1
|
Yang C, Li Y, Chen C, Sun Z, Liu E, Wei N, Liu X, Shu J, Zhao N, Sun M. Long Non-Coding RNAs: Crucial Regulators in Alzheimer's Disease Pathogenesis and Prospects for Precision Medicine. Mol Neurobiol 2025; 62:7525-7541. [PMID: 39907902 DOI: 10.1007/s12035-025-04729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Long non-coding RNAs (LncRNAs) have emerged as pivotal regulators in the pathogenesis of Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. With the capacity to modulate gene expression at various levels, LncRNAs are implicated in multiple pathological mechanisms of AD, including amyloid-beta (Aβ) accumulation, tau protein phosphorylation, neuroinflammation, and neuronal apoptosis. Recent studies have highlighted the potential of LncRNAs as diagnostic biomarkers and therapeutic targets due to their differential expression patterns in AD patients. This review synthesizes current knowledge on the role of LncRNAs in AD, focusing on their involvement in key molecular pathways and their promise as indicators for early diagnosis and prognosis. We discuss the regulatory networks of LncRNAs in the context of AD, their interaction with miRNAs, and the implications for developing novel therapeutic strategies. Despite the complexity and variability in LncRNA function, the prospect of harnessing these molecules for precision medicine in AD is gaining momentum. The translational potential of LncRNA-based interventions offers a new frontier in the quest for effective treatments and a deeper understanding of the molecular underpinnings of AD.
Collapse
Affiliation(s)
- Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yiwei Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zexin Sun
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaonan Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jiao Shu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Na Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
2
|
Kazemi M, Sanati M, Shekari Khaniani M, Ghafouri-Fard S. A review on the lncRNA-miRNA-mRNA regulatory networks involved in inflammatory processes in Alzheimer's disease. Brain Res 2025; 1856:149595. [PMID: 40132722 DOI: 10.1016/j.brainres.2025.149595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/01/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Alzheimer's disease is a progressive neurodegenerative condition that is the most frequent reason for dementia. Due to the increasing trend of aging in societies, it will place a large social and financial burden on society. Although beta amyloid plaques and the formation of neurofibrillary tangles are mentioned as the main events in this disorder, the exact molecular pathology and inflammatory regulatory networks involved in neuroinflammatory events, as a fundamental pathogenic mechanism remain unknown. Understanding these molecular network pathways in addition to helping to understand the pathogenesis of Alzheimer's disease, can also help in the early diagnosis as well as the control of inflammatory processes that are involved in its progression. So, in this study, we intend to have an overview on the regulatory lncRNAs of Alzheimer's disease and their related miRNA and mRNAs, as well as the relationship of these regulatory pathways with inflammatory processes, so that we can provide a perspective for future studies in the field of diagnosis and possibly treatment of this disorder.
Collapse
Affiliation(s)
- Masoumeh Kazemi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahla Sanati
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Esmaeili A, Yazdanpanah N, Rezaei N. LncRNAs Orchestrating Neuroinflammation: A Comprehensive Review. Cell Mol Neurobiol 2025; 45:21. [PMID: 40056236 PMCID: PMC11890384 DOI: 10.1007/s10571-025-01538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/17/2025] [Indexed: 03/10/2025]
Abstract
CNS diseases account for a major part of the comorbidity and mortality of the human population; moreover, neuroinflammation has become an indication for different CNS diseases, for instance, Parkinson's and Alzheimer's disease. Microglia and astrocytes are the two main glial cells that can be found in the CNS. Each of these plays an important role in mediating immune responses like inflammation. There are many studies suggesting the role of LncRNAs in mediating neuroinflammation. Indeed, LncRNAs orchestrate neuroinflammation through various mechanisms, namely miRNA sponge, and transcriptional activation/inhibition. In addition, LncRNAs regulate different downstream pathways like NF-κB, and PI3K/AKT. In this study, we gathered the existing studies regarding the mechanisms of action of LncRNAs in the pathogenesis of different CNS diseases like neurodegenerative diseases and traumatic injuries through regulating neuroinflammation. We aim to elaborate on the regulatory roles of LncRNAs in neuroinflammation and bring a more profound understanding of the etiology of CNS diseases in terms of neuroinflammation.
Collapse
Affiliation(s)
- Arash Esmaeili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Xu Q, Liu D, Zhu L, Su Y, Huang H. Long non-coding RNAs as key regulators of neurodegenerative protein aggregation. Alzheimers Dement 2025; 21:e14498. [PMID: 39936251 PMCID: PMC11815248 DOI: 10.1002/alz.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 02/13/2025]
Abstract
The characteristic events in neurodegenerative diseases (NDDs) encompass protein misfolding, aggregation, accumulation, and their related cellular dysfunction, synaptic function loss. While distinct proteins are implicated in the pathological processes of different NDDs, the process of protein misfolding and aggregation remains notably similar across various conditions. Specifically, proteins undergo misfolding into beta-folded (β-folded) conformation, resulting in the formation of insoluble amyloid proteins. Despite advancements in comprehending protein aggregation, certain facets of this intricate process remain incompletely elucidated. In recent years, the concept that long non-coding RNAs (lncRNAs) contribute to protein aggregation has gained recognition. LncRNAs influence the formation of protein aggregates by facilitating protein overexpression through the regulation of gene transcription and translation, inhibiting protein degradation via lysosomal and autophagic pathways, and targeting aberrant modifications and phase transitions of proteins. A better understanding of the relationship between lncRNAs and aberrant protein aggregation is an important step in dissecting the underlying molecular mechanisms and will contribute to the discovery of new therapeutic targets and strategies. HIGHLIGHTS: NDDs are marked by protein misfolding, aggregation, and accumulation, leading to cellular dysfunction and loss of synaptic function. Despite different proteins being involved in various NDDs, the process of misfolding into β-folded conformations and forming insoluble amyloid proteins is consistent across conditions. The role of lncRNAs in protein aggregation has gained attention, as they regulate gene transcription and translation, inhibit protein degradation, and target aberrant protein modifications. Understanding the link between lncRNAs and protein aggregation is crucial for uncovering molecular mechanisms and developing new therapeutic targets.
Collapse
Affiliation(s)
- Qi Xu
- Department of NeurologyUnion HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Dan Liu
- Department of GeneticsSchool of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ling‐Qiang Zhu
- Department of PathophysiologySchool of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ying Su
- Department of NeurologyUnion HospitalHuazhong University of Science and TechnologyWuhanChina
| | - He‐Zhou Huang
- Department of PathophysiologySchool of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of Anesthesiology DepartmentUnion Hospital, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Chunhui G, Yanqiu Y, Jibing C, Ning L, Fujun L. Exosomes and non-coding RNAs: bridging the gap in Alzheimer's pathogenesis and therapeutics. Metab Brain Dis 2025; 40:84. [PMID: 39754674 PMCID: PMC11700052 DOI: 10.1007/s11011-024-01520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that primarily affects the elderly population and is the leading cause of dementia. Meanwhile, the vascular hypothesis suggests that vascular damage occurs in the early stages of the disease, leading to neurodegeneration and hindered waste clearance, which in turn triggers a series of events including the accumulation of amyloid plaques and Tau protein tangles. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been found to be involved in the regulation of AD. Furthermore, lncRNAs and circRNAs can act as competitive endogenous RNAs to inhibit miRNAs, and their interactions can form a complex regulatory network. Exosomes, which are extracellular vesicles (EVs), are believed to be able to transfer ncRNAs between cells, thus playing a regulatory role in the brain by crossing the blood-brain barrier (BBB). Exosomes are part of the intercellular carrier system; therefore, utilizing exosomes to deliver drugs to recipient cells might not activate the immune system, making it a potential strategy to treat central nervous system diseases. In this review, we review that AD is a multifactorial neurological disease and that ncRNAs can regulate its multiple pathogenic mechanisms to improve our understanding of the etiology of AD and to simultaneously regulate multiple pathogenic mechanisms of AD through the binding of ncRNAs to exosomes to improve the treatment of AD.
Collapse
Affiliation(s)
- Guo Chunhui
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - You Yanqiu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Chen Jibing
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Luo Ning
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Li Fujun
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| |
Collapse
|
6
|
Kazemi M, Naghdi Sadeh R, Shekari Khaniani M, Rezazadeh M, Derakhshan SM, Ghafouri-Fard S. Identification of RN7SK LncRNA as a novel biomarker in Alzheimer's disease using bioinformatics and expression analysis. Sci Rep 2024; 14:31192. [PMID: 39732800 DOI: 10.1038/s41598-024-82490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Alzheimer's disease (AD) is a degenerative illness that accounts for the common type of dementia among adults over the age of 65. Despite extensive studies on the pathogenesis of the disease, early diagnosis of AD is still debatable. In this research, we performed bioinformatics approaches on the AD-related E-MTAB 6094 dataset to uncover new potential biomarkers for AD diagnosis. To achieve this, we performed in-depth in silico assays, including differentially expressed genes analysis, weighted gene co-expression network analyses, module-trait association analyses, gene ontology and pathway enrichment analyses, and hub genes network analyses. Finally, the expression of the identified candidate genes was evaluated in AD patients PBMC samples by qRT-PCR. Through computational analyses, we found that RN7SK LncRNA and its co-expressed genes of TNF, TNFAIP3, CCLT3, and FLT3 are from key genes in AD development that are associated with inflammatory responses. Our experimental validation revealed that RN7SK LncRNA and TNF were substantially up-regulated in AD samples (P = 0.006 and P = 0.023, respectively). Whereas, TNFAIP3 expression was significantly decreased (P = 0.016). However, the expression of CCL3 and FLT3 did not differ significantly between two groups (P = 0.396 and P = 0.521, respectively). In conclusion, in this study a novel LncRNA associated with AD pathogenesis were identified, which may provide new diagnostic biomarker for AD.
