PMID: 34138290 PMCID: PMC7770792 DOI: 10.1007/s40820-020-0408-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
As the most abundant biopolymer on the earth, cellulose has recently gained significant attention in the development of antibacterial biomaterials. Biodegradability, renewability, strong mechanical properties, tunable aspect ratio, and low density offer tremendous possibilities for the use of cellulose in various fields. Owing to the high number of reactive groups (i.e., hydroxyl groups) on the cellulose surface, it can be readily functionalized with various functional groups, such as aldehydes, carboxylic acids, and amines, leading to diverse properties. In addition, the ease of surface modification of cellulose expands the range of compounds which can be grafted onto its structure, such as proteins, polymers, metal nanoparticles, and antibiotics. There are many studies in which cellulose nano-/microfibrils and nanocrystals are used as a support for antibacterial agents. However, little is known about the relationship between cellulose chemical surface modification and its antibacterial activity or biocompatibility. In this study, we have summarized various techniques for surface modifications of cellulose nanostructures and its derivatives along with their antibacterial and biocompatibility behavior to develop non-leaching and durable antibacterial materials. Despite the high effectiveness of surface-modified cellulosic antibacterial materials, more studies on their mechanism of action, the relationship between their properties and their effectivity, and more in vivo studies are required.
Collapse
Affiliation(s)
- Mandana Tavakolian
- Department of Chemical Engineering, McGill University, Montreal, QC, H3A 0C5, Canada
- Pulp and Paper Research Center, McGill University, Montreal, QC, H3A 0C7, Canada
- Quebec Centre for Advanced Materials (QCAM/CQMF), Montreal, Canada
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| | - Theo G M van de Ven
- Pulp and Paper Research Center, McGill University, Montreal, QC, H3A 0C7, Canada.
- Quebec Centre for Advanced Materials (QCAM/CQMF), Montreal, Canada.
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada.
| |
Collapse
|