1
|
Khidr WA, Alfarttoosi KH, Taher WM, Alwan M, Ali Al-Nuaimi AM, Jawad MJ. A review of the role of tumor-derived exosomes in cancers treatment and progression. Int Immunopharmacol 2025; 157:114782. [PMID: 40334624 DOI: 10.1016/j.intimp.2025.114782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Tumor cells (TCs) produce exosomes (EXOs), nanovesicles formed in endosomes. Tumor-derived exosomes (TDEs) are tiny, bubble-shaped structures formed by TCs that include microRNAs (miRNA), proteins, enzymes, and copies of DNA and RNA. Many different kinds of cancer rely on TDEs. For instance, TDEs play a large role in the tumor microenvironment (TME) and promote tumor spread via many pathways. Furthermore, TDEs impact the efficacy of cancer treatments. Additionally, because of their low immunogenicity, high biocompatibility, and low toxicity, TDEs have been extensively used as drug delivery vehicles for cancer immunotherapy. Consequently, future cancer treatments may benefit from focusing on both the therapeutic function and the tumorigenic pathways of TDEs. Consequently, in this work, we have examined the roles of TDEs in cancer development, such as tumor angiogenesis, immune system evasion, and tumor metastasis. Then, we reviewed TDEs used to transport anticancer medicines, including chemotherapeutic medications, therapeutic compounds (including miRNA), and anticancer nanoparticles. We have concluded by outlining the challenges of clinical translation, including carcinogenicity and medication resistance, and by offering some suggestions for addressing these issues.
Collapse
Affiliation(s)
- Wajida Ataallah Khidr
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | | | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | | |
Collapse
|
2
|
Zhang J, Yu Q, Zhu W, Sun X. Recent advances in the role of circRNA in cisplatin resistance in tumors. Cancer Gene Ther 2025; 32:497-506. [PMID: 40148680 DOI: 10.1038/s41417-025-00899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Cancer remains a major threat to human health, with chemotherapy serving as one of the main treatment strategies to alleviate patient suffering. However, prolonged chemotherapy often leads to the development of drug resistance, complicating treatment outcomes. Cisplatin, a commonly utilized chemotherapeutic agent, demonstrates efficacy against a range of cancers but frequently encounters resistance, posing a significant challenge in tumor management and prognosis. Drug resistance not only facilitates tumor progression but also reduces survival rates, highlighting the urgent need for innovative strategies to overcome this issue. In recent years, non-coding RNAs, particularly circular RNAs (circRNAs), have gained attention in cancer therapy due to their stability and specificity. Moreover, an increasing number of studies have reported that circRNAs are involved in cisplatin resistance across various types of cancer. This paper primarily reviews the mechanisms and roles of circRNA in mediating cisplatin resistance over the past 3 years. These findings highlight circRNAs as promising therapeutic targets for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Jiawen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiwen Yu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weijin Zhu
- Department of Clinical Laboratory Medicine, Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| | - Xiaochun Sun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
3
|
Hua X, Yu L, Zhu H, Zhu Y, Fan G, Zhou G. Research progress of circRNAs in bone-related diseases. Front Oncol 2025; 15:1481322. [PMID: 39931083 PMCID: PMC11807992 DOI: 10.3389/fonc.2025.1481322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that exist naturally in various eukaryotic organisms. The majority of circRNAs are produced through the splicing of exons, although there are a limited number that are generated through the circularization of introns. Studies have shown that circRNAs play an irreplaceable role in the pathogenesis, disease progression, diagnosis, and targeted therapy of motor system tumors (osteosarcoma), metabolic diseases (osteoporosis), and degenerative diseases (osteonecrosis of the femoral head, osteoarthritis, intervertebral disc degeneration). This review summarizes the advancements in circRNA detection techniques and the research progress of circRNAs in orthopedic diseases.
Collapse
Affiliation(s)
- Xianming Hua
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lingfeng Yu
- Department of Orthopedic Oncology, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhu
- School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yan Zhu
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Gentao Fan
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guangxin Zhou
- Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
- Wuxi Xishan Nanjing University (NJU) Institute of Applied Biotechnology, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Zhang H, Wu B, Wang Y, Du H, Fang L. Extracellular Vesicles as Mediators and Potential Targets in Combating Cancer Drug Resistance. Molecules 2025; 30:498. [PMID: 39942602 PMCID: PMC11819960 DOI: 10.3390/molecules30030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Extracellular vesicles (EVs) are key mediators in the communication between cancer cells and their microenvironment, significantly influencing drug resistance. This review provides a comprehensive analysis of the roles of EVs in promoting drug resistance through mechanisms such as drug efflux, apoptosis resistance, autophagy imbalance, and tumor microenvironment modulation. Despite extensive research, details of EVs biogenesis, cargo selection, and specific pathways in EVs-mediated drug resistance are not fully understood. This review critically examines recent advancements, highlighting key studies that elucidate the molecular mechanisms of EVs functions. Additionally, innovative therapeutic strategies targeting EVs are explored, including inhibiting EVs biogenesis, engineering EVs for drug delivery, and identifying resistance-inhibiting molecules within EVs. By integrating insights from primary research and proposing new directions for future studies, this review aims to advance the understanding of EVs in cancer biology and foster effective interventions to mitigate drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Haodong Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (H.Z.); (H.D.)
| | - Bohan Wu
- Westa College, Southwest University, Chongqing 400715, China; (B.W.); (Y.W.)
| | - Yanheng Wang
- Westa College, Southwest University, Chongqing 400715, China; (B.W.); (Y.W.)
| | - Huamao Du
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (H.Z.); (H.D.)
| | - Liaoqiong Fang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (H.Z.); (H.D.)