Collapse
Affiliation(s)
- Masoumeh Kazemi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Naghdi Sadeh
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Deng Y, Duan R, Hong Y, Peng Q, Li ZY, Chen XL, Zhang YD. Trimethylamine N-Oxide Aggravates Neuro-Inflammation via lncRNA Fendrr/miR-145-5p/PXN Axis in Vascular Dementia Rats. J Inflamm Res 2024; 17:7441-7461. [PMID: 39464336 PMCID: PMC11505398 DOI: 10.2147/jir.s479154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Purpose Vascular dementia (VaD) is the second most common dementia in the world. An increasing number of studies have demonstrated the important role of long non-coding RNAs (lncRNAs) in VaD. Our previous investigation demonstrated that Trimethylamine-N-oxide (TMAO) exacerbates cognitive impairment and neuropathological alterations in VaD rats. Thus, we hypothesized that TMAO could play an injury role in VaD by regulating lncRNAs. Materials and Methods The rats using the bilateral common carotid artery (2VO) model were administered TMAO (120 mg/kg) for 8 consecutive weeks, 4 weeks preoperatively and 4 weeks postoperatively. High-throughput sequencing was conducted to investigate the effects of TMAO treatment on lncRNA expression in rat hippocampus and bioinformatics analysis was performed to identify potential downstream targets. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the levels of lncRNA fetal-lethal noncoding developmental regulatory RNA (Fendrr), miR-145-5p, and paxillin (PXN). Learning and spatial memory capacities were measured, as well as inflammatory factors. Nissl staining was used to observe neuronal injury in the CA1 area of the hippocampus. Furthermore, we used the Fendrr loss-of-function assay, miR-145-5p gain-of-function assays and PXN loss-of-function assay to explore the mechanisms by which TMAO acts on VaD. Results TMAO administration upregulated lncRNA Fendrr expression in the rat hippocampus, while the damaging effects of TMAO were counteracted after knockdown of Fendrr. Fendrr exhibits highly expressed in 2VO rats and sponged miR-145-5p, which targets PXN. Silencing of Fendrr or PXN, or promotion of miR-145-5p improved neurological function injury, reduced neuronal damage, as well as repressed inflammation response. Inhibition of miR-145-5p abrogated up Fendrr knockdown mediated influence on 2VO rats. Conclusion The results of this study indicated that TMAO inhibits the miR-145-5p/PXN axis by increasing the Fendrr expression, thus exacerbating the development of VaD.
Collapse
Affiliation(s)
- Yang Deng
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, People’s Republic of China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
| | - Zhong-Yuan Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
| | - Xiang-Liang Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People’s Republic of China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, People’s Republic of China
| |
Collapse
|
8
|
Black CM, Braden AA, Nasim S, Tripathi M, Xiao J, Khan MM. The Association between Long Non-Coding RNAs and Alzheimer's Disease. Brain Sci 2024; 14:818. [PMID: 39199508 PMCID: PMC11353078 DOI: 10.3390/brainsci14080818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Neurodegeneration occurs naturally as humans age, but the presence of additional pathogenic mechanisms yields harmful and consequential effects on the brain. Alzheimer's disease (AD), the most common form of dementia, is a composite of such factors. Despite extensive research to identify the exact causes of AD, therapeutic approaches for treating the disease continue to be ineffective, indicating important gaps in our understanding of disease mechanisms. Long non-coding RNAs (lncRNAs) are an endogenous class of regulatory RNA transcripts longer than 200 nucleotides, involved in various regulatory networks, whose dysregulation is evident in several neural and extraneural diseases. LncRNAs are ubiquitously expressed across all tissues with a wide range of functions, including controlling cell differentiation and development, responding to environmental stimuli, and other physiological processes. Several lncRNAs have been identified as potential contributors in worsening neurodegeneration due to altered regulation during abnormal pathological conditions. Within neurological disease, lncRNAs are prime candidates for use as biomarkers and pharmacological targets. Gender-associated lncRNA expression is altered in a gender-dependent manner for AD, suggesting more research needs to be focused on this relationship. Overall, research on lncRNAs and their connection to neurodegenerative disease is growing exponentially, as commercial enterprises are already designing and employing RNA therapeutics. In this review we offer a comprehensive overview of the current state of knowledge on the role of lncRNAs in AD and discuss the potential implications of lncRNA as potential therapeutic targets and diagnostic biomarkers in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Carson M. Black
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
| | - Anneliesse A. Braden
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Samia Nasim
- Departments of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Manish Tripathi
- Medicine and Oncology, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
| | - Jianfeng Xiao
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
| | - Mohammad Moshahid Khan
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Division of Regenerative and Rehabilitation Sciences, Department of Physical Therapy, Center for Muscle, Metabolism and Neuropathology, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
9
|
Sen S, Mukhopadhyay D. A Holistic Analysis of Alzheimer's Disease-Associated lncRNA Communities Reveals Enhanced lncRNA-miRNA-RBP Regulatory Triad Formation Within Functionally Segregated Clusters. J Mol Neurosci 2024; 74:77. [PMID: 39143264 PMCID: PMC11324768 DOI: 10.1007/s12031-024-02244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024]
Abstract
Recent studies on the regulatory networks implicated in Alzheimer's disease (AD) evince long non-coding RNAs (lncRNAs) as crucial regulatory players, albeit a poor understanding of the mechanism. Analyzing differential gene expression in the RNA-seq data from the post-mortem AD brain hippocampus, we categorized a list of AD-dysregulated lncRNA transcripts into functionally similar communities based on their k-mer profiles. Using machine-learning-based algorithms, their subcellular localizations were mapped. We further explored the functional relevance of each community through AD-dysregulated miRNA, RNA-binding protein (RBP) interactors, and pathway enrichment analyses. Further investigation of the miRNA-lncRNA and RBP-lncRNA networks from each community revealed the top RBPs, miRNAs, and lncRNAs for each cluster. The experimental validation community yielded ELAVL4 and miR-16-5p as the predominant RBP and miRNA, respectively. Five lncRNAs emerged as the top-ranking candidates from the RBP/miRNA-lncRNA networks. Further analyses of these networks revealed the presence of multiple regulatory triads where the RBP-lncRNA interactions could be augmented by the enhanced miRNA-lncRNA interactions. Our results advance the understanding of the mechanism of lncRNA-mediated AD regulation through their interacting partners and demonstrate how these functionally segregated but overlapping regulatory networks can modulate the disease holistically.
Collapse
Affiliation(s)
- Somenath Sen
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700 064, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700 064, India.
| |
Collapse
|
10
|
Canoy RJ, Sy JC, Deguit CD, Castro CB, Dimaapi LJ, Panlaqui BG, Perian W, Yu J, Velasco JM, Sevilleja JE, Gibson A. Non-coding RNAs involved in the molecular pathology of Alzheimer's disease: a systematic review. Front Neurosci 2024; 18:1421675. [PMID: 39005845 PMCID: PMC11243705 DOI: 10.3389/fnins.2024.1421675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia globally, having a pathophysiology that is complex and multifactorial. Recent findings highlight the significant role of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs) in the molecular mechanisms underlying AD. These ncRNAs are involved in critical biological processes such as cell proliferation, apoptosis, oxidative stress, amyloid-beta aggregation, tau phosphorylation, neuroinflammation, and autophagy, which are pivotal in AD development and progression. This systematic review aims to consolidate current scientific knowledge on the role of ncRNAs in AD, making it the first to encompass the four types of ncRNAs associated with the disease. Our comprehensive search and analysis reveal that ncRNAs not only play crucial roles in the pathogenesis of AD but also hold potential as biomarkers for its early detection and as novel therapeutic targets. Specifically, the findings underscore the significance of miRNAs in regulating genes involved in key AD pathways such as activin receptor signaling pathway, actomyosin contractile ring organization, and advanced glycation endproducts-receptor advanced glycation endproducts (AGE-RAGE) signaling pathway. This review also highlights the potential of ncRNAs in unveiling novel diagnostic and therapeutic strategies, emphasizing the need for further research to validate their clinical utility. Our systematic exploration provides a foundation for future bioinformatic analyses and the development of ncRNA-based precision medicine approaches for AD, offering new insights into the disease's molecular pathology and paving the way for innovative treatment strategies. Systematic review registration PROSPERO, https://www.crd.york.ac.uk/prospero/, CRD42022355307.
Collapse
Affiliation(s)
- Reynand Jay Canoy
- SciLore LLC, Kingsbury, TX, United States
- Instiute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Jenica Clarisse Sy
- SciLore LLC, Kingsbury, TX, United States
- Center for Research and Innovation, Ateneo de Manila University School of Medicine and Public Health, Pasig City, Philippines
| | - Christian Deo Deguit
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Caitlin Bridgette Castro
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Lyoneil James Dimaapi
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Beatrice Gabrielle Panlaqui
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Wenzel Perian
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Justine Yu
- Institute for Dementia Care Asia, Quezon City, Philippines
| | - John Mark Velasco
- Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | | | - Anna Gibson
- SciLore LLC, Kingsbury, TX, United States
- Center for Research and Innovation, Ateneo de Manila University School of Medicine and Public Health, Pasig City, Philippines
| |
Collapse
|
11
|
Gao S, Fan C, Wang Y, Yang W, Jiang H. LncRNA ENST00000440246.1 Promotes Alzheimer's Disease Progression by Targeting PP2A. Biochem Genet 2024; 62:2100-2116. [PMID: 37856039 DOI: 10.1007/s10528-023-10552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Alzheimer's disease (AD) is an extremely prevalent neurodegenerative disease. Long noncoding RNAs (lncRNAs) play pivotal roles in the regulation of AD. However, the function of most lncRNAs in AD remains to be elucidated. In this study, the effects of lncRNA ENST00000440246.1 on the biological characteristics of AD were explored. Differentially expressed lncRNAs in AD were identified through bioinformatics analysis and peripheral blood from thirty AD patients was collected to verify the expression of these lncRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). The correlations between lncRNAs and the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA) were assessed by Pearson's correlation analysis. Immunofluorescence (IF), Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted to evaluate the biological effect of ENST00000440246.1 and protein phosphatase 2 A (PP2A) in SK-N-SH cells. Gene expression at the protein and mRNA levels was analyzed by Western blotting and RT-qPCR. The interaction between PP2A and ENST00000440246.1 was confirmed by IntaRNA and RNA pulldown assays. ENST00000440246.1 was upregulated and significantly negatively correlated with the MMSE and MoCA scores and the overexpression of ENST00000440246.1 inhibited cell proliferation and facilitated apoptosis and Aβ expression in SK-N-SH cells. Mechanistically, ENST00000440246.1 targeted PP2A and regulated AD-related gene expression. The silencing of ENST00000440246.1 had the opposite effect. Furthermore, PP2A overexpression reversed the influence of ENST00000440246.1 overexpression in SK-N-SH cells. In conclusion, ENST00000440246.1 could promote AD progression by targeting PP2A, which indicates that ENST00000440246.1 has the potential to be a diagnostic target in AD.
Collapse
Affiliation(s)
- Shang Gao
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Yongzhong Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
- Department of pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Wenming Yang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| |
Collapse
|
12
|
Prasanth MI, Sivamaruthi BS, Cheong CSY, Verma K, Tencomnao T, Brimson JM, Prasansuklab A. Role of Epigenetic Modulation in Neurodegenerative Diseases: Implications of Phytochemical Interventions. Antioxidants (Basel) 2024; 13:606. [PMID: 38790711 PMCID: PMC11118909 DOI: 10.3390/antiox13050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epigenetics defines changes in cell function without involving alterations in DNA sequence. Neuroepigenetics bridges neuroscience and epigenetics by regulating gene expression in the nervous system and its impact on brain function. With the increase in research in recent years, it was observed that alterations in the gene expression did not always originate from changes in the genetic sequence, which has led to understanding the role of epigenetics in neurodegenerative diseases (NDDs) including Alzheimer's disease (AD) and Parkinson's disease (PD). Epigenetic alterations contribute to the aberrant expression of genes involved in neuroinflammation, protein aggregation, and neuronal death. Natural phytochemicals have shown promise as potential therapeutic agents against NDDs because of their antioxidant, anti-inflammatory, and neuroprotective effects in cellular and animal models. For instance, resveratrol (grapes), curcumin (turmeric), and epigallocatechin gallate (EGCG; green tea) exhibit neuroprotective effects through their influence on DNA methylation patterns, histone acetylation, and non-coding RNA expression profiles. Phytochemicals also aid in slowing disease progression, preserving neuronal function, and enhancing cognitive and motor abilities. The present review focuses on various epigenetic modifications involved in the pathology of NDDs, including AD and PD, gene expression regulation related to epigenetic alterations, and the role of specific polyphenols in influencing epigenetic modifications in AD and PD.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Clerance Su Yee Cheong
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Mol Neurobiol 2024; 61:1282-1317. [PMID: 37700216 DOI: 10.1007/s12035-023-03626-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Aging is a significant risk factor for Alzheimer's disease (AD), although the precise mechanism and molecular basis of AD are not yet fully understood. Epigenetic mechanisms, such as DNA methylation and hydroxymethylation, mitochondrial DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), play a role in regulating gene expression related to neuron plasticity and integrity, which are closely associated with learning and memory development. This review describes the impact of dynamic and reversible epigenetic modifications and factors on memory and plasticity throughout life, emphasizing their potential as target for therapeutic intervention in AD. Additionally, we present insight from postmortem and animal studies on abnormal epigenetics regulation in AD, as well as current strategies aiming at targeting these factors in the context of AD therapy.
Collapse
Affiliation(s)
- Alireza Paniri
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
14
|
Elseweidy MM, Mahrous M, Ali SI, Shaheen MA, Younis NN. Pentoxifylline as Add-On Treatment to Donepezil in Copper Sulphate-Induced Alzheimer's Disease-Like Neurodegeneration in Rats. Neurotox Res 2023; 41:546-558. [PMID: 37821782 PMCID: PMC10682165 DOI: 10.1007/s12640-023-00672-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by behavioral, cognitive, and progressive memory impairments. Extensive neuronal loss, extracellular accumulation of insoluble senile amyloid-β (Aβ) plaques, and intracellular neurofibrillary tangles (NFTs) are the major pathological features. The present study aimed to investigate the therapeutic effect of donepezil (DON) and pentoxifylline (PTX) in combination to combat the neurodegenerative disorders (experimental AD) induced by CuSO4 intake in experimental rats. Thirty adult male Wistar rats (140-160 g) were used in this study. AD was first induced in rats by CuSO4 supplement to drinking water (10 mg/L) for 14 weeks. The AD group received no further treatment. Oral treatment with DON (10 mg/kg/day), PTX (100 mg/kg/day), or DON + PTX for the other three groups was started from the 10th week of CuSO4 intake for 4 weeks. Cortex markers like acetylcholine (ACh), acetylcholinesterase (AChE), total antioxidant capacity (TAC), and malondialdehyde (MDA) and hippocampus markers like β-amyloid precursor protein cleaving enzyme 1 (BACE1), phosphorylated Tau (p-tau), Clusterin (CLU), tumor necrosis factor-α (TNF-α), caspase-9 (CAS-9), Bax, and Bcl-2 were measured. The histopathology studies were done by using hematoxylin and eosin and Congo red stains as well as immunohistochemistry for neurofilament. CuSO4 induced adverse histological and biochemical changes. The histological injury in the hippocampus was inhibited following the administration of the DON and PTX. The brain tissue levels of AChE, MDA, BACE1, p-tau, CLU, CAS-9, Bax, and TNF-α were significantly increased, while brain tissue levels of ACh, TAC, and Bcl-2 were significantly decreased in CuSO4-treated rats as compared with the untreated control group. The effects induced by either DON or PTX on most studied parameters were comparable. Combined treatment of DON and PTX induced remarkable results compared with their individual use. However, more clinical and preclinical studies are still required to further confirm and prove the long-term efficacy of such combination.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed Mahrous
- Department of Biochemistry, Faculty of Pharmacy, Port-Said University, Port-Said, 42526, Egypt
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
15
|
He C, Li Z, Yang M, Yu W, Luo R, Zhou J, He J, Chen Q, Song Z, Cheng S. Non-Coding RNA in Microglia Activation and Neuroinflammation in Alzheimer's Disease. J Inflamm Res 2023; 16:4165-4211. [PMID: 37753266 PMCID: PMC10519213 DOI: 10.2147/jir.s422114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by complex pathophysiological features. Amyloid plaques resulting from extracellular amyloid deposition and neurofibrillary tangles formed by intracellular hyperphosphorylated tau accumulation serve as primary neuropathological criteria for AD diagnosis. The activation of microglia has been closely associated with these pathological manifestations. Non-coding RNA (ncRNA), a versatile molecule involved in various cellular functions such as genetic information storage and transport, as well as catalysis of biochemical reactions, plays a crucial role in microglial activation. This review aims to investigate the regulatory role of ncRNAs in protein expression by directly targeting genes, proteins, and interactions. Furthermore, it explores the ability of ncRNAs to modulate inflammatory pathways, influence the expression of inflammatory factors, and regulate microglia activation, all of which contribute to neuroinflammation and AD. However, there are still significant controversies surrounding microglial activation and polarization. The categorization into M1 and M2 phenotypes may oversimplify the intricate and multifaceted regulatory processes in microglial response to neuroinflammation. Limited research has been conducted on the role of ncRNAs in regulating microglial activation and inducing distinct polarization states in the context of neuroinflammation. Moreover, the regulatory mechanisms through which ncRNAs govern microglial function continue to be refined. The current understanding of ncRNA regulatory pathways involved in microglial activation remains incomplete and may be influenced by spatial, temporal, and tissue-specific factors. Therefore, further in-depth investigations are warranted. In conclusion, there are ongoing debates and uncertainties regarding the activation and polarization of microglial cells, particularly concerning the categorization into M1 and M2 phenotypes. The study of ncRNA regulation in microglial activation and polarization, as well as its mechanisms, is still in its early stages and requires further investigation. However, this review offers new insights and opportunities for therapeutic approaches in AD. The development of ncRNA-based drugs may hold promise as a new direction in AD treatment.
Collapse
Affiliation(s)
- Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Miao Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Jinyong Zhou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Qi Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
16
|
Jiang Y, Xu N. The Emerging Role of Autophagy-Associated lncRNAs in the Pathogenesis of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24119686. [PMID: 37298636 DOI: 10.3390/ijms24119686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neurodegenerative diseases (NDDs) have become a significant global public health problem and a major societal burden. The World Health Organization predicts that NDDs will overtake cancer as the second most common cause of human mortality within 20 years. Thus, it is urgently important to identify pathogenic and diagnostic molecular markers related to neurodegenerative processes. Autophagy is a powerful process for removing aggregate-prone proteins in neurons; defects in autophagy are often associated with the pathogenesis of NDDs. Long non-coding RNAs (lncRNAs) have been suggested as key regulators in neurodevelopment; aberrant regulation of lncRNAs contributes to neurological disorders. In this review, we summarize the recent progress in the study of lncRNAs and autophagy in the context of neurodegenerative disorders, especially Alzheimer's disease (AD) and Parkinson's disease (PD). The information presented here should provide guidance for future in-depth investigations of neurodegenerative processes and related diagnostic molecular markers and treatment targets.
Collapse
Affiliation(s)
- Yapei Jiang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
17
|
Ma Y, Zhu Y, Shang L, Qiu Y, Shen N, Wang J, Adam T, Wei W, Song Q, Li J, Wicha MS, Luo M. LncRNA XIST regulates breast cancer stem cells by activating proinflammatory IL-6/STAT3 signaling. Oncogene 2023; 42:1419-1437. [PMID: 36922677 PMCID: PMC10154203 DOI: 10.1038/s41388-023-02652-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023]
Abstract
Aberrant expression of XIST, a long noncoding RNA (lncRNA) initiating X chromosome inactivation (XCI) in early embryogenesis, is a common feature of breast cancer (BC). However, the roles of post-XCI XIST in breast carcinogenesis remain elusive. Here we identify XIST as a key regulator of breast cancer stem cells (CSCs), which exhibit aldehyde dehydrogenase positive (ALDH+) epithelial- (E) and CD24loCD44hi mesenchymal-like (M) phenotypes. XIST is variably expressed across the spectrum of BC subtypes, and doxycycline (DOX)-inducible knockdown (KD) of XIST markedly inhibits spheroid/colony forming capacity, tumor growth and tumor-initiating potential. This phenotype is attributed to impaired E-CSC in luminal and E- and M-CSC activities in triple-negative (TN) BC. Gene expression profiling unveils that XIST KD most significantly affects cytokine-cytokine receptor interactions, leading to markedly suppressed expression of proinflammatory cytokines IL-6 and IL-8 in ALDH- bulk BC cells. Exogenous IL-6, but not IL-8, rescues the reduced sphere-forming capacity and proportion of ALDH+ E-CSCs in luminal and TN BC upon XIST KD. XIST functions as a nuclear sponge for microRNA let-7a-2-3p to activate IL-6 production from ALDH- bulk BC cells, which acts in a paracrine fashion on ALDH+ E-CSCs that display elevated cell surface IL-6 receptor (IL6R) expression. This promotes CSC self-renewal via STAT3 activation and expression of key CSC factors including c-MYC, KLF4 and SOX9. Together, this study supports a novel role of XIST by derepressing let-7 controlled paracrine IL-6 proinflammatory signaling to promote CSC self-renewal.
Collapse
Affiliation(s)
- Yuxi Ma
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yongyou Zhu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Li Shang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, 48109, USA
| | - Yan Qiu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Na Shen
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jonathan Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tiffany Adam
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Wei Wei
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Qingxuan Song
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jun Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Max S Wicha
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, 48109, USA.
| | - Ming Luo
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, 48109, USA.
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
18
|
Hao Y, Xie B, Fu X, Xu R, Yang Y. New Insights into lncRNAs in Aβ Cascade Hypothesis of Alzheimer's Disease. Biomolecules 2022; 12:biom12121802. [PMID: 36551230 PMCID: PMC9775548 DOI: 10.3390/biom12121802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, but its pathogenesis is not fully understood, and effective drugs to treat or reverse the progression of the disease are lacking. Long noncoding RNAs (lncRNAs) are abnormally expressed and deregulated in AD and are closely related to the occurrence and development of AD. In addition, the high tissue specificity and spatiotemporal specificity make lncRNAs particularly attractive as diagnostic biomarkers and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in AD is essential for developing new treatment strategies. In this review, we discuss the unique regulatory functions of lncRNAs in AD, ranging from Aβ production to clearance, with a focus on their interaction with critical molecules. Additionally, we highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets in AD and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Yitong Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bo Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoshu Fu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Rong Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
- Correspondence:
| |
Collapse
|
19
|
Upadhya S, Gingerich D, Lutz MW, Chiba-Falek O. Differential Gene Expression and DNA Methylation in the Risk of Depression in LOAD Patients. Biomolecules 2022; 12:1679. [PMID: 36421693 PMCID: PMC9687527 DOI: 10.3390/biom12111679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/28/2024] Open
Abstract
Depression is common among late-onset Alzheimer's Disease (LOAD) patients. Only a few studies investigated the genetic variability underlying the comorbidity of depression in LOAD. Moreover, the epigenetic and transcriptomic factors that may contribute to comorbid depression in LOAD have yet to be studied. Using transcriptomic and DNA-methylomic datasets from the ROSMAP cohorts, we investigated differential gene expression and DNA-methylation in LOAD patients with and without comorbid depression. Differential expression analysis did not reveal significant association between differences in gene expression and the risk of depression in LOAD. Upon sex-stratification, we identified 25 differential expressed genes (DEG) in males, of which CHI3L2 showed the strongest upregulation, and only 3 DEGs in females. Additionally, testing differences in DNA-methylation found significant hypomethylation of CpG (cg20442550) on chromosome 17 (log2FC = -0.500, p = 0.004). Sex-stratified differential DNA-methylation analysis did not identify any significant CpG probes. Integrating the transcriptomic and DNA-methylomic datasets did not discover relationships underlying the comorbidity of depression and LOAD. Overall, our study is the first multi-omics genome-wide exploration of the role of gene expression and epigenome alterations in the risk of comorbid depression in LOAD patients. Furthermore, we discovered sex-specific differences in gene expression underlying the risk of depression symptoms in LOAD.
Collapse
Affiliation(s)
| | | | | | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
20
|
Aerqin Q, Wang ZT, Wu KM, He XY, Dong Q, Yu JT. Omics-based biomarkers discovery for Alzheimer's disease. Cell Mol Life Sci 2022; 79:585. [PMID: 36348101 PMCID: PMC11803048 DOI: 10.1007/s00018-022-04614-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorders presenting with the pathological hallmarks of amyloid plaques and tau tangles. Over the past few years, great efforts have been made to explore reliable biomarkers of AD. High-throughput omics are a technology driven by multiple levels of unbiased data to detect the complex etiology of AD, and it provides us with new opportunities to better understand the pathophysiology of AD and thereby identify potential biomarkers. Through revealing the interaction networks between different molecular levels, the ultimate goal of multi-omics is to improve the diagnosis and treatment of AD. In this review, based on the current AD pathology and the current status of AD diagnostic biomarkers, we summarize how genomics, transcriptomics, proteomics and metabolomics are all conducing to the discovery of reliable AD biomarkers that could be developed and used in clinical AD management.
Collapse
Affiliation(s)
- Qiaolifan Aerqin
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Xiao-Yu He
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
21
|
Identification of repurposed drugs targeting significant long non-coding RNAs in the cross-talk between diabetes mellitus and Alzheimer's disease. Sci Rep 2022; 12:18332. [PMID: 36316461 PMCID: PMC9622874 DOI: 10.1038/s41598-022-22822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/19/2022] [Indexed: 11/14/2022] Open
Abstract
The relationship between diabetes mellitus (DM) and Alzheimer's disease (AD) is so strong that scientists called it "brain diabetes". According to several studies, the critical factor in this relationship is brain insulin resistance. Due to the rapid global spread of both diseases, overcoming this cross-talk has a significant impact on societies. Long non-coding RNAs (lncRNAs), on the other hand, have a substantial impact on complex diseases due to their ability to influence gene expression via a variety of mechanisms. Consequently, the regulation of lncRNA expression in chronic diseases permits the development of innovative therapeutic techniques. However, developing a new drug requires considerable time and money. Recently repurposing existing drugs has gained popularity due to the use of low-risk compounds, which may result in cost and time savings. in this study, we identified drug repurposing candidates capable of controlling the expression of common lncRNAs in the cross-talk between DM and AD. We also utilized drugs that interfered with this cross-talk. To do this, high degree common lncRNAs were extracted from microRNA-lncRNA bipartite network. The drugs that interact with the specified lncRNAs were then collected from multiple data sources. These drugs, referred to as set D, were classified in to positive (D+) and negative (D-) groups based on their effects on the expression of the interacting lncRNAs. A feature selection algorithm was used to select six important features for D. Using a random forest classifier, these features were capable of classifying D+ and D- with an accuracy of 82.5%. Finally, the same six features were extracted for the most recently Food and Drug Administration (FDA) approved drugs in order to identify those with the highest likelihood of belonging to D+ or D-. The most significant FDA-approved positive drugs, chromium nicotinate and tapentadol, were presented as repurposing candidates, while cefepime and dihydro-alpha-ergocryptine were recommended as significant adverse drugs. Moreover, two natural compounds, curcumin and quercetin, were recommended to prevent this cross-talk. According to the previous studies, less attention has been paid to the role of lncRNAs in this cross-talk. Our research not only did identify important lncRNAs, but it also suggested potential repurposed drugs to control them.
Collapse
|
22
|
Plewka P, Raczynska KD. Long Intergenic Noncoding RNAs Affect Biological Pathways Underlying Autoimmune and Neurodegenerative Disorders. Mol Neurobiol 2022; 59:5785-5808. [PMID: 35796900 PMCID: PMC9395482 DOI: 10.1007/s12035-022-02941-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Long intergenic noncoding RNAs (lincRNAs) are a class of independently transcribed molecules longer than 200 nucleotides that do not overlap known protein-coding genes. LincRNAs have diverse roles in gene expression and participate in a spectrum of biological processes. Dysregulation of lincRNA expression can abrogate cellular homeostasis, cell differentiation, and development and can also deregulate the immune and nervous systems. A growing body of literature indicates their important and multifaceted roles in the pathogenesis of several different diseases. Furthermore, certain lincRNAs can be considered potential therapeutic targets and valuable diagnostic or prognostic biomarkers capable of predicting the onset of a disease, its degree of activity, or the progression phase. In this review, we discuss possible mechanisms and molecular functions of lincRNAs in the pathogenesis of selected autoimmune and neurodegenerative disorders: multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's syndrome, Huntington's disease, Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. This summary can provide new ideas for future research, diagnosis, and treatment of these highly prevalent and devastating diseases.
Collapse
Affiliation(s)
- Patrycja Plewka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Katarzyna Dorota Raczynska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
23
|
Ghiam S, Eslahchi C, Shahpasand K, Habibi-Rezaei M, Gharaghani S. Exploring the role of non-coding RNAs as potential candidate biomarkers in the cross-talk between diabetes mellitus and Alzheimer’s disease. Front Aging Neurosci 2022; 14:955461. [PMID: 36092798 PMCID: PMC9451601 DOI: 10.3389/fnagi.2022.955461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Recent research has investigated the connection between Diabetes Mellitus (DM) and Alzheimer’s Disease (AD). Insulin resistance plays a crucial role in this interaction. Studies have focused on dysregulated proteins to disrupt this connection. Non-coding RNAs (ncRNAs), on the other hand, play an important role in the development of many diseases. They encode the majority of the human genome and regulate gene expression through a variety of mechanisms. Consequently, identifying significant ncRNAs and utilizing them as biomarkers could facilitate the early detection of this cross-talk. On the other hand, computational-based methods may help to understand the possible relationships between different molecules and conduct future wet laboratory experiments. Materials and methods In this study, we retrieved Genome-Wide Association Study (GWAS, 2008) results from the United Kingdom Biobank database using the keywords “Alzheimer’s” and “Diabetes Mellitus.” After excluding low confidence variants, statistical analysis was performed, and adjusted p-values were determined. Using the Linkage Disequilibrium method, 127 significant shared Single Nucleotide Polymorphism (SNP) were chosen and the SNP-SNP interaction network was built. From this network, dense subgraphs were extracted as signatures. By mapping each signature to the reference genome, genes associated with the selected SNPs were retrieved. Then, protein-microRNA (miRNA) and miRNA-long non-coding RNA (lncRNA) bipartite networks were built and significant ncRNAs were extracted. After the validation process, by applying the scoring function, the final protein-miRNA-lncRNA tripartite network was constructed, and significant miRNAs and lncRNAs were identified. Results Hsa-miR-199a-5p, hsa-miR-199b-5p, hsa-miR-423-5p, and hsa-miR-3184-5p, the four most significant miRNAs, as well as NEAT1, XIST, and KCNQ1OT1, the three most important lncRNAs, and their interacting proteins in the final tripartite network, have been proposed as new candidate biomarkers in the cross-talk between DM and AD. The literature review also validates the obtained ncRNAs. In addition, miRNA/lncRNA pairs; hsa-miR-124-3p/KCNQ1OT1, hsa-miR-124-3p/NEAT1, and hsa-miR-124-3p/XIST, all expressed in the brain, and their interacting proteins in our final network are suggested for future research investigation. Conclusion This study identified 127 shared SNPs, 7 proteins, 15 miRNAs, and 11 lncRNAs involved in the cross-talk between DM and AD. Different network analysis and scoring function suggested the most significant miRNAs and lncRNAs as potential candidate biomarkers for wet laboratory experiments. Considering these candidate biomarkers may help in the early detection of DM and AD co-occurrence.
Collapse
Affiliation(s)
- Shokoofeh Ghiam
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid-Beheshti University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Changiz Eslahchi,
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | - Mehran Habibi-Rezaei
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- *Correspondence: Sajjad Gharaghani,
| |
Collapse
|
24
|
Mechanisms and Biomarker Potential of Extracellular Vesicles in Stroke. BIOLOGY 2022; 11:biology11081231. [PMID: 36009857 PMCID: PMC9405035 DOI: 10.3390/biology11081231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary A stroke occurs when there is a lack of blood flow to the brain. Stroke injures the brain and can have devastating outcomes depending on the size and location of the brain tissue affected. Currently, there are only a limited number of treatment options for stroke. Extracellular vesicles are small vesicles secreted by cells. Importantly, extracellular vesicles have specific markers indicating the cell they were released from and can pass from the brain into the blood. For these reasons, assessing extracellular vesicles in the blood may create a window into changes occurring in the brain. Assessing changes in extracellular vesicles in the blood during stroke may produce new insight into the cellular changes in the brain causing injury during stroke. This in turn may generate potential targets for the development of future treatments. We summarize what is known about changes in brain-cell-specific extracellular vesicles during stroke and stress the importance of continuing to study these changes. Abstract Stoke is a prevalent and devastating neurologic condition with limited options for therapeutic management. Since brain tissue is rarely accessible clinically, peripheral biomarkers for the central nervous system’s (CNS’s) cellular response to stroke may prove critical for increasing our understanding of stroke pathology and elucidating novel therapeutic targets. Extracellular vesicles (EVs) are cell-derived, membrane-enclosed vesicles secreted by all cell types within the CNS that can freely pass the blood-brain barrier (BBB) and contain unique markers and content linked to their cell of origin. These unique qualities make brain-derived EVs novel candidates for non-invasive blood-based biomarkers of both cell specificity and cell physiological state during the progression of stroke and recovery. While studies are continuously emerging that are assessing the therapeutic potential of EVs and profiling EV cargo, a vast minority of these studies link EV content to specific cell types. A better understanding of cell-specific EV release during the acute, subacute, and chronic stages of stroke is needed to further elucidate the cellular processes responsible for stroke pathophysiology. Herein, we outline what is known about EV release from distinct cell types of the CNS during stroke and the potential of these EVs as peripheral biomarkers for cellular function in the CNS during stroke.
Collapse
|
25
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. Signaling by LncRNAs: Structure, Cellular Homeostasis, and Disease Pathology. Cells 2022; 11:2517. [PMID: 36010595 PMCID: PMC9406440 DOI: 10.3390/cells11162517] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
The cellular signaling network involves co-ordinated regulation of numerous signaling molecules that aid the maintenance of cellular as well as organismal homeostasis. Aberrant signaling plays a major role in the pathophysiology of many diseases. Recent studies have unraveled the superfamily of long non-coding RNAs (lncRNAs) as critical signaling nodes in diverse signaling networks. Defective signaling by lncRNAs is emerging as a causative factor underlying the pathophysiology of many diseases. LncRNAs have been shown to be involved in the multiplexed regulation of diverse pathways through both genetic and epigenetic mechanisms. They can serve as decoys, guides, scaffolds, and effector molecules to regulate cell signaling. In comparison with the other classes of RNAs, lncRNAs possess unique structural modifications that contribute to their diversity in modes of action within the nucleus and cytoplasm. In this review, we summarize the structure and function of lncRNAs as well as their vivid mechanisms of action. Further, we provide insights into the role of lncRNAs in the pathogenesis of four major disease paradigms, namely cardiovascular diseases, neurological disorders, cancers, and the metabolic disease, diabetes mellitus. This review serves as a succinct treatise that could open windows to investigate the role of lncRNAs as novel therapeutic targets.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Korea
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
26
|
Cai Z, Zhao K, Zeng L, Liu M, Sun T, Li Z, Liu R. The Relationship between the Aberrant Long Non-Coding RNA-Mediated Competitive Endogenous RNA Network and Alzheimer's Disease Pathogenesis. Int J Mol Sci 2022; 23:8497. [PMID: 35955632 PMCID: PMC9369371 DOI: 10.3390/ijms23158497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by cognitive dysfunction. The role of long non-coding RNAs (lncRNAs) with the action of competitive endogenous RNA (ceRNA) in AD remains unclear. The present study aimed to identify significantly differentially expressed lncRNAs (SDELs) and establish lncRNA-associated ceRNA networks via RNA sequencing analysis and a quantitative real-time Polymerase Chain Reaction (qPCR) assay using transgenic mice with five familial AD mutations. A total of 53 SDELs in the cortex and 51 SDELs in the hippocampus were identified, including seven core SDELs common to both regions. The functions and pathways were then investigated through the potential target genes of SDELs via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, which indicate biological effects, action distributions, and pathological transductions associated with AD. Based on the ceRNA hypothesis, integrated ceRNA networks in the cortex and hippocampus of lncRNA-miRNA-mRNA were constructed. The core SDEL-mediated ceRNA relationship was established and the expression of these RNAs was verified by qPCR. The results identified lncRNA ENSMUST00000127786 and highlighted miRNAs and mRNAs as potential key mediators in AD. These findings provide AD-derived lncRNA-mediated ceRNA profiles, and further experimental evidence is needed to confirm these identified ceRNA regulatory relationships.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.C.); (K.Z.); (L.Z.); (M.L.); (T.S.)
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Z.C.); (K.Z.); (L.Z.); (M.L.); (T.S.)
| |
Collapse
|
27
|
Liu Y, Cheng X, Li H, Hui S, Zhang Z, Xiao Y, Peng W. Non-Coding RNAs as Novel Regulators of Neuroinflammation in Alzheimer's Disease. Front Immunol 2022; 13:908076. [PMID: 35720333 PMCID: PMC9201920 DOI: 10.3389/fimmu.2022.908076] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the most common causes of dementia. Although significant breakthroughs have been made in understanding the progression and pathogenesis of AD, it remains a worldwide problem and a significant public health burden. Thus, more efficient diagnostic and therapeutic strategies are urgently required. The latest research studies have revealed that neuroinflammation is crucial in the pathogenesis of AD. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA-derived small RNAs (tsRNAs), have been strongly associated with AD-induced neuroinflammation. Furthermore, several ongoing pre-clinical studies are currently investigating ncRNA as disease biomarkers and therapeutic interventions to provide new perspectives for AD diagnosis and treatment. In this review, the role of different types of ncRNAs in neuroinflammation during AD are summarized in order to improve our understanding of AD etiology and aid in the translation of basic research into clinical practice.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Xin Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Hongli Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China.,Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| |
Collapse
|
28
|
He L, Chen Z, Wang J, Feng H. Expression relationship and significance of NEAT1 and miR-27a-3p in serum and cerebrospinal fluid of patients with Alzheimer’s disease. BMC Neurol 2022; 22:203. [PMID: 35659599 PMCID: PMC9164380 DOI: 10.1186/s12883-022-02728-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
Objective To explore the expression relationship and significance of long chain non-coding RNA nuclear-enriched abundant transcript 1 (LncRNA NEAT1) and miR-27a-3p in serum and cerebrospinal fluid of patients with Alzheimer’s disease (AD). Methods Sixty-six AD patients received by the Department of Neurology of our hospital from October 2019 to September 2021 were gathered, according to the Clinical Dementia Rating Scale (CDR) score, they were grouped into mild group (≤1 point, n = 41) and moderate-to-severe group (> 1 point, n = 25). Another 32 cases of serum and cerebrospinal fluid samples from outpatient physical examination personnel were regarded as the control group. The general materials on all subjects was recorded and cognition was assessed;real-time quantitative PCR was performed to measure the expression levels of miR-27a-3p and NEAT1 in serum and cerebrospinal fluid;enzyme-linked immunosorbent assay was performed to measure the protein levels of β-amyloid precursor protein cleaving enzyme 1 (BACE1), β-amyloid (Aβ) 40 and Aβ42 in cerebrospinal fluid;Spearman’s method was performed to analyze the correlation of serum miR-27a-3p and NEAT1 levels with MMSE and MoCA scores;Pearson method was performed to analyze the correlation between serum miR-27a-3p and NEAT1 levels and Aβ deposition standard uptake value ratio (SUVR) and cerebrospinal fluid miR-27a-3p, NEAT1, BACE1, Aβ42 and Aβ40 levels. Results The MMSE score, MoCA score, serum miR-27a-3p level, cerebrospinal fluid miR-27a-3p, Aβ42 levels and Aβ42/Aβ40 ratio of AD patients in mild group and moderate-to-severe group were all lower than those in the control group, and the moderate-to-severe group were lower than the mild group (all P < 0.05);the serum NEAT1 level, SUVR, and cerebrospinal fluid NEAT1 and BACE1 levels were higher than those in the control group, and the moderate-to-severe group were higher than the mild group (all P < 0.05). Serum NEAT1 level in AD patients was positively correlated with SUVR, cerebrospinal fluid NEAT1 and BACE1 (r = 0.350, 0.606, 0.341, all P < 0.05);serum miR-27a-3p level was positively correlated with cerebrospinal fluid miR-27a-3p level (r = 0.695, P < 0.05), and negatively correlated with SUVR and cerebrospinal fluid BACE1 level (r = − 0.521, − 0.447, both P < 0.05). Conclusions The expression trends of NEAT1 and miR-27a-3p in the serum and cerebrospinal fluid of AD patients are consistent, the level of NEAT1 is increased, and the level of miR-27a-3p is decreased. The levels of the two are negatively correlated, which is related to the degree of Aβ deposition in the brain of AD patients and is involved in the progression of AD.
Collapse
|
29
|
Li J, Ming Z, Yang L, Wang T, Liu G, Ma Q. Long noncoding RNA XIST: Mechanisms for X chromosome inactivation, roles in sex-biased diseases, and therapeutic opportunities. Genes Dis 2022; 9:1478-1492. [PMID: 36157489 PMCID: PMC9485286 DOI: 10.1016/j.gendis.2022.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Sexual dimorphism has been reported in various human diseases including autoimmune diseases, neurological diseases, pulmonary arterial hypertension, and some types of cancers, although the underlying mechanisms remain poorly understood. The long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in X chromosome inactivation (XCI) in female placental mammals, a process that ensures the balanced expression dosage of X-linked genes between sexes. XIST is abnormally expressed in many sex-biased diseases. In addition, escape from XIST-mediated XCI and skewed XCI also contribute to sex-biased diseases. Therefore, its expression or modification can be regarded as a biomarker for the diagnosis and prognosis of many sex-biased diseases. Genetic manipulation of XIST expression can inhibit the progression of some of these diseases in animal models, and therefore XIST has been proposed as a potential therapeutic target. In this manuscript, we summarize the current knowledge about the mechanisms for XIST-mediated XCI and the roles of XIST in sex-biased diseases, and discuss potential therapeutic strategies targeting XIST.
Collapse
|
30
|
Integrative analysis of OIP5-AS1/miR-129-5p/CREBBP axis as a potential therapeutic candidate in the pathogenesis of metal toxicity-induced Alzheimer's disease. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Li Y, Jin L, Wang F, Ren L, Pen R, Bo G, Wang L. Epigenetic axis of SNHG19/miR-137/TNFAIP1 modulates amyloid beta peptide 25-35-induced SH-SY5Y cytotoxicity. Epigenomics 2022; 14:187-198. [PMID: 35170354 DOI: 10.2217/epi-2021-0288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: In this study, the authors hypothesized that, in an in vitro Alzheimer's disease model, the epigenetic axis of SNHG19/hsa-miR-137 functionally regulates amyloid beta peptide 25-35 (Aβ25-35)-induced SH-SY5Y cytotoxicity. Methods: Dual luciferase activity assay demonstrated that SNHG19 could directly bind hsa-miR-137. In Aβ25-35-treated SH-SY5Y cells, SNHG19 was upregulated and hsa-miR-137 downregulated. Results: SNHG19 knockdown ameliorated Aβ25-35-induced SH-SY5Y cytotoxicity, then reversed by secondary hsa-miR-137 downregulation. TNFAIP1 was dynamically regulated by Aβ25-35 and gene modifications in SH-SY5Y cells. Finally, upregulation of TNFAIP1 reversed the protective effect of SNHG19 knockdown on Aβ25-35-induced cytotoxicity. Conclusions: The authors concluded that the epigenetic axis of SNHG19/hsa-miR-137/TNFAIP1 may functionally regulate Aβ25-35-induced SH-SY5Y cytotoxicity, thus making it a potential molecular target for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Yipei Li
- Medical Key Laboratory of Brain Degenerative Diseases of Henan Province, Henan Medical College, Zhengzhou, Henan, 451191, China.,Department of Pathophysiology, Henan Medical College, Zhengzhou, Henan, 451191, China
| | - Li Jin
- Medical Key Laboratory of Brain Degenerative Diseases of Henan Province, Henan Medical College, Zhengzhou, Henan, 451191, China.,Department of Pathophysiology, Henan Medical College, Zhengzhou, Henan, 451191, China
| | - Fang Wang
- Medical Key Laboratory of Brain Degenerative Diseases of Henan Province, Henan Medical College, Zhengzhou, Henan, 451191, China
| | - Li Ren
- Medical Key Laboratory of Brain Degenerative Diseases of Henan Province, Henan Medical College, Zhengzhou, Henan, 451191, China
| | - Ruirui Pen
- Medical Key Laboratory of Brain Degenerative Diseases of Henan Province, Henan Medical College, Zhengzhou, Henan, 451191, China.,Department of Pathophysiology, Henan Medical College, Zhengzhou, Henan, 451191, China
| | - Guojia Bo
- Medical Key Laboratory of Brain Degenerative Diseases of Henan Province, Henan Medical College, Zhengzhou, Henan, 451191, China
| | - Li Wang
- Medical Key Laboratory of Brain Degenerative Diseases of Henan Province, Henan Medical College, Zhengzhou, Henan, 451191, China
| |
Collapse
|
32
|
Yan XW, Liu HJ, Hong YX, Meng T, Du J, Chang C. lncRNA XIST induces Aβ accumulation and neuroinflammation by the epigenetic repression of NEP in Alzheimer’s disease. J Neurogenet 2022; 36:11-20. [PMID: 35098860 DOI: 10.1080/01677063.2022.2028784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xi-Wu Yan
- Department of Neurology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P. R. China
| | - Huai-Jun Liu
- Department of Neurology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P. R. China
| | - Yu-Xing Hong
- Department of Neurology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P. R. China
| | - Ting Meng
- Department of Neurology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P. R. China
| | - Jun Du
- Department of Neurology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P. R. China
| | - Cheng Chang
- Department of Neurology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P. R. China
| |
Collapse
|
33
|
Lan Z, Chen Y, Jin J, Xu Y, Zhu X. Long Non-coding RNA: Insight Into Mechanisms of Alzheimer's Disease. Front Mol Neurosci 2022; 14:821002. [PMID: 35095418 PMCID: PMC8795976 DOI: 10.3389/fnmol.2021.821002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), a heterogeneous neurodegenerative disorder, is the most common cause of dementia accounting for an estimated 60–80% of cases. The pathogenesis of AD remains unclear, and no curative treatment is available so far. Increasing evidence has revealed a vital role of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in AD. LncRNAs contribute to the pathogenesis of AD via modulating amyloid production, Tau hyperphosphorylation, mitochondrial dysfunction, oxidative stress, synaptic impairment and neuroinflammation. This review describes the biological functions and mechanisms of lncRNAs in AD, indicating that lncRNAs may provide potential therapeutic targets for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Zhen Lan
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yanting Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jiali Jin
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
- *Correspondence: Xiaolei Zhu
| |
Collapse
|
34
|
The lncRNAs at X Chromosome Inactivation Center: Not Just a Matter of Sex Dosage Compensation. Int J Mol Sci 2022; 23:ijms23020611. [PMID: 35054794 PMCID: PMC8775829 DOI: 10.3390/ijms23020611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated “competing endogenous RNA (ceRNA) networks” (“ceRNET”): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning “new” functions to “old” molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.
Collapse
|
35
|
Wang S, Wu X, Wei K, Kong W. An Improved Fusion Paired Group Lasso Structured Sparse Canonical Correlation Analysis Based on Brain Imaging Genetics to Identify Biomarkers of Alzheimer’s Disease. Front Aging Neurosci 2022; 13:817520. [PMID: 35069181 PMCID: PMC8770861 DOI: 10.3389/fnagi.2021.817520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/14/2021] [Indexed: 01/01/2023] Open
Abstract
Brain imaging genetics can demonstrate the complicated relationship between genetic factors and the structure or function of the humankind brain. Therefore, it has become an important research topic and attracted more and more attention from scholars. The structured sparse canonical correlation analysis (SCCA) model has been widely used to identify the association between brain image data and genetic data in imaging genetics. To investigate the intricate genetic basis of cerebrum imaging phenotypes, a great deal of other standard SCCA methods combining different interested structed have now appeared. For example, some models use group lasso penalty, and some use the fused lasso or the graph/network guided fused lasso for feature selection. However, prior knowledge may not be completely available and the group lasso methods have limited capabilities in practical applications. The graph/network guided approaches can use sample correlation to define constraints, thereby overcoming this problem. Unfortunately, this also has certain limitations. The graph/network conducted methods are susceptible to the sign of the sample correlation of the data, which will affect the stability of the model. To improve the efficiency and stability of SCCA, a sparse canonical correlation analysis model with GraphNet regularization (FGLGNSCCA) is proposed in this manuscript. Based on the FGLSCCA model, the GraphNet regularization penalty is imposed in our study and an optimization algorithm is presented to optimize the model. The structural Magnetic Resonance Imaging (sMRI) and gene expression data are used in this study to find the genotype and characteristics of brain regions associated with Alzheimer’s disease (AD). Experiment results shown that the new FGLGNSCCA model proposed in this manuscript is superior or equivalent to traditional methods in both artificially synthesized neuroimaging genetics data or actual neuroimaging genetics data. It can select essential features more powerfully compared with other multivariate methods and identify significant canonical correlation coefficients as well as captures more significant typical weight patterns which demonstrated its excellent ability in finding biologically important imaging genetic relations.
Collapse
|
36
|
Sivagurunathan N, Ambatt ATS, Calivarathan L. Role of Long Non-coding RNAs in the Pathogenesis of Alzheimer's and Parkinson's Diseases. Curr Aging Sci 2022; 15:84-96. [PMID: 35081899 DOI: 10.2174/1874609815666220126095847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 11/06/2021] [Indexed: 06/14/2023]
Abstract
Neurodegenerative diseases are a diverse group of diseases that are now one of the leading causes of morbidity in the elderly population. These diseases include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), etc. Although these diseases have a common characteristic feature of progressive neuronal loss from various parts of the brain, they differ in the clinical symptoms and risk factors, leading to the development and progression of the diseases. AD is a neurological condition that leads to dementia and cognitive decline due to neuronal cell death in the brain, whereas PD is a movement disorder affecting neuro-motor function and develops due to the death of the dopaminergic neurons in the brain, resulting in decreased dopamine levels. Currently, the only treatment available for these neurodegenerative diseases involves reducing the rate of progression of neuronal loss. This necessitates the development of efficient early biomarkers and effective therapies for these diseases. Long non-coding RNAs (LncRNAs) belong to a large family of non-coding transcripts with a minimum length of 200 nucleotides. They are implied to be involved in the development of the brain, a variety of diseases, and epigenetic, transcriptional, and posttranscriptional levels of gene regulation. Aberrant expression of lncRNAs in the CNS is considered to play a major role in the development and progression of AD and PD, two of the most leading causes of morbidity among elderly populations. In this mini-review, we discuss the role of various long non-coding RNAs in neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, which can further be studied for the development of potential biomarkers and therapeutic targets for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Department of Life Sciences, Molecular Pharmacology & Toxicology Laboratory, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| | - Aghil T S Ambatt
- Department of Life Sciences, Molecular Pharmacology & Toxicology Laboratory, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| | - Latchoumycandane Calivarathan
- Department of Life Sciences, Molecular Pharmacology & Toxicology Laboratory, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| |
Collapse
|
37
|
Liu Y, Chen X, Che Y, Li H, Zhang Z, Peng W, Yang J. LncRNAs as the Regulators of Brain Function and Therapeutic Targets for Alzheimer’s Disease. Aging Dis 2022; 13:837-851. [PMID: 35656102 PMCID: PMC9116922 DOI: 10.14336/ad.2021.1119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and a serious threat to the health and safety of the elderly population. It has become an emerging public health problem and a major economic and social burden. However, there is currently no effective treatment for AD. Although the mechanism of AD pathogenesis has been investigated substantially, the full range of molecular factors that contribute to its development remain largely unclear. In recent years, accumulating evidence has revealed that long non-coding RNAs (lncRNAs), a type of non-coding RNA longer than 200 nucleotides, play important roles in multiple biological processes involved in AD pathogenesis. With the further exploration of genomics, the role of lncRNA in the pathogenesis of AD has been phenotypically or mechanistically studied. Herein, we systematically review the current knowledge about lncRNAs implicated in AD and elaborate on their main regulatory pathways, which may contribute to the discovery of novel therapeutic targets and drugs for AD.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Xin Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yutong Che
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Inter-disciplinary Research Center of Language Intelligence and Cultural Heritages, Hunan University, Changsha, Hunan, China.
- Correspondence should be addressed to: Dr. Weijun Peng (E-mail: ) and Ms. Jingjing Yang (), Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jingjing Yang
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China.
- Xiangya Nursing School, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Weijun Peng (E-mail: ) and Ms. Jingjing Yang (), Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
38
|
Li C, Liu JH, Su J, Lin WJ, Zhao JQ, Zhang ZH, Wu Q. LncRNA XIST knockdown alleviates LPS-induced acute lung injury by inactivation of XIST/miR-132-3p/MAPK14 pathway : XIST promotes ALI via miR-132-3p/MAPK14 axis. Mol Cell Biochem 2021; 476:4217-4229. [PMID: 34346000 PMCID: PMC8330477 DOI: 10.1007/s11010-021-04234-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
Acute lung injury (ALI) is a fatal inflammatory response syndrome. LncRNA XIST (XIST) is a lung cancer-related gene and participates in pneumonia. However, whether XIST participates in lipopolysaccharides (LPS)-induced ALI remains unclear. LPS-induced inflammation model was constructed in vitro, then cell viability, cytokines, cell apoptosis, protein, and mRNA expressions were individually detected by cell counting kit-8, enzyme-linked immunosorbent assay and flow cytometry, Western blot, and qRT-PCR. A dual-luciferase reporter assay confirmed the relationships among XIST, miR-132-3p, and MAPK14. Furthermore, inflammation and conditions after knockdown of XIST were assessed by hematoxylin and eosin staining, lung wet-to-dry weight ratio, PaO2/FiO2 ratio, and malondialdehyde (MDA) contents using LPS-induced in vivo model. Our findings indicated that the LPS challenge decreased cell viability, increased cell apoptosis, and caused secretions of pro-inflammatory cytokines. Noticeably, LPS significantly upregulated XIST, MAPK14, and downregulated miR-132-3p. Mechanistically, XIST acted as a molecular sponge to suppress miR-132-3p, and MAPK14 was identified as a target of miR-132-3p. Functional analyses demonstrated that XIST silencing remarkably increased cell survival and alleviated cell death and lung injury through decreasing TNF-α, IL-1β, IL-6, accumulation of inflammatory cells, alveolar hemorrhage, MDA release, and increased PaO2/FiO2 ratio, as well as upregulating Bcl-2, and downregulating Bax, MAPK14, and p-extracellular signal-regulated kinases ½. In contrast, inhibition of the miR-132-3p antagonized the effects of XIST silencing. In conclusion, inhibition of XIST exhibited a protective role in LPS-induced ALI through modulating the miR-132-3p/MAPK14 axis.
Collapse
Affiliation(s)
- Chen Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jian-Hua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jing Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Wei-Jia Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jian-Qing Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Zhi-Hua Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Qi Wu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
39
|
Sabaie H, Amirinejad N, Asadi MR, Jalaiei A, Daneshmandpour Y, Rezaei O, Taheri M, Rezazadeh M. Molecular Insight Into the Therapeutic Potential of Long Non-coding RNA-Associated Competing Endogenous RNA Axes in Alzheimer's Disease: A Systematic Scoping Review. Front Aging Neurosci 2021; 13:742242. [PMID: 34899268 PMCID: PMC8656158 DOI: 10.3389/fnagi.2021.742242] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/25/2021] [Indexed: 01/16/2023] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous degenerative brain disorder with a rising prevalence worldwide. The two hallmarks that characterize the AD pathophysiology are amyloid plaques, generated via aggregated amyloid β, and neurofibrillary tangle, generated via accumulated phosphorylated tau. At the post-transcriptional and transcriptional levels, the regulatory functions of non-coding RNAs, in particular long non-coding RNAs (lncRNAs), have been ascertained in gene expressions. It is noteworthy that a number of lncRNAs feature a prevalent role in their potential of regulating gene expression through modulation of microRNAs via a process called the mechanism of competing endogenous RNA (ceRNA). Given the multifactorial nature of ceRNA interaction networks, they might be advantageous in complex disorders (e.g., AD) investigations at the therapeutic targets level. We carried out scoping review in this research to analyze validated loops of ceRNA in AD and focus on ceRNA axes associated with lncRNA. This scoping review was performed according to a six-stage methodology structure and PRISMA guideline. A systematic search of seven databases was conducted to find eligible articles prior to July 2021. Two reviewers independently performed publications screening and data extraction, and quantitative and qualitative analyses were conducted. Fourteen articles were identified that fulfill the inclusion criteria. Studies with different designs reported nine lncRNAs that were experimentally validated to act as ceRNA in AD in human-related studies, including BACE1-AS, SNHG1, RPPH1, NEAT1, LINC00094, SOX21-AS1, LINC00507, MAGI2-AS3, and LINC01311. The BACE1-AS/BACE1 was the most frequent ceRNA pair. Among miRNAs, miR-107 played a key role by regulating three different loops. Understanding the various aspects of this regulatory mechanism can help elucidate the unknown etiology of AD and provide new molecular targets for use in therapeutic and clinical applications.
Collapse
Affiliation(s)
- Hani Sabaie
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Amirinejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Jalaiei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Daneshmandpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Saliani M, Mirzaiebadizi A, Mosaddeghzadeh N, Ahmadian MR. RHO GTPase-Related Long Noncoding RNAs in Human Cancers. Cancers (Basel) 2021; 13:5386. [PMID: 34771549 PMCID: PMC8582479 DOI: 10.3390/cancers13215386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
RHO GTPases are critical signal transducers that regulate cell adhesion, polarity, and migration through multiple signaling pathways. While all these cellular processes are crucial for the maintenance of normal cell homeostasis, disturbances in RHO GTPase-associated signaling pathways contribute to different human diseases, including many malignancies. Several members of the RHO GTPase family are frequently upregulated in human tumors. Abnormal gene regulation confirms the pivotal role of lncRNAs as critical gene regulators, and thus, they could potentially act as oncogenes or tumor suppressors. lncRNAs most likely act as sponges for miRNAs, which are known to be dysregulated in various cancers. In this regard, the significant role of miRNAs targeting RHO GTPases supports the view that the aberrant expression of lncRNAs may reciprocally change the intensity of RHO GTPase-associated signaling pathways. In this review article, we summarize recent advances in lncRNA research, with a specific focus on their sponge effects on RHO GTPase-targeting miRNAs to crucially mediate gene expression in different cancer cell types and tissues. We will focus in particular on five members of the RHO GTPase family, including RHOA, RHOB, RHOC, RAC1, and CDC42, to illustrate the role of lncRNAs in cancer progression. A deeper understanding of the widespread dysregulation of lncRNAs is of fundamental importance for confirmation of their contribution to RHO GTPase-dependent carcinogenesis.
Collapse
Affiliation(s)
- Mahsa Saliani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
41
|
Asadi MR, Hassani M, Kiani S, Sabaie H, Moslehian MS, Kazemi M, Ghafouri-Fard S, Taheri M, Rezazadeh M. The Perspective of Dysregulated LncRNAs in Alzheimer's Disease: A Systematic Scoping Review. Front Aging Neurosci 2021; 13:709568. [PMID: 34621163 PMCID: PMC8490871 DOI: 10.3389/fnagi.2021.709568] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/12/2021] [Indexed: 12/22/2022] Open
Abstract
LncRNAs act as part of non-coding RNAs at high levels of complex and stimulatory configurations in basic molecular mechanisms. Their extensive regulatory activity in the CNS continues on a small scale, from the functions of synapses to large-scale neurodevelopment and cognitive functions, aging, and can be seen in both health and disease situations. One of the vast consequences of the pathological role of dysregulated lncRNAs in the CNS due to their role in a network of regulatory pathways can be manifested in Alzheimer's as a neurodegenerative disease. The disease is characterized by two main hallmarks: amyloid plaques due to the accumulation of β-amyloid components and neurofibrillary tangles (NFT) resulting from the accumulation of phosphorylated tau. Numerous studies in humans, animal models, and various cell lines have revealed the role of lncRNAs in the pathogenesis of Alzheimer's disease. This scoping review was performed with a six-step strategy and based on the Prisma guideline by systematically searching the publications of seven databases. Out of 1,591 records, 69 articles were utterly aligned with the specified inclusion criteria and were summarized in the relevant table. Most of the studies were devoted to BACE1-AS, NEAT1, MALAT1, and SNHG1 lncRNAs, respectively, and about one-third of the studies investigated a unique lncRNA. About 56% of the studies reported up-regulation, and 7% reported down-regulation of lncRNAs expressions. Overall, this study was conducted to investigate the association between lncRNAs and Alzheimer's disease to make a reputable source for further studies and find more molecular therapeutic goals for this disease.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassani
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shiva Kiani
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Kazemi
- Department of Social Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Chen H, Guo Y, Cheng X. Long non-cording RNA XIST promoted cell proliferation and suppressed apoptosis by miR-423-5p/HMGA2 axis in diabetic nephropathy. Mol Cell Biochem 2021; 476:4517-4528. [PMID: 34532814 DOI: 10.1007/s11010-021-04250-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/20/2021] [Indexed: 12/26/2022]
Abstract
This research studied the effect of long non-coding RNA X-inactive-specific transcript (XIST) on DN. The effect of high glucose (HG) on the expression of XIST and miR-423-5p was detected by quantitative real-time PCR (qRT-PCR) in human kidney (HK) cells (human glomerular mesangial cells (HMCs) and human kidney-2 (HK-2) cells). The effect of XIST depletion and miR-423-5p inhibition or overexpression on high mobility group protein A2 (HMGA2) protein level was examined by western blot in HG-induced HK cells. The impacts of XIST depletion on viability and apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) and flow cytometry assays in HG-induced HK cells. We found the expression of XIST and HMGA2 protein was significantly upregulated in DN tissues and cells. Moreover, HG treatment induced the upregulation of XIST and HMGA2 protein level in HK cells. Besides, both XIST depletion and HMGA2 depletion decreased cell proliferation but increased apoptosis in HG-treated HK cells. Furthermore, HMGA2 upregulation or miR-423-5p inhibition partly eliminated the effects of XIST depletion on cell proliferation, apoptosis of HG-treated HK cells. Interestingly, HMGA2 upregulation partly reversed miR-423-5p overexpression-mediated suppression on viability and promotion on apoptosis in HG-treated HK cells. Mechanistically, XIST sponged miR-423-5p to regulate HMGA2 expression in DN cells. Taken together, XIST depletion suppressed proliferation and promoted apoptosis via miR-423-5p/HMGA2 axis in HG-treated HK cells, which may provide a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Hui Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China.,Department of Endocrinology and Metabolism, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Guo
- Clinical Laboratory Center, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Xingbo Cheng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
43
|
Zhou S, Yu X, Wang M, Meng Y, Song D, Yang H, Wang D, Bi J, Xu S. Long Non-coding RNAs in Pathogenesis of Neurodegenerative Diseases. Front Cell Dev Biol 2021; 9:719247. [PMID: 34527672 PMCID: PMC8435612 DOI: 10.3389/fcell.2021.719247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence addresses the link between the aberrant epigenetic regulation of gene expression and numerous diseases including neurological disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). LncRNAs, a class of ncRNAs, have length of 200 nt or more, some of which crucially regulate a variety of biological processes such as epigenetic-mediated chromatin remodeling, mRNA stability, X-chromosome inactivation and imprinting. Aberrant regulation of the lncRNAs contributes to pathogenesis of many diseases, such as the neurological disorders at the transcriptional and post-transcriptional levels. In this review, we highlight the latest research progress on the contributions of some lncRNAs to the pathogenesis of neurodegenerative diseases via varied mechanisms, such as autophagy regulation, Aβ deposition, neuroinflammation, Tau phosphorylation and α-synuclein aggregation. Meanwhile, we also address the potential challenges on the lncRNAs-mediated epigenetic study to further understand the molecular mechanism of the neurodegenerative diseases.
Collapse
Affiliation(s)
- Shiyue Zhou
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Department of Nutrition, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yujie Meng
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dandan Song
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Yang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dewei Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
44
|
Wei X, Xu S, Chen L. LncRNA Neat1/miR-298-5p/Srpk1 Contributes to Sevoflurane-Induced Neurotoxicity. Neurochem Res 2021; 46:3356-3364. [PMID: 34524595 DOI: 10.1007/s11064-021-03436-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023]
Abstract
Sevoflurane is a widely used volatile anesthetic, that can cause long-term neurotoxicity and learning and memory impairment. Long non-coding RNAs (lncRNAs) have been demonstrated to function as key mediators in neurotoxicity. This study aimed to investigate the effects of lncRNA Neat1 on sevoflurane-induced neurotoxicity. The expression of Neat1, miR-298-5p, and Srpk1 was measured by RT-qPCR. Cell viability, cell apoptosis, inflammation markers, and reactive oxygen species (ROS) generation were examined by CCK-8, TUNEL, ELISA, and the ROS kit. The interaction between miR-298-5p and Neat1 or Srpk1 was confirmed by luciferase reporter assay. In our study, it was found that sevoflurane aggravated neurotoxicity through inhibiting cell viability and enhancing cell apoptosis, neuroinflammation, and ROS generation. Neat1 was up-regulated in sevoflurane-treated HT22 cells, and Neat1 knockdown improved sevoflurane-mediated neurotoxicity. Through the exploration of the ceRNA mechanism, we found that Neat1 bound with miR-298-5p, and Srpk1 was a direct target gene of miR-298-5p. Finally, rescue assays proved that up-regulation of Srpk1 reversed the effects of Neat1 knockdown on neurotoxicity. In conclusion, our study revealed that lncRNA Neat1 facilitated sevoflurane-stimulated neurotoxicity by sponging miR-298-5p to up-regulate Srpk1. These findings might provide novel insights into the treatment of sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Huangpu District, 200003, Shanghai, China
| | - Shan Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Huangpu District, 200003, Shanghai, China
| | - Liang Chen
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Huangpu District, 200003, Shanghai, China.
| |
Collapse
|
45
|
Zhang M, He P, Bian Z. Long Noncoding RNAs in Neurodegenerative Diseases: Pathogenesis and Potential Implications as Clinical Biomarkers. Front Mol Neurosci 2021; 14:685143. [PMID: 34421536 PMCID: PMC8371338 DOI: 10.3389/fnmol.2021.685143] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are progressive and ultimately fatal. NDD onset is influenced by several factors including heredity and environmental cues. Long noncoding RNAs (lncRNAs) are a class of noncoding RNA molecules with: (i) lengths greater than 200 nucleotides, (ii) diverse biological functions, and (iii) highly conserved structures. They directly interact with molecules such as proteins and microRNAs and subsequently regulate the expression of their targets at the genetic, transcriptional, and post-transcriptional levels. Emerging studies indicate the important roles of lncRNAs in the progression of neurological diseases including NDDs. Additionally, improvements in detection technologies have enabled quantitative lncRNA detection and application to circulating fluids in clinical settings. Here, we review current research on lncRNAs in animal models and patients with NDDs. We also discuss the potential applicability of circulating lncRNAs as biomarkers in NDD diagnostics and prognostics. In the future, a better understanding of the roles of lncRNAs in NDDs will be essential to exploit these new therapeutic targets and improve noninvasive diagnostic methods for diseases.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping He
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Ghafouri-Fard S, Safari M, Taheri M, Samadian M. Expression of Linear and Circular lncRNAs in Alzheimer's Disease. J Mol Neurosci 2021; 72:187-200. [PMID: 34415549 DOI: 10.1007/s12031-021-01900-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease is a neurodegenerative disorder of the elderly described by progressive cognitive debility. Recent studies have displayed the significance of linear and circular long non-coding RNAs (lncRNAs) in the pathobiology of Alzheimer's disease. These studies have reported the downregulation of MALAT1, while the upregulation of NEAT1, RP11-543N12.1, SOX21-AS1, BDNF-AS, BACE1-AS, ANRIL, XIST, and some other linear lncRNAs in clinical samples are obtained from these patients or animal models of Alzheimer's disease. A number of circRNAs such as ciRS-7, ciRS-7, circNF1-419, circHDAC9, circ_0000950,and circAβ-a have been shown to partake in the pathogenesis of this disorder. In the present manuscript, we provide a review of the impact of linear and circular lncRNAs in the pathobiology of Alzheimer's disease and their potential application as markers for this neurodegenerative condition.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Safari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Network Analysis Identifies Sex-Specific Gene Expression Changes in Blood of Amyotrophic Lateral Sclerosis Patients. Int J Mol Sci 2021; 22:ijms22137150. [PMID: 34281203 PMCID: PMC8269377 DOI: 10.3390/ijms22137150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/18/2023] Open
Abstract
Understanding the molecular mechanisms underlying the pathogenesis of amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, is a major challenge. We used co-expression networks implemented by the SWitch Miner software to identify switch genes associated with drastic transcriptomic changes in the blood of ALS patients. Functional analyses revealed that switch genes were enriched in pathways related to the cell cycle, hepatitis C, and small cell lung cancer. Analysis of switch genes by sex revealed that switch genes from males were associated with metabolic pathways, including PI3K-AKT, sphingolipid, carbon metabolism, FOXO, and AMPK signaling. In contrast, female switch genes related to infectious diseases, inflammation, apoptosis, and atherosclerosis. Furthermore, eight switch genes showed sex-specific gene expression patterns. Collectively, we identified essential genes and pathways that may explain sex differences observed in ALS. Future studies investigating the potential role of these genes in driving disease disparities between males and females with ALS are warranted.
Collapse
|
48
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
49
|
Xu L, Xu Q, Dai S, Jiao C, Tang Y, Xie J, Wu H, Chen X. lncRNA Xist regulates sevoflurane-induced social and emotional impairment by modulating miR-98-5p/EDEM1 signaling axis in neonatal mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:939-950. [PMID: 34094712 PMCID: PMC8141605 DOI: 10.1016/j.omtn.2021.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 04/09/2021] [Indexed: 12/01/2022]
Abstract
Long non-coding RNA (lncRNA) X-inactive specific transcript (Xist) is involved in apoptosis and inflammatory injury. This study aimed to assess the role of lncRNA Xist in sevoflurane-induced social and emotional impairment and neuronal apoptosis in neonatal mice and hippocampal neuronal cells. The performance in social and emotional tests and the expression levels of lncRNA Xist and microRNA (miR)-98-5p after sevoflurane exposure were measured. Moreover, the effects of suppression of lncRNA Xist on neuronal apoptosis and endoplasmic reticulum (ER) stress were determined. Subsequently, the association among lncRNA Xist, miR-98-5p, and ER degradation-enhancing α-mannosidase-like 1 protein (EDEM1) was explored. Our results showed that lncRNA Xist increased, miR-98-5p decreased, and social and emotional impairment appeared after sevoflurane exposure. Furthermore, suppression of lncRNA Xist improved sevoflurane-induced social and emotional impairment and reduced sevoflurane-induced neuronal apoptosis and ER stress in vivo and in vitro. Moreover, lncRNA Xist negatively regulated miR-98-5p expression, and it contributed to sevoflurane-induced neuronal apoptosis and ER stress by sponging miR-98-5p. Additionally, EDEM1 was identified as a target of miR-98-5p. Our findings revealed that the knockdown of lncRNA Xist ameliorates sevoflurane-induced social and emotional impairment through inhibiting neuronal apoptosis and ER stress by targeting the miR-98-5p/EDEM1 axis.
Collapse
Affiliation(s)
- Lili Xu
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qi Xu
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shaobing Dai
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Cuicui Jiao
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yingying Tang
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiaqian Xie
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hui Wu
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xinzhong Chen
- Department of Anesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
50
|
Song Z, Lin J, Li Z, Huang C. The nuclear functions of long noncoding RNAs come into focus. Noncoding RNA Res 2021; 6:70-79. [PMID: 33898883 PMCID: PMC8053782 DOI: 10.1016/j.ncrna.2021.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), defined as untranslated and tightly-regulated transcripts with a length exceeding 200 nt, are common outputs of the eukaryotic genome. It is becoming increasingly apparent that many lncRNAs likely serve as important regulators in a variety of biological processes. In particular, some of them accumulate in the nucleus and function in diverse nuclear events, including chromatin remodeling, transcriptional regulation, RNA processing, DNA damage repair, etc. Here, we unite recent progresses on the functions of nuclear lncRNAs and provide insights into the future research directions of this field.
Collapse
Affiliation(s)
- Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
- Corresponding author. School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|