1
|
Sun Y, Lu G, Zhang P, Zhang J, Yu Y, Li F, Liu J. Effects of colloids with different compositions on benzophenone-3 biotoxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125670. [PMID: 39798796 DOI: 10.1016/j.envpol.2025.125670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The fate of the pollutants in aquatic environment is closely related to colloids, and the carrier effect of colloids on pollutants not only affects their bioaccumulation, but may also affect their toxicity. In this study, the effects of natural colloid with different components on the biological toxicity of benzophenone-3 (BP3) to zebrafish larvae (Diano rerio) were studied. BP3 caused oxidative stress damage, thyroid system disorders and neurotoxicity in zebrafish larvae. And in the co-exposure groups, the organic and black carbon mineral (BCM) colloids enhanced the organism's antioxidant system by regulating the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), reducing the lipid peroxidation damage in larvae. BCM colloids caused the thyroid system disorders in organisms, while organic colloids exacerbated the thyroid toxicity by transporting more BP3 into organisms, inducing severe abnormal heartbeats. The BCM and organic colloids regulated the acetylcholinesterase (AChE) activity and/or 5-hydroxytryptamine (5-ht) contents by affecting the neuroactive ligand receptor interaction pathway in zebrafish larvae, significantly increasing their swimming speed in co-exposure groups under the light condition. In addition, the effects of colloid-bound and freely dissolved BP3 absorbed by organisms on their physiological and biochemical activities were different. By analyzing the relative expression of the significant differential metabolites affected by BP3 in all experimental groups, it was found that colloid-bound and freely dissolved BP3 had a synergistic effect on most of these metabolites and pathways. However, the freely dissolved BP3 interfered with the purine metabolic pathway by mediating 2-(amidino)-n1-(5-phospho-d-ribosyl)acetamidine, and the tyrosine metabolic pathway by mediating choline and uranylacetic acid, while the colloid-bound BP3 has no or inverse regulatory effects on these three metabolites. This study provided a new perspective for the biotoxicity study of the pollutants in aquatic environment, necessitating a reconsideration of the real ecological risks of emerging pollutants in the presence of natural colloids.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Water Resources Research Institute of Shandong Province, Shandong Province Key Lab Water Resources & Environment, Jinan, 250000, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yeting Yu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Fulin Li
- Water Resources Research Institute of Shandong Province, Shandong Province Key Lab Water Resources & Environment, Jinan, 250000, China
| | - Jian Liu
- Water Resources Research Institute of Shandong Province, Shandong Province Key Lab Water Resources & Environment, Jinan, 250000, China
| |
Collapse
|
2
|
Scott H, Martin PE, Graham SV. Modulation of connexin 43 in viral infections. Tumour Virus Res 2024; 18:200296. [PMID: 39522757 PMCID: PMC11607658 DOI: 10.1016/j.tvr.2024.200296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Connexins are essential for intercellular communication through gap junctions and the maintenance of cellular and tissue homeostasis. Connexin 43 (Cx43) is the most ubiquitously expressed connexin. As well as regulating homeostasis, Cx43 hemichannels and gap junctions play important roles in inflammation and the immune response. This, coupled with a range of non-channel functions performed by Cx43 makes it an attractive target for viruses. Recently, several groups have begun to explore the relationship between Cx43 and viral infection, with a diverse array of viruses being found to alter Cx43 hemichannels/gap junctions. Importantly, this includes several small DNA tumour viruses, which may target Cx43 to promote tumorigenesis. This review focuses on the ability of selected RNA/DNA viruses and retroviruses to either positively or negatively regulate Cx43 hemichannels and gap junctions in order to carry out their lifecycles. The role of Cx43 regulation by tumour viruses is also discussed in relation to tumour progression.