- National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, China
| |
Collapse
|
5
|
Zhang N, Wang X, Li Y, Lu Y, Sheng C, Sun Y, Ma N, Jiao Y. Mechanisms and therapeutic implications of gene expression regulation by circRNA-protein interactions in cancer. Commun Biol 2025; 8:77. [PMID: 39825074 PMCID: PMC11748638 DOI: 10.1038/s42003-024-07383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025] Open
Abstract
Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer. Additionally, we explore the role of CPIs in tumor drug resistance to gain a deeper understanding of their potential applications in the development of new anti-cancer therapeutic approaches.
Collapse
Affiliation(s)
- Nan Zhang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Xinjia Wang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yu Li
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yiwei Lu
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Chengcheng Sheng
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yumeng Sun
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Ningye Ma
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| | - Yisheng Jiao
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| |
Collapse
|
6
|
Liu X, Wang Y, Wang C, Wang X, Tang G, Xiong Z, Zhou W. Role of non-coding RNA in exosomes for the diagnosis and treatment of osteosarcoma. Front Oncol 2024; 14:1469833. [PMID: 39512768 PMCID: PMC11540661 DOI: 10.3389/fonc.2024.1469833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Osteosarcoma (OS) is a malignancy characterized by the proliferation of osteoblasts that predominantly affects pediatric and adolescent populations. At present, early detection of OS is significantly lacking, coupled with treatment challenges such as high recurrence rates, increased side effects, and the development of drug resistance. Therefore, developing new diagnostic and therapeutic modalities is clinically significant. Exosomes are naturally occurring nanoparticles found in the body that contain various materials, including DNA, RNA, and proteins. Owing to their numerous beneficial properties, including histocompatibility and in vivo stability, they can be useful as drug carriers. With the development of competitive endogenous non-coding RNA (ncRNA) networks, the role of ncRNA in OS cell control has been increasingly studied. This review provides a thorough summary of multiple potential biogenetic pathways of different ncRNAs in exosomes, including microRNAs, long ncRNAs, and circular RNAs. Moreover, the review highlights their effects on OS cells and their potential applications in the diagnosis, treatment, and control of OS drug resistance. The interplay between different types of ncRNAs, which collectively affect OS through the networks of competing endogenous ncRNAs, is the primary focus of this research.
Collapse
Affiliation(s)
- Xin Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaling Wang
- Department of Nephropathy, Huanggang Hospital of Traditional Chinese Medicine, Hubei University of Traditional Chinese Medicine, Huanggang, China
| | - Chenwen Wang
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyuan Wang
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangqiang Tang
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Xiong
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhou
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Wang J, Zhang Y, Li Z. Advancements in Understanding the Role of Circular RNA in Osteosarcoma. Mol Biotechnol 2024; 66:2157-2167. [PMID: 37661210 DOI: 10.1007/s12033-023-00838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
Osteosarcoma, the most prevalent primary malignant bone tumor and the third most frequent cancer in children and adolescents worldwide, still poses a significant therapeutic challenge. Even though combined chemotherapy and surgical resection have improved survival rates up to 60%, the prognosis for most patients with metastatic osteosarcoma continues to be dismal. The specific pathogenesis and key regulators of tumor invasion and metastasis remain largely elusive. Circular RNAs (circRNAs), novel endogenous non-coding RNA molecules that form covalently closed continuous loops through splicing, play a crucial role in the development, progression, clinical diagnosis, and treatment of various diseases. Recently, an escalating number of circular structures have been identified in osteosarcoma. Understanding their role in osteosarcoma is advantageous for early detection, diagnosis, and treatment of this disease. The primary function of circRNA involves its unique ability to bind specifically to miRNA, although their biological functions also extend to interacting with proteins, regulating gene transcription, and serving as translation templates. In this review, we explore the mechanisms and clinical applications of circRNAs in the pathogenesis and progression of osteosarcoma, with a particular emphasis on the regulatory mechanisms and functions of circRNAs as miRNA sponges in osteosarcoma development.
Collapse
Affiliation(s)
- Jin Wang
- Department of Orthopedics, Wuwei People's Hospital, Xuanwu Street, Liangzhou District, Wuwei, Gansu, 730030, People's Republic of China
| | - Yan Zhang
- Department of Outpatient, Liangzhou District Huangyang Hospital, Wuwei, Gansu, 733000, People's Republic of China
| | - Zicai Li
- Department of Orthopedics, Wuwei People's Hospital, Xuanwu Street, Liangzhou District, Wuwei, Gansu, 730030, People's Republic of China.
| |
Collapse
|
8
|
Zhongyu X, Wei X, Hongmei Z, Xiaodong G, Xiaojing Y, Yuanpei L, Li Z, Zhenmin F, Jianda X. Review of pre-metastatic niches induced by osteosarcoma-derived extracellular vesicles in lung metastasis: A potential opportunity for diagnosis and intervention. Biomed Pharmacother 2024; 178:117203. [PMID: 39067163 DOI: 10.1016/j.biopha.2024.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Osteosarcoma (OS) has a high propensity for lung metastasis, which is the leading cause of OS-related death and treatment failure. Intercellular communication between OS cells and distant lung host cells is required for the successful lung metastasis of OS cells to the lung. Before OS cells infiltrate the lung, in situ OS cells secrete extracellular vesicles (EVs) that act as mediators of cell-to-cell communication. In recent years, EVs have been confirmed to act as bridges and key drivers between in situ tumors and metastatic lesions by regulating the formation of a pre-metastatic niche (PMN), defined as a microenvironment suitable for disseminated tumor cell engraftment and colonization, in distant target organs. This review summarizes the current knowledge about the underlying mechanisms of PMN formation induced by OS-derived EVs and the potential roles of EVs as targets or drug carriers in regulating PMN formation in the lung. We also provide an overview of their potential EV-based therapeutic strategies for hindering PMN formation in the context of OS lung metastasis.