Collapse
Affiliation(s)
- Harry Scott
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK.
| | - Patricia E Martin
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK.
| | - Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK.
| |
Collapse
|
3
|
Kolos EA, Korzhevskii DE. Ventral Root Boundary Cap Cells of Rat Spinal Cord Contain Connexin-43. Bull Exp Biol Med 2024:10.1007/s10517-024-06299-2. [PMID: 39589621 DOI: 10.1007/s10517-024-06299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 11/27/2024]
Abstract
Boundary cap cells are a population of multipotent stem cells that have great potential for the use in the treatment of damaged nervous system. We studied the patterns of distribution of the gap junction protein connexin-43 (Cx43) in boundary cap cells of the ventral root of the spinal cord of rat embryos (E12-E20; n=40). It was found that Cx43 is expressed in ventral boundary cap cells at all stages of its existence during embryogenesis. At the early stages of prenatal development, the cytoplasmic distribution of Cx43 in the boundary cap cells predominates; at the later stages, Cx43-immunopositive punctate structures are identified. These puncta represent gap junction plaques between the cells. It can be assumed that during the early embryogenesis, Cx43 regulates the main histogenetic processes in boundary cap cells and only in the later stages of prenatal development, Cx43-mediated communications are formed between boundary cap cells.
Collapse
Affiliation(s)
- E A Kolos
- Institute of Experimental Medicine, St. Petersburg, Russia.
| | | |
Collapse
|
4
|
Liu J, Wang X, Jiang W, Azoitei A, Eiseler T, Eckstein M, Hartmann A, Stilgenbauer S, Elati M, Hohwieler M, Kleger A, John A, Wezel F, Zengerling F, Bolenz C, Günes C. Impairment of α-tubulin and F-actin interactions of GJB3 induces aneuploidy in urothelial cells and promotes bladder cancer cell invasion. Cell Mol Biol Lett 2024; 29:94. [PMID: 38956497 PMCID: PMC11218312 DOI: 10.1186/s11658-024-00609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND We have previously identified an unsuspected role for GJB3 showing that the deficiency of this connexin protein induces aneuploidy in human and murine cells and accelerates cell transformation as well as tumor formation in xenograft models. The molecular mechanisms by which loss of GJB3 leads to aneuploidy and cancer initiation and progression remain unsolved. METHODS GJB3 expression levels were determined by RT-qPCR and Western blot. The consequences of GJB3 knockdown on genome instability were assessed by metaphase chromosome counting, multinucleation of cells, by micronuclei formation and by the determination of spindle orientation. Interactions of GJB3 with α-tubulin and F-actin was analyzed by immunoprecipitation and immunocytochemistry. Consequences of GJB3 deficiency on microtubule and actin dynamics were measured by live cell imaging and fluorescence recovery after photobleaching experiments, respectively. Immunohistochemistry was used to determine GJB3 levels on human and murine bladder cancer tissue sections. Bladder cancer in mice was chemically induced by BBN-treatment. RESULTS We find that GJB3 is highly expressed in the ureter and bladder epithelium, but it is downregulated in invasive bladder cancer cell lines and during tumor progression in both human and mouse bladder cancer. Downregulation of GJB3 expression leads to aneuploidy and genomic instability in karyotypically stable urothelial cells and experimental modulation of GJB3 levels alters the migration and invasive capacity of bladder cancer cell lines. Importantly, GJB3 interacts both with α-tubulin and F-actin. The impairment of these interactions alters the dynamics of these cytoskeletal components and leads to defective spindle orientation. CONCLUSION We conclude that deregulated microtubule and actin dynamics have an impact on proper chromosome separation and tumor cell invasion and migration. Consequently, these observations indicate a possible role for GJB3 in the onset and spreading of bladder cancer and demonstrate a molecular link between enhanced aneuploidy and invasive capacity cancer cells during tumor cell dissemination.
Collapse
Affiliation(s)
- Junnan Liu
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Xue Wang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Wencheng Jiang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Markus Eckstein
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | | | - Mohamed Elati
- CANTHER, ONCOLille Institute, University of Lille, CNRS, UMR 1277, Inserm U9020, 59045, Lille Cedex, France
| | - Meike Hohwieler
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Axel John
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany.
| |
Collapse
|
5
|
Xu H, Wang X, Zhu F, Guo S, Chao Z, Cao C, Lu Z, Zhu H, Wang M, Zhu F, Yang J, Zeng R, Yao Y. Comprehensive Pan-Cancer Analysis of Connexin 43 as a Potential Biomarker and Therapeutic Target in Human Kidney Renal Clear Cell Carcinoma (KIRC). MEDICINA (KAUNAS, LITHUANIA) 2024; 60:780. [PMID: 38792963 PMCID: PMC11123162 DOI: 10.3390/medicina60050780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Connexin 43 (Cx43) is involved in the transfer of small signaling molecules between neighboring cells, thereby exerting a major influence on the initiation and progression of tumorigenesis. However, there is a lack of systematic research on Cx43 expression and its predictive role in clinical diagnosis and prognosis in pan-cancer. Materials and Methods: Several biological databases were used to evaluate the expression levels of GJA1 (encoding Cx43) and its diagnostic and prognostic significance in pan-cancer. We targeted kidney renal clear cell carcinoma (KIRC) and investigated the relationship between GJA1 expression and different clinical features of KIRC patients. Then, we performed cell-based experiments to partially confirm our results and predicted several proteins that were functionally related to Cx43. Results: The expression of GJA1 has a high level of accuracy in predicting KIRC. High GJA1 expression was remarkably correlated with a favorable prognosis, and this expression was reduced in groups with poor clinical features in KIRC. Cell experiments confirmed the inhibitory effects of increased GJA1 expression on the migratory capacity of human renal cancer (RCC) cell lines, and protein-protein interaction (PPI) analysis predicted that CDH1 and CTNNB1 were closely related to Cx43. Conclusions: GJA1 could be a promising independent favorable prognostic factor for KIRC, and upregulation of GJA1 expression could inhibit the migratory capacity of renal cancer cells.
Collapse
Affiliation(s)
- Huzi Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Xiuru Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Fan Zhu
- Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Shuiming Guo
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Zheng Chao
- Division of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China;
| | - Chujin Cao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Zhihui Lu
- Division of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China;
| | - Han Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Meng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Fengming Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Juan Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
- Division of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
6
|
Totland MZ, Omori Y, Sørensen V, Kryeziu K, Aasen T, Brech A, Leithe E. Endocytic trafficking of connexins in cancer pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023:166812. [PMID: 37454772 DOI: 10.1016/j.bbadis.2023.166812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Gap junctions are specialized regions of the plasma membrane containing clusters of channels that provide for the diffusion of ions and small molecules between adjacent cells. A fundamental role of gap junctions is to coordinate the functions of cells in tissues. Cancer pathogenesis is usually associated with loss of intercellular communication mediated by gap junctions, which may affect tumor growth and the response to radio- and chemotherapy. Gap junction channels consist of integral membrane proteins termed connexins. In addition to their canonical roles in cell-cell communication, connexins modulate a range of signal transduction pathways via interactions with proteins such as β-catenin, c-Src, and PTEN. Consequently, connexins can regulate cellular processes such as cell growth, migration, and differentiation through both channel-dependent and independent mechanisms. Gap junctions are dynamic plasma membrane entities, and by modulating the rate at which connexins undergo endocytosis and sorting to lysosomes for degradation, cells rapidly adjust the level of gap junctions in response to alterations in the intracellular or extracellular milieu. Current experimental evidence indicates that aberrant trafficking of connexins in the endocytic system is intrinsically involved in mediating the loss of gap junctions during carcinogenesis. This review highlights the role played by the endocytic system in controlling connexin degradation, and consequently gap junction levels, and discusses how dysregulation of these processes contributes to the loss of gap junctions during cancer development. We also discuss the therapeutic implications of aberrant endocytic trafficking of connexins in cancer cells.
Collapse
Affiliation(s)
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | | | | | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Physiology and Cell Biology, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
7
|
Cetin-Ferra S, Francis SC, Cooper AT, Neikirk K, Marshall AG, Hinton A, Murray SA. Mitochondrial Connexins and Mitochondrial Contact Sites with Gap Junction Structure. Int J Mol Sci 2023; 24:ijms24109036. [PMID: 37240383 DOI: 10.3390/ijms24109036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria contain connexins, a family of proteins that is known to form gap junction channels. Connexins are synthesized in the endoplasmic reticulum and oligomerized in the Golgi to form hemichannels. Hemichannels from adjacent cells dock with one another to form gap junction channels that aggregate into plaques and allow cell-cell communication. Cell-cell communication was once thought to be the only function of connexins and their gap junction channels. In the mitochondria, however, connexins have been identified as monomers and assembled into hemichannels, thus questioning their role solely as cell-cell communication channels. Accordingly, mitochondrial connexins have been suggested to play critical roles in the regulation of mitochondrial functions, including potassium fluxes and respiration. However, while much is known about plasma membrane gap junction channel connexins, the presence and function of mitochondrial connexins remain poorly understood. In this review, the presence and role of mitochondrial connexins and mitochondrial/connexin-containing structure contact sites will be discussed. An understanding of the significance of mitochondrial connexins and their connexin contact sites is essential to our knowledge of connexins' functions in normal and pathological conditions, and this information may aid in the development of therapeutic interventions in diseases linked to mitochondria.
Collapse
Affiliation(s)
- Selma Cetin-Ferra
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sharon C Francis
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Anthonya T Cooper
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biology, University of Hawaii, Hilo, HI 96720, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sandra A Murray
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, Li Y, Zhang S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023; 21:8. [PMID: 36639804 PMCID: PMC9837928 DOI: 10.1186/s12964-022-01009-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 01/15/2023] Open
Abstract
Gap junctions (GJs), which are composed of connexins (Cxs), provide channels for direct information exchange between cells. Cx expression has a strong spatial specificity; however, its influence on cell behavior and information exchange between cells cannot be ignored. A variety of factors in organisms can modulate Cxs and subsequently trigger a series of responses that have important effects on cellular behavior. The expression and function of Cxs and the number and function of GJs are in dynamic change. Cxs have been characterized as tumor suppressors in the past, but recent studies have highlighted the critical roles of Cxs and GJs in cancer pathogenesis. The complex mechanism underlying Cx and GJ involvement in cancer development is a major obstacle to the evolution of therapy targeting Cxs. In this paper, we review the post-translational modifications of Cxs, the interactions of Cxs with several chaperone proteins, and the effects of Cxs and GJs on cancer. Video Abstract.
Collapse
Affiliation(s)
- Mingming Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| | - Xinyue Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
9
|
Recabal A, Fernández P, López S, Barahona MJ, Ordenes P, Palma A, Elizondo-Vega R, Farkas C, Uribe A, Caprile T, Sáez JC, García-Robles MA. The FGF2-induced tanycyte proliferation involves a connexin 43 hemichannel/purinergic-dependent pathway. J Neurochem 2020; 156:182-199. [PMID: 32936929 PMCID: PMC7894481 DOI: 10.1111/jnc.15188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
In the adult hypothalamus, the neuronal precursor role is attributed to the radial glia-like cells that line the third-ventricle (3V) wall called tanycytes. Under nutritional cues, including hypercaloric diets, tanycytes proliferate and differentiate into mature neurons that moderate body weight, suggesting that hypothalamic neurogenesis is an adaptive mechanism in response to metabolic changes. Previous studies have shown that the tanycyte glucosensing mechanism depends on connexin-43 hemichannels (Cx43 HCs), purine release, and increased intracellular free calcium ion concentration [(Ca2+ )i ] mediated by purinergic P2Y receptors. Since, Fibroblast Growth Factor 2 (FGF2) causes similar purinergic events in other cell types, we hypothesize that this pathway can be also activated by FGF2 in tanycytes to promote their proliferation. Here, we used bromodeoxyuridine (BrdU) incorporation to evaluate if FGF2-induced tanycyte cell division is sensitive to Cx43 HC inhibition in vitro and in vivo. Immunocytochemical analyses showed that cultured tanycytes maintain the expression of in situ markers. After FGF2 exposure, tanycytic Cx43 HCs opened, enabling release of ATP to the extracellular milieu. Moreover, application of external ATP was enough to induce their cell division, which could be suppressed by Cx43 HC or P2Y1-receptor inhibitors. Similarly, in vivo experiments performed on rats by continuous infusion of FGF2 and a Cx43 HC inhibitor into the 3V, demonstrated that FGF2-induced β-tanycyte proliferation is sensitive to Cx43 HC blockade. Thus, FGF2 induced Cx43 HC opening, triggered purinergic signaling, and increased β-tanycytes proliferation, highlighting some of the molecular mechanisms involved in the cell division response of tanycyte. This article has an Editorial Highlight see https://doi.org/10.1111/jnc.15218.
Collapse
Affiliation(s)
- Antonia Recabal
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Paola Fernández
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago
| | - Sergio López
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - María J Barahona
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Patricio Ordenes
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Alejandra Palma
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | | | - Carlos Farkas
- Research Institute in Oncology and Hematology, Winnipeg, Manitoba, Canada
| | - Amparo Uribe
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | | |
Collapse
|
10
|
Totland MZ, Rasmussen NL, Knudsen LM, Leithe E. Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cell Mol Life Sci 2020; 77:573-591. [PMID: 31501970 PMCID: PMC7040059 DOI: 10.1007/s00018-019-03285-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022]
Abstract
Gap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junctions have a wide diversity of physiological functions, playing critical roles in both excitable and non-excitable tissues. Gap junction channels are formed by integral membrane proteins called connexins. Inherited or acquired alterations in connexins are associated with numerous diseases, including heart failure, neuropathologies, deafness, skin disorders, cataracts and cancer. Gap junctions are highly dynamic structures and by modulating the turnover rate of connexins, cells can rapidly alter the number of gap junction channels at the plasma membrane in response to extracellular or intracellular cues. Increasing evidence suggests that ubiquitination has important roles in the regulation of endoplasmic reticulum-associated degradation of connexins as well as in the modulation of gap junction endocytosis and post-endocytic sorting of connexins to lysosomes. In recent years, researchers have also started to provide insights into the physiological roles of connexin ubiquitination in specific tissue types. This review provides an overview of the advances made in understanding the roles of connexin ubiquitination in the regulation of gap junction intercellular communication and discusses the emerging physiological and pathophysiological implications of these processes.
Collapse
Affiliation(s)
- Max Zachrisson Totland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Nikoline Lander Rasmussen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Lars Mørland Knudsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway.
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
11
|
Bazzoun D, Adissu HA, Wang L, Urazaev A, Tenvooren I, Fostok SF, Chittiboyina S, Sturgis J, Hodges K, Chandramouly G, Vidi PA, Talhouk RS, Lelièvre SA. Connexin 43 maintains tissue polarity and regulates mitotic spindle orientation in the breast epithelium. J Cell Sci 2019; 132:jcs.223313. [PMID: 30992345 DOI: 10.1242/jcs.223313] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Cell-cell communication is essential for tissue homeostasis, but its contribution to disease prevention remains to be understood. We demonstrate the involvement of connexin 43 (Cx43, also known as GJA1) and related gap junction in epithelial homeostasis, illustrated by polarity-mediated cell cycle entry and mitotic spindle orientation (MSO). Cx43 localization is restricted to the apicolateral membrane of phenotypically normal breast luminal epithelial cells in 3D culture and in vivo Chemically induced blockade of gap junction intercellular communication (GJIC), as well as the absence of Cx43, disrupt the apicolateral distribution of polarity determinant tight junction marker ZO-1 (also known as TJP1) and lead to random MSO and cell multilayering. Induced expression of Cx43 in cells that normally lack this protein reestablishes polarity and proper MSO in 3D culture. Cx43-directed MSO implicates PI3K-aPKC signaling, and Cx43 co-precipitates with signaling node proteins β-catenin (CTNNB1) and ZO-2 (also known as TJP2) in the polarized epithelium. The distribution of Cx43 is altered by pro-inflammatory breast cancer risk factors such as leptin and high-fat diet, as shown in cell culture and on tissue biopsy sections. The control of polarity-mediated quiescence and MSO may contribute to the tumor-suppressive role of Cx43.
Collapse
Affiliation(s)
- D Bazzoun
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA.,Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - H A Adissu
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - L Wang
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - A Urazaev
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - I Tenvooren
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - S F Fostok
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - S Chittiboyina
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Sturgis
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - K Hodges
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - G Chandramouly
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - P-A Vidi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - R S Talhouk
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 11-0236 Beirut, Lebanon
| | - S A Lelièvre
- Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Bell CL, Shakespeare TI, Smith AR, Murray SA. Visualization of Annular Gap Junction Vesicle Processing: The Interplay Between Annular Gap Junctions and Mitochondria. Int J Mol Sci 2018; 20:ijms20010044. [PMID: 30583492 PMCID: PMC6337258 DOI: 10.3390/ijms20010044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022] Open
Abstract
It is becoming clear that in addition to gap junctions playing a role in cell⁻cell communication, gap junction proteins (connexins) located in cytoplasmic compartments may have other important functions. Mitochondrial connexin 43 (Cx43) is increased after ischemic preconditioning and has been suggested to play a protective role in the heart. How Cx43 traffics to the mitochondria and the interactions of mitochondria with other Cx43-containing structures are unclear. In this study, immunocytochemical, super-resolution, and transmission electron microscopy were used to detect cytoplasmic Cx43-containing structures and to demonstrate their interactions with other cytoplasmic organelles. The most prominent cytoplasmic Cx43-containing structures-annular gap junctions-were demonstrated to form intimate associations with lysosomes as well as with mitochondria. Surprisingly, the frequency of associations between mitochondria and annular gap junctions was greater than that between lysosomes and annular gap junctions. The benefits of annular gap junction/mitochondrial associations are not known. However, it is tempting to suggest, among other possibilities, that the contact between annular gap junction vesicles and mitochondria facilitates Cx43 delivery to the mitochondria. Furthermore, it points to the need for investigating annular gap junctions as more than only vesicles destined for degradation.
Collapse
Affiliation(s)
- Cheryl L Bell
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | - Amber R Smith
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
Epifantseva I, Shaw RM. Intracellular trafficking pathways of Cx43 gap junction channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:40-47. [PMID: 28576298 DOI: 10.1016/j.bbamem.2017.05.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
Gap Junction (GJ) channels, including the most common Connexin 43 (Cx43), have fundamental roles in excitable tissues by facilitating rapid transmission of action potentials between adjacent cells. For instance, synchronization during each heartbeat is regulated by these ion channels at the cardiomyocyte cell-cell border. Cx43 protein has a short half-life, and rapid synthesis and timely delivery of those proteins to particular subdomains are crucial for the cellular organization of gap junctions and maintenance of intracellular coupling. Impairment in gap junction trafficking contributes to dangerous complications in diseased hearts such as the arrhythmias of sudden cardiac death. Of recent interest are the protein-protein interactions with the Cx43 carboxy-terminus. These interactions have significant impact on the full length Cx43 lifecycle and also contribute to trafficking of Cx43 as well as possibly other functions. We are learning that many of the known non-canonical roles of Cx43 can be attributed to the recently identified six endogenous Cx43 truncated isoforms which are produced by internal translation. In general, alternative translation is a new leading edge for proteome expansion and therapeutic drug development. This review highlights recent mechanisms identified in the trafficking of gap junction channels, involvement of other proteins contributing to the delivery of channels to the cell-cell border, and understanding of possible roles of the newly discovered alternatively translated isoforms in Cx43 biology. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Irina Epifantseva
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robin M Shaw
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.; Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA..
| |
Collapse
|
14
|
Leithe E, Mesnil M, Aasen T. The connexin 43 C-terminus: A tail of many tales. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:48-64. [PMID: 28526583 DOI: 10.1016/j.bbamem.2017.05.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Connexins are chordate gap junction channel proteins that, by enabling direct communication between the cytosols of adjacent cells, create a unique cell signalling network. Gap junctional intercellular communication (GJIC) has important roles in controlling cell growth and differentiation and in tissue development and homeostasis. Moreover, several non-canonical connexin functions unrelated to GJIC have been discovered. Of the 21 members of the human connexin family, connexin 43 (Cx43) is the most widely expressed and studied. The long cytosolic C-terminus (CT) of Cx43 is subject to extensive post-translational modifications that modulate its intracellular trafficking and gap junction channel gating. Moreover, the Cx43 CT contains multiple domains involved in protein interactions that permit crosstalk between Cx43 and cytoskeletal and regulatory proteins. These domains endow Cx43 with the capacity to affect cell growth and differentiation independently of GJIC. Here, we review the current understanding of the regulation and unique functions of the Cx43 CT, both as an essential component of full-length Cx43 and as an independent signalling hub. We highlight the complex regulatory and signalling networks controlled by the Cx43 CT, including the extensive protein interactome that underlies both gap junction channel-dependent and -independent functions. We discuss these data in relation to the recent discovery of the direct translation of specific truncated forms of Cx43. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, University of Oslo, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, France
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| |
Collapse
|
15
|
Totland MZ, Bergsland CH, Fykerud TA, Knudsen LM, Rasmussen NL, Eide PW, Yohannes Z, Sørensen V, Brech A, Lothe RA, Leithe E. E3 ubiquitin ligase NEDD4 induces endocytosis and lysosomal sorting of connexin43 to promote loss of gap junctions. J Cell Sci 2017; 130:2867-2882. [DOI: 10.1242/jcs.202408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023] Open
Abstract
Intercellular communication via gap junctions has an important role in controlling cell growth and in maintaining tissue homeostasis. Connexin43 is the most abundantly expressed gap junction channel protein in humans and acts as a tumor suppressor in multiple tissue types. Connexin43 is often dysregulated at the post-translational level during cancer development, resulting in loss of gap junctions. However, the molecular basis underlying the aberrant regulation of connexin43 in cancer cells has remained elusive. Here, we demonstrate that the oncogenic E3 ubiquitin ligase NEDD4 regulates the connexin43 protein level in HeLa cells, both under basal conditions and in response to protein kinase C activation. Furthermore, overexpression of NEDD4, but not a catalytically inactive form of NEDD4, was found to result in nearly complete loss of gap junctions and increased lysosomal degradation of connexin43 in both HeLa and C33A cervical carcinoma cells. Collectively, the data provide new insights into the molecular basis underlying the regulation of gap junction size and represent the first evidence that an oncogenic E3 ubiquitin ligase promotes loss of gap junctions and connexin43 degradation in human carcinoma cells.
Collapse
Affiliation(s)
- Max Z. Totland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Biosciences, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Christian H. Bergsland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Biosciences, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Tone A. Fykerud
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Lars M. Knudsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Biosciences, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Nikoline L. Rasmussen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Biosciences, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Peter W. Eide
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Zeremariam Yohannes
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Vigdis Sørensen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Biosciences, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute for Biosciences, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
16
|
Fykerud TA, Knudsen LM, Totland MZ, Sørensen V, Dahal-Koirala S, Lothe RA, Brech A, Leithe E. Mitotic cells form actin-based bridges with adjacent cells to provide intercellular communication during rounding. Cell Cycle 2016; 15:2943-2957. [PMID: 27625181 PMCID: PMC5105929 DOI: 10.1080/15384101.2016.1231280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In order to achieve accurate chromosome segregation, eukaryotic cells undergo a dramatic change in morphology to obtain a spherical shape during mitosis. Interphase cells communicate directly with each other by exchanging ions and small molecules via gap junctions, which have important roles in controlling cell growth and differentiation. As cells round up during mitosis, the gap junctional communication between mitotic cells and adjacent interphase cells ceases. Whether mitotic cells use alternative mechanisms for mediating direct cell-cell communication during rounding is currently unknown. Here, we have studied the mechanisms involved in the remodeling of gap junctions during mitosis. We further demonstrate that mitotic cells are able to form actin-based plasma membrane bridges with adjacent cells during rounding. These structures, termed “mitotic nanotubes,” were found to be involved in mediating the transport of cytoplasm, including Rab11-positive vesicles, between mitotic cells and adjacent cells. Moreover, a subpool of the gap-junction channel protein connexin43 localized in these intercellular bridges during mitosis. Collectively, the data provide new insights into the mechanisms involved in the remodeling of gap junctions during mitosis and identify actin-based plasma membrane bridges as a novel means of communication between mitotic cells and adjacent cells during rounding.
Collapse
Affiliation(s)
- Tone A Fykerud
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| | - Lars M Knudsen
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| | - Max Z Totland
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| | - Vigdis Sørensen
- b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,e Department of Molecular Cell Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,f Department of Core Facilities , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway
| | - Shiva Dahal-Koirala
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway
| | - Ragnhild A Lothe
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| | - Andreas Brech
- b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,e Department of Molecular Cell Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,f Department of Core Facilities , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway
| | - Edward Leithe
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| |
Collapse
|