Collapse
Affiliation(s)
- Xia Zhongyu
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Xu Wei
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhang Hongmei
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ge Xiaodong
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Yan Xiaojing
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Lian Yuanpei
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Zhu Li
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China
| | - Fan Zhenmin
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu, China.
| | - Xu Jianda
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, 25 North Heping Road, Changzhou, Jiangsu Province 213003, China.
| |
Collapse
|
9
|
Luongo M, Laurenziello P, Cesta G, Bochicchio AM, Omer LC, Falco G, Milone MR, Cibarelli F, Russi S, Laurino S. The molecular conversations of sarcomas: exosomal non-coding RNAs in tumor's biology and their translational prospects. Mol Cancer 2024; 23:172. [PMID: 39174949 PMCID: PMC11340101 DOI: 10.1186/s12943-024-02083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Exosomes mediate cell-to-cell crosstalk involving a variety of biomolecules through an intricate signaling network. In recent years, the pivotal role of exosomes and their non-coding RNAs cargo in the development and progression of several cancer types clearly emerged. In particular, tumor bulk and its microenvironment co-evolve through cellular communications where these nanosized extracellular vesicles are among the most relevant actors. Knowledge about the cellular, and molecular mechanisms involved in these communications will pave the way for novel exosome-based delivery of therapeutic RNAs as well as innovative prognostic/diagnostic tools. Despite the valuable therapeutic potential and clinical relevance of exosomes, their role on sarcoma has been vaguely reported because the rarity and high heterogeneity of this type of cancer. Here, we dissected the scientific literature to unravel the multifaceted role of exosomal non-coding RNAs as mediator of cell-to-cell communications in the sarcoma subtypes.
Collapse
Affiliation(s)
- Margherita Luongo
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Pasqualina Laurenziello
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Giuseppe Cesta
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Anna Maria Bochicchio
- Experimental Oncology Unit, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Ludmila Carmen Omer
- Experimental Oncology Unit, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | | | | | - Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy.
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| |
Collapse
|
10
|
Li Q, Zhang Y, Jin P, Chen Y, Zhang C, Geng X, Mun KS, Phang KC. New insights into the potential of exosomal circular RNAs in mediating cancer chemotherapy resistance and their clinical applications. Biomed Pharmacother 2024; 177:117027. [PMID: 38925018 DOI: 10.1016/j.biopha.2024.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Chemotherapy resistance typically leads to tumour recurrence and is a major obstacle to cancer treatment. Increasing numbers of circular RNAs (circRNAs) have been confirmed to be abnormally expressed in various tumours, where they participate in the malignant progression of tumours, and play important roles in regulating the sensitivity of tumours to chemotherapy drugs. As exosomes mediate intercellular communication, they are rich in circRNAs and exhibit a specific RNA cargo sorting mechanism. By carrying and delivering circRNAs, exosomes can promote the efflux of chemotherapeutic drugs and reduce intracellular drug concentrations in recipient cells, thus affecting the cell cycle, apoptosis, autophagy, angiogenesis, invasion and migration. The mechanisms that affect the phenotype of tumour stem cells, epithelial-mesenchymal transformation and DNA damage repair also mediate chemotherapy resistance in many tumours. Exosomal circRNAs are diagnostic biomarkers and potential therapeutic targets for reversing chemotherapy resistance in tumours. Currently, the rise of new fields, such as machine learning and artificial intelligence, and new technologies such as biosensors, multimolecular diagnostic systems and platforms based on circRNAs, as well as the application of exosome-based vaccines, has provided novel ideas for precision cancer treatment. In this review, the recent progress in understanding how exosomal circRNAs mediate tumour chemotherapy resistance is reviewed, and the potential of exosomal circRNAs in tumour diagnosis, treatment and immune regulation is discussed, providing new ideas for inhibiting tumour chemotherapy resistance.
Collapse
Affiliation(s)
- Qiang Li
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China; Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yuhao Zhang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated to Hangzhou Medical College, Hangzhou, Zhejiang 310000, China
| | - Peikan Jin
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Yepeng Chen
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Chuchu Zhang
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Xiuchao Geng
- School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, China.
| | - Kein Seong Mun
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kean Chang Phang
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
11
|
Ong JLK, Jalaludin NFF, Wong MK, Tan SH, Angelina C, Sukhatme SA, Yeo T, Lim CT, Lee YT, Soh SY, Lim TKH, Tay TKY, Chang KTE, Chen ZX, Loh AH. Exosomal mRNA Cargo are biomarkers of tumor and immune cell populations in pediatric osteosarcoma. Transl Oncol 2024; 46:102008. [PMID: 38852279 PMCID: PMC11220529 DOI: 10.1016/j.tranon.2024.102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
Osteosarcoma is the commonest malignant bone tumor of children and adolescents and is characterized by a high risk of recurrence despite multimodal therapy, especially in metastatic disease. This suggests the presence of clinically undetected cancer cells that persist, leading to cancer recurrence. We sought to evaluate the utility of peripheral blood exosomes as a more sensitive yet minimally invasive blood test that could aid in evaluating treatment response and surveillance for potential disease recurrence. We extracted exosomes from the blood of pediatric osteosarcoma patients at diagnosis (n=7) and after neoadjuvant chemotherapy (n=5 subset), as well as from age-matched cancer-free controls (n=3). We also obtained matched tumor biopsy samples (n=7) from the cases. Exosome isolation was verified by CD9 immunoblot and characterized on electron microscopy. Profiles of 780 cancer-related transcripts were analysed in mRNA from exosomes of osteosarcoma patients at diagnosis and control patients, matched post-chemotherapy samples, and matched primary tumor samples. Peripheral blood exosomes of osteosarcoma patients at diagnosis were significantly smaller than those of controls and overexpressed extracellular matrix protein gene THBS1 and B cell markers MS4A1 and TCL1A. Immunohistochemical staining of corresponding tumor samples verified the expression of THBS1 on tumor cells and osteoid matrix, and its persistence in a treatment-refractory patient, as well as the B cell origin of the latter. These hold potential as liquid biopsy biomarkers of disease burden and host immune response in osteosarcoma. Our findings suggest that exosomes may provide novel and clinically-important insights into the pathophysiology of cancers such as osteosarcoma.
Collapse
Affiliation(s)
| | | | - Meng Kang Wong
- VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sheng Hui Tan
- VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Clara Angelina
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sarvesh A Sukhatme
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Trifanny Yeo
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - York Tien Lee
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| | - Shui Yen Soh
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Tony K H Lim
- Duke NUS Medical School, Singapore, Singapore; Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Timothy Kwang Yong Tay
- Duke NUS Medical School, Singapore, Singapore; Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Kenneth Tou En Chang
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Zhi Xiong Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amos Hp Loh
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore.
| |
Collapse
|
12
|
Yan C, Dou Y, Xia R, Liu S, Fu J, Li D, Wang R, Tie F, Li L, Jin H, An F. Research progress on the role of lncRNA, circular RNA, and microRNA networks in regulating ferroptosis in osteosarcoma. Biomed Pharmacother 2024; 176:116924. [PMID: 38876052 DOI: 10.1016/j.biopha.2024.116924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
Noncoding RNAs (ncRNAs) do not participate in protein-coding. Ferroptosis is a newly discovered form of cell death mediated by reactive oxygen species and lipid peroxidation. Recent studies have shown that ncRNAs such as microRNAs, long noncoding RNAs, circular RNAs, and ferroptosis are involved in the occurrence and development of osteosarcoma (OS). Studies have confirmed that ncRNAs participate in the development of OS by regulating the ferroptosis. However, systematic summary on this topic are still lacking. This review summarises the potential role of ncRNAs in the diagnosis, treatment, drug resistance, and prognosis of OS and the basis for diagnosing, preventing, and treating clinical OS and developing effective drugs. This review summarises the latest research progress on ncRNAs that regulate ferroptosis in OS, attempts to clarify the molecular mechanisms by which ncRNAs regulate ferroptosis in the pathogenesis of OS, and elaborates on the involvement of ferroptosis in OS from the perspective of ncRNAs.
Collapse
Affiliation(s)
- Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Yinnan Dou
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Ruoliu Xia
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Shiqing Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Jianchao Fu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Duo Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Rong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Feng Tie
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Linxin Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Hua Jin
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China.
| |
Collapse
|
13
|
Rampam S, Carnino JM, Xiao B, Khan RR, Miyawaki S, Goh GS. Extracellular Vesicles: An Emerging Clinical Opportunity in Musculoskeletal Disease. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:359-370. [PMID: 37930727 DOI: 10.1089/ten.teb.2023.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in the extracellular space. These membranous nanoparticles carry various molecules, often referred to as "cargo," which are delivered to nearby target cells. In the past decade, developments in nanotechnology have allowed for various new laboratory techniques for the increased utilization of EVs in cellular and animal studies. Such techniques have evolved for the isolation, characterization, and delivery of EVs to biological tissues. This emerging technology has immense clinical potential for both diagnostic and therapeutic applications. Various EV cargo molecules, including DNA, RNA, and proteins, can act as pathological biomarkers. Furthermore, EVs derived from certain cell sources have shown therapeutic benefit in certain pathologies. In addition to their native therapeutic benefit, EVs can be engineered to carry and selectively deliver therapeutic agents. While EVs have gained increasing interest in various pathologies, few studies have compiled their clinical potential in musculoskeletal pathologies. To bridge this gap, we present an overview of EVs, introduce current laboratory preparation techniques, and outline the most recent literature regarding the potential therapeutic applications of EVs in musculoskeletal pathologies.
Collapse
Affiliation(s)
- Sanjeev Rampam
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Jonathan M Carnino
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Boyuan Xiao
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Rehan R Khan
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Steven Miyawaki
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Graham S Goh
- Department of Orthopaedic Surgery, Boston University Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Wang T, He M, Zhang X, Guo Z, Wang P, Long F. Deciphering the impact of circRNA-mediated autophagy on tumor therapeutic resistance: a novel perspective. Cell Mol Biol Lett 2024; 29:60. [PMID: 38671354 PMCID: PMC11046940 DOI: 10.1186/s11658-024-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer therapeutic resistance remains a significant challenge in the pursuit of effective treatment strategies. Circular RNAs (circRNAs), a class of non-coding RNAs, have recently emerged as key regulators of various biological processes, including cancer progression and drug resistance. This review highlights the emerging role of circRNAs-mediated autophagy in cancer therapeutic resistance, a cellular process that plays a dual role in cancer by promoting both cell survival and death. Increasing evidence suggests that circRNAs can modulate autophagy pathways, thereby influencing the response of cancer cells to therapeutic agents. In this context, the intricate interplay between circRNAs, autophagy, and therapeutic resistance is explored. Various mechanisms are discussed through which circRNAs can impact autophagy, including direct interactions with autophagy-related genes, modulation of signaling pathways, and cross-talk with other non-coding RNAs. Furthermore, the review delves into specific examples of how circRNA-mediated autophagy regulation can contribute to resistance against chemotherapy and radiotherapy. Understanding these intricate molecular interactions provides valuable insights into potential strategies for overcoming therapeutic resistance in cancer. Exploiting circRNAs as therapeutic targets or utilizing them as diagnostic and predictive biomarkers opens new avenues for developing personalized treatment approaches. In summary, this review underscores the importance of circRNA-mediated autophagy in cancer therapeutic resistance and proposes future directions for research in this exciting and rapidly evolving field.
Collapse
Affiliation(s)
- Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Mengjie He
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Zhixun Guo
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| |
Collapse
|
15
|
Pei Y, Guo Y, Wang W, Wang B, Zeng F, Shi Q, Xu J, Guo L, Ding C, Xie X, Ren T, Guo W. Extracellular vesicles as a new frontier of diagnostic biomarkers in osteosarcoma diseases: a bibliometric and visualized study. Front Oncol 2024; 14:1359807. [PMID: 38500663 PMCID: PMC10944918 DOI: 10.3389/fonc.2024.1359807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
The use of liquid biopsy in cancer research has grown exponentially, offering potential for early detection, treatment stratification, and monitoring residual disease and recurrence. Exosomes, released by cancer cells, contain tumor-derived materials and are stable in biofluids, making them valuable biomarkers for clinical evaluation. Bibliometric research on osteosarcoma (OS) and exosome-derived diagnostic biomarkers is scarce. Therefore, we aimed to conduct a bibliometric evaluation of studies on OS and exosome-derived biomarkers. Using the Web of Science Core Collection database, Microsoft Excel, the R "Bibliometrix" package, CiteSpace, and VOSviewer software, quantitative analyses of the country, author, annual publications, journals, institutions, and keywords of studies on exosome-derived biomarkers for OS from 1995 to 2023 were performed. High-quality records (average citation rate ≥ 10/year) were filtered. The corresponding authors were mainly from China, the USA, Australia, and Canada. The University of Kansas Medical Center, National Cancer Center, Japan, and University of Kansas were major institutions, with limited cooperation reported by the University of Kansas Medical Center. Keyword analysis revealed a shift from cancer progression to mesenchymal stem cells, exosome expression, biogenesis, and prognostic biomarkers. Qualitative analysis highlighted exosome cargo, including miRNAs, circRNAs, lncRNAs, and proteins, as potential diagnostic OS biomarkers. This research emphasizes the rapid enhancement of exosomes as a diagnostic frontier, offering guidance for the clinical application of exosome-based liquid biopsy in OS, contributing to the evolving landscape of cancer diagnosis.
Collapse
Affiliation(s)
- Yanhong Pei
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Yu Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Boyang Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Fanwei Zeng
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Qianyu Shi
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Lei Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Chaowei Ding
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Xiangpang Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Cangnan, Zhejiang, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| |
Collapse
|
16
|
Chen CC, Benavente CA. Exploring the Impact of Exosomal Cargos on Osteosarcoma Progression: Insights into Therapeutic Potential. Int J Mol Sci 2024; 25:568. [PMID: 38203737 PMCID: PMC10779183 DOI: 10.3390/ijms25010568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor with high metastasis. Poor prognosis highlights a clinical need for novel therapeutic strategies. Exosomes, also known as extracellular vesicles, have been identified as essential players in the modulation of cancer. Recent studies have suggested that OS-derived exosomes can drive pro-tumorigenic or anti-tumorigenic phenotypes by transferring specific cargos, including proteins, nucleic acids, and metabolites, to neighboring cells, significantly impacting the regulation of cellular processes. This review discusses the advancement of exosomes and their cargos in OS. We examine how these exosomes contribute to the modulation of cellular phenotypes associated with tumor progression and metastasis. Furthermore, we explore the potential of exosomes as valuable biomarkers for diagnostics and prognostic purposes and their role in shaping innovative therapeutic strategies in OS treatment development.
Collapse
Affiliation(s)
- Claire C. Chen
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA;
| | - Claudia A. Benavente
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA;
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
17
|
Liao Y, Yi Q, He J, Huang D, Xiong J, Sun W, Sun W. Extracellular vesicles in tumorigenesis, metastasis, chemotherapy resistance and intercellular communication in osteosarcoma. Bioengineered 2023; 14:113-128. [PMID: 37377390 DOI: 10.1080/21655979.2022.2161711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/29/2023] Open
Abstract
HIGHLIGHTS Extracellular vehicles play crucial function in osteosarcoma tumorigenesis.Extracellular vehicles mediated the intercellular communication of osteosarcoma cells with other types cells in tumor microenvironment.Extracellular vehicles have potential utility in osteosarcoma diagnosis and treatment.
Collapse
Affiliation(s)
- Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, Chongqing, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
- The Central Laboratory, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Jinglong He
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Dixi Huang
- Guangzhou Medical University, Guangzhou, China
| | - Jianyi Xiong
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Wei Sun
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Weichao Sun
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| |
Collapse
|
18
|
Yi Q, Yue J, Liu Y, Shi H, Sun W, Feng J, Sun W. Recent advances of exosomal circRNAs in cancer and their potential clinical applications. J Transl Med 2023; 21:516. [PMID: 37525158 PMCID: PMC10388565 DOI: 10.1186/s12967-023-04348-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA that forms a covalently closed, uninterrupted loop. The expression of circRNA differs among cell types and tissues, and various circRNAs are aberrantly expressed in a variety of diseases, including cancer. Aberrantly expressed circRNAs contribute to disease progression by acting as microRNA sponges, functional protein sponges, or novel templates for protein translation. Recent studies have shown that circRNAs are enriched in exosomes. Exosomes are spherical bilayer vesicles released by cells into extracellular spaces that mediate intercellular communication by delivering cargoes. These cargoes include metabolites, proteins, lipids, and RNA molecules. Exosome-mediated cell-cell or cell-microenvironment communications influence the progression of carcinogenesis by regulating cell proliferation, angiogenesis, metastasis as well as immune escape. In this review, we summarize the current knowledge about exosomal circRNAs in cancers and discuss their specific functions in tumorigenesis. Additionally, we discuss the potential value of exosomal circRNAs as diagnostic biomarkers and the potential applications of exosomal circRNA-based cancer therapy.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Jiaji Yue
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Yang Liu
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Houyin Shi
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Sun
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Weichao Sun
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
19
|
Bucci-Muñoz M, Gola AM, Rigalli JP, Ceballos MP, Ruiz ML. Extracellular Vesicles and Cancer Multidrug Resistance: Undesirable Intercellular Messengers? Life (Basel) 2023; 13:1633. [PMID: 37629489 PMCID: PMC10455762 DOI: 10.3390/life13081633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer multidrug resistance (MDR) is one of the main mechanisms contributing to therapy failure and mortality. Overexpression of drug transporters of the ABC family (ATP-binding cassette) is a major cause of MDR. Extracellular vesicles (EVs) are nanoparticles released by most cells of the organism involved in cell-cell communication. Their cargo mainly comprises, proteins, nucleic acids, and lipids, which are transferred from a donor cell to a target cell and lead to phenotypical changes. In this article, we review the scientific evidence addressing the regulation of ABC transporters by EV-mediated cell-cell communication. MDR transfer from drug-resistant to drug-sensitive cells has been identified in several tumor entities. This was attributed, in some cases, to the direct shuttle of transporter molecules or its coding mRNA between cells. Also, EV-mediated transport of regulatory proteins (e.g., transcription factors) and noncoding RNAs have been indicated to induce MDR. Conversely, the transfer of a drug-sensitive phenotype via EVs has also been reported. Additionally, interactions between non-tumor cells and the tumor cells with an impact on MDR are presented. Finally, we highlight uninvestigated aspects and possible approaches to exploiting this knowledge toward the identification of druggable processes and molecules and, ultimately, the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- María Bucci-Muñoz
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - Aldana Magalí Gola
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
| | - María Paula Ceballos
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - María Laura Ruiz
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| |
Collapse
|
20
|
Lin Z, Ji Y, Zhou J, Li G, Wu Y, Liu W, Li Z, Liu T. Exosomal circRNAs in cancer: Implications for therapy resistance and biomarkers. Cancer Lett 2023; 566:216245. [PMID: 37247772 DOI: 10.1016/j.canlet.2023.216245] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Despite the advances in cancer treatment in recent years, the development of resistance to cancer therapy remains the biggest hurdle towards curative cancer treatments. Therefore, investigating the molecular mechanisms underlying cancer therapy resistance is of paramount clinical importance. Circular RNAs (circRNAs), novel members of the noncoding RNA family, are endogenous biomolecules in eukaryotes characterized by a covalently closed loop structure with multiple biological functions. Significantly, circRNAs are abundant and stable in exosomes and can be packaged, secreted and transferred to targeted tumour cells, thereby modulating diverse hallmarks of cancer behaviours, such as proliferation, migration, and immune escape. Notably, a great number of exosomal circRNAs are abnormally expressed during cancer treatment and can mediate cancer therapy resistance through complex mechanisms; therefore, targeting exosomal circRNAs is a promising therapeutic method to reverse therapy resistance. This review aimed to elucidate the mechanisms underlying exosomal circRNAs controlling the resistance of cancer to common therapies, such as chemotherapy, targeted therapy, immunotherapy and radiotherapy, and we also discussed the therapeutic potential of exosomal circRNAs as clinical biomarkers and novel targets in cancer clinical management. We also discussed the prospects and challenges of targeting exosomal circRNAs as a novel therapeutic strategy for reversing cancer therapy resistance.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Yuqiao Ji
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Guoqing Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yanlin Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China; Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, People's Republic of China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
21
|
Kjær EKR, Vase CB, Rossing M, Ahlborn LB, Hjalgrim LL. Detection of circulating tumor-derived material in peripheral blood of pediatric sarcoma patients: A systematic review. Transl Oncol 2023; 34:101690. [PMID: 37201250 DOI: 10.1016/j.tranon.2023.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Detection of circulating tumor-derived material (cTM) in the peripheral blood (PB) of cancer patients has been shown to be useful in early diagnosis, prediction of prognosis, and disease monitoring. However, it has not yet been thoroughly evaluated for pediatric sarcoma patients. METHODS We searched the PubMed and EMBASE databases for studies reporting the detection of circulating tumor cells, circulating tumor DNA, and circulating RNA in PB of pediatric sarcoma patients. Data on performance in identifying cTM and its applicability in diagnosis, and evaluation of tumor characteristics, prognostic factors, and treatment response was extracted from publications. RESULTS A total of 79 studies were assigned for the present systematic review, including detection of circulating tumor cells (116 patients), circulating tumor DNA (716 patients), and circulating RNA (2887 patients). Circulating tumor cells were detected in 76% of patients. Circulating DNA was detected in 63% by targeted NGS, 66% by shallow WGS, and 79% by digital droplet PCR. Circulating RNA was detected in 37% of patients. CONCLUSION Of the cTM from Ewing's sarcoma and rhabdomyosarcoma ctDNA proved to be the best target for clinical application including diagnosis, tumor characterization, prognosis, and monitoring of disease progression and treatment response. For osteosarcoma the most promising targets are copy number alterations or patient specific micro RNAs, however, further investigations are needed to obtain consensus on clinical utility.
Collapse
Affiliation(s)
- Eva Kristine Ruud Kjær
- Department of Paediatrics and Adolescent Medicine, Paediatric Oncology Research Laboratory (Bonkolab), Copenhagen University Hospital Rigshospitalet, 5704, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Christian Bach Vase
- Department of Paediatrics and Adolescent Medicine, Paediatric Oncology Research Laboratory (Bonkolab), Copenhagen University Hospital Rigshospitalet, 5704, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Maria Rossing
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lise Barlebo Ahlborn
- Center for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lisa Lyngsie Hjalgrim
- Department of Paediatrics and Adolescent Medicine, Paediatric Oncology Research Laboratory (Bonkolab), Copenhagen University Hospital Rigshospitalet, 5704, Blegdamsvej 9, Copenhagen DK-2100, Denmark.
| |
Collapse
|
22
|
Fu H, Wu Y, Chen J, Hu X, Wang X, Xu G. Exosomes and osteosarcoma drug resistance. Front Oncol 2023; 13:1133726. [PMID: 37007086 PMCID: PMC10064327 DOI: 10.3389/fonc.2023.1133726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of bone characterized by the formation of bone tissue or immature bone by tumor cells. Because of its multi-drug resistance, even with the improvement of chemotherapy and the use of targeted drugs, the survival rate of osteosarcoma (OS) is still less than 60%, and it is easy to metastasize, which is a difficulty for many clinicians and researchers. In recent years, with the continuous research on exosomes, it has been found that exosomes play a role in the diagnosis, treatment and chemotherapy resistance of osteosarcoma due to their unique properties. Exosomes can reduce the intracellular accumulation of chemotherapeutic drugs by mediating drug efflux, thus inducing chemotherapeutic resistance in OS cells. Exosomal goods (including miRNA and functional proteins) carried by exosomes also show great potential in affecting the drug resistance of OS. In addition, miRNA carried by exosomes and exosomes exist widely in tumor cells and can reflect the characteristics of parent cells, so it can also be used as a biomarker of OS. At the same time, the development of nanomedicine has given a new hope for the treatment of OS. Exosomes are regarded as good natural nano-carriers by researchers because of their excellent targeted transport capacity and low toxicity, which will play an important role in the field of OS therapy in the future. This paper reviews the internal relationship between exosomes and OS chemotherapy resistance, discusses the broad prospects of exosomes in the field of diagnosis and treatment of OS, and puts forward some suggestions for the study of the mechanism of OS chemotherapy resistance.
Collapse
Affiliation(s)
- Huichao Fu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunjiao Wu
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jianbai Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xing Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoyan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gongping Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Gongping Xu,
| |
Collapse
|
23
|
Guo X, Gao C, Yang DH, Li S. Exosomal circular RNAs: A chief culprit in cancer chemotherapy resistance. Drug Resist Updat 2023; 67:100937. [PMID: 36753923 DOI: 10.1016/j.drup.2023.100937] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Chemotherapy is one of the primary treatments for malignant tumors. However, the acquired drug resistance hinders clinical efficacy and leads to treatment failure in most patients. Exosomes are cell-derived vesicles with a diameter of 30-150 nm carrying and delivering substances such as DNAs, RNAs, lipids, and proteins for cellular communication in tumor development. Circular RNAs (circRNAs) present covalently closed-loop RNA structures, which regulate tumor cell proliferation, apoptosis, and metastasis by controlling different genes and signaling pathways. CircRNAs are abundant and stably expressed in exosomes. Recent studies have shown that they play critical roles in chemotherapy resistance in various cancers. In this review, we summarized the origin of exosomes and discussed the regulation mechanism of exosomal circRNAs in cancer drug resistance.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology,Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110042, China
| | - Congying Gao
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, USA.
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology,Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang Liaoning Province 110042, China.
| |
Collapse
|
24
|
Wu H, Zheng S, He Q, Li Y. Recent Advances of Circular RNAs as Biomarkers for Osteosarcoma. Int J Gen Med 2023; 16:173-183. [PMID: 36687163 PMCID: PMC9850833 DOI: 10.2147/ijgm.s380834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/30/2022] [Indexed: 01/15/2023] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in young adult, which is prone to early metastasis and poor prognosis. The current treatment methods need to be improved. Circular RNA is a covalently blocked circular, non-coding RNA that plays an essential role in the occurrence, development, clinical diagnosis, and treatment of various diseases. Recently, an increasing number of circRNAs have been identified in osteosarcoma. Understanding its role in osteosarcoma is conducive to the early detection, diagnosis, and treatment of osteosarcoma. In this paper, we reviewed the mechanism of action of circular RNA in the occurrence and development of osteosarcoma and its clinical application in recent years.
Collapse
Affiliation(s)
- Hongliang Wu
- Department of Orthopedics, Fuzhou Second Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China,Department of Orthopedics, Fuzhou Second Hospital, Fuzhou, People’s Republic of China,Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Sihang Zheng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Qun He
- Department of Bioinformatics, School of Life Sciences, China Medical University, Shenyang, People’s Republic of China
| | - Yan Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China,Correspondence: Yan Li; Qun He, Email ;
| |
Collapse
|
25
|
Ye H, Tan L, Tu C, Min L. Exosomes in sarcoma: Prospects for clinical applications. Crit Rev Oncol Hematol 2023; 181:103895. [PMID: 36481305 DOI: 10.1016/j.critrevonc.2022.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcoma is a group of rare and heterogeneous mesenchymal tumors, prone to late diagnosis and poor prognosis. Exosomes are cell-derived small extracellular vesicles found in most body fluids and contain nucleic acids, proteins, lipids, and other molecules. Qualitative and quantitative changes of exosomes and the contents are associated with sarcoma progression, exhibiting their potential as biomarkers. Exosomes possess the capacity of evading immune responses, bioactivity for trafficking, tumor tropism, and lesion residence. Thus, exosomes could be engineered as tumor-specific vehicles in drugs and RNA delivery systems. Exosomes might also serve as therapeutic targets in targeted therapy and immunotherapy and be involved in chemotherapy resistance. Here, we provide a comprehensive summary of exosome applications in liquid biopsy-based diagnosis and explore their implications in the delivery system, targeted therapy, and chemotherapy resistance of sarcoma. Moreover, challenges in exosome clinical applications are raised and some future research directions are proposed.
Collapse
Affiliation(s)
- Huali Ye
- West China Hospital, West China School of Medicine, Sichuan University, Guoxue Xiang No. 37, Chengdu 610041, Sichuan, People's Republic of China
| | - Linyun Tan
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu 610041, Sichuan, People's Republic of China
| | - Chongqi Tu
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu 610041, Sichuan, People's Republic of China
| | - Li Min
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu 610041, Sichuan, People's Republic of China.
| |
Collapse
|
26
|
Yue J, Chen ZS, Xu XX, Li S. Functions and therapeutic potentials of exosomes in osteosarcoma. ACTA MATERIA MEDICA 2022; 1:552-562. [PMID: 36710945 PMCID: PMC9879305 DOI: 10.15212/amm-2022-0024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteosarcoma is a primary malignant tumor of the skeleton with the morbidity of 2.5 in 1 million. The regularly on-set is in the epiphysis of the extremities with a high possibility of early metastasis, rapid progression, and poor prognosis. The survival rate of patients with metastatic or recurrent osteosarcoma remains low, and novel diagnostic and therapeutic methods are urgently needed. Exosomes are extracellular vesicles 30-150 nm in diameter secreted by various cells that are widely present in various body fluids. Exosomes are abundant in biologically active components such as proteins, nucleic acids, and lipids. Exosomes participate in numerous physiological and pathological processes via intercellular substance exchange and signaling. This review presents the novel findings of exosomes in osteosarcoma in diagnosis, prognosis, and therapeutic aspects.
Collapse
Affiliation(s)
- Jiaji Yue
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, PR China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY,United States
| | - Xiang-Xi Xu
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, PR China
| |
Collapse
|
27
|
Yang F, Wang M, Guan X. Exosomes and mimics as novel delivery platform for cancer therapy. Front Pharmacol 2022; 13:1001417. [PMID: 36313380 PMCID: PMC9602403 DOI: 10.3389/fphar.2022.1001417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/30/2022] [Indexed: 11/15/2022] Open
Abstract
Exosomes are nano-sized biological extracellular vesicles transmitting information between cells and constituting a new intercellular communication mode. Exosomes have many advantages as an ideal drug delivery nanocarrier, including good biocompatibility, permeability, low toxicity, and low immunogenicity. Recently, exosomes have been used to deliver chemotherapeutic agents, natural drugs, nucleic acid drugs, and other antitumor drugs to treat many types of tumors. Due to the limited production of exosomes, synthetic exosome-mimics have been developed as an ideal platform for drug delivery. This review summarizes recent advances in the application of exosomes and exosome-mimics delivering therapeutic drugs in treating cancers.
Collapse
Affiliation(s)
- Fuxu Yang
- Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
- Key Laboratory of Pharmaceutics and Bioengineering, School of Medical Technology, Beihua University, Jilin, China
| | - Mingyue Wang
- Key Laboratory of Pharmaceutics and Bioengineering, School of Medical Technology, Beihua University, Jilin, China
- Center of Reproductive Medicine and Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Xingang Guan
- Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
- *Correspondence: Xingang Guan,
| |
Collapse
|
28
|
Chellini L, Palombo R, Riccioni V, Paronetto MP. Oncogenic Dysregulation of Circulating Noncoding RNAs: Novel Challenges and Opportunities in Sarcoma Diagnosis and Treatment. Cancers (Basel) 2022; 14:cancers14194677. [PMID: 36230599 PMCID: PMC9562196 DOI: 10.3390/cancers14194677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Body fluids contain different classes of RNA molecules such as protein-coding messenger RNAs (mRNA) and noncoding RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). These circulating RNAs can travel naked or packed into extracellular vesicles and display valuable potential as non-invasive biomarkers of sarcoma malignancy. In this review, we summarize current knowledge on the possible functions of these circulating RNAs and discuss their possible exploitation as novel markers to improve sarcoma diagnosis and prognosis. Despite the recent advance in technological tools have improved protocols for the extraction and detection of circulating RNA, many aspects related to the biology of these molecules remain to be elucidated. In particular, the lack of standardization in the assessment of these markers makes difficult their adoption into clinical practice. Abstract Sarcomas comprise a heterogeneous group of rare mesenchymal malignancies. Sarcomas can be grouped into two categories characterized by different prognosis and treatment approaches: soft tissue sarcoma and primary bone sarcoma. In the last years, research on novel diagnostic, prognostic or predictive biomarkers in sarcoma management has been focused on circulating tumor-derived molecules as valuable tools. Liquid biopsies that measure various tumor components, including circulating cell-free DNA and RNA, circulating tumor cells, tumor extracellular vesicles and exosomes, are gaining attention as methods for molecular screening and early diagnosis. Compared with traditional tissue biopsies, liquid biopsies are minimally invasive and blood samples can be collected serially over time to monitor cancer progression. This review will focus on circulating noncoding RNA molecules from liquid biopsies that are dysregulated in sarcoma malignancies and discuss advantages and current limitations of their employment as biomarkers in the management of sarcomas. It will also explore their utility in the evaluation of the clinical response to treatments and of disease relapse. Moreover, it will explore state-of-the-art techniques that allow for the early detection of these circulating biomarkers. Despite the huge potential, current reports highlight poor sensitivity, specificity, and survival benefit of these methods, that are therefore still insufficient for routine screening purposes.
Collapse
Affiliation(s)
- Lidia Chellini
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Ramona Palombo
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Veronica Riccioni
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
- Correspondence:
| |
Collapse
|
29
|
The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1390-1400. [PMID: 36138197 PMCID: PMC9535014 DOI: 10.1038/s12276-022-00855-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Exosomes are vesicles encompassed by a lipid bilayer that are released by various living cells. Exosomal proteins are encapsulated within the membrane or embedded on the surface. As an important type of exosome cargo, exosomal proteins can reflect the physiological status of the parent cell and play an essential role in cell-cell communication. Exosomal proteins can regulate tumor development, including tumor-related immune regulation, microenvironment reconstruction, angiogenesis, epithelial-mesenchymal transition, metastasis, etc. The features of exosomal proteins can provide insight into exosome generation, targeting, and biological function and are potential sources of markers for cancer diagnosis, prognosis, and treatment. Here, we summarize the effects of exosomal proteins on cancer biology, the latest progress in the application of exosomal proteins in cancer diagnosis and prognosis, and the potential contribution of exosomal proteins in cancer therapeutics and vaccines.
Collapse
|
30
|
Ye H, Hu X, Wen Y, Tu C, Hornicek F, Duan Z, Min L. Exosomes in the tumor microenvironment of sarcoma: from biological functions to clinical applications. J Nanobiotechnology 2022; 20:403. [PMID: 36064358 PMCID: PMC9446729 DOI: 10.1186/s12951-022-01609-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
The current diagnosis and treatment of sarcoma continue to show limited timeliness and efficacy. In order to enable the early detection and management of sarcoma, increasing attentions have been given to the tumor microenvironment (TME). TME is a dynamic network composed of multiple cells, extracellular matrix, vasculature, and exosomes. Exosomes are nano-sized extracellular vesicles derived from various cells in the TME. The major function of exosomes is to promote cancer progress and metastasis through mediating bidirectional cellular communications between sarcoma cells and TME cells. Due to the content specificity, cell tropism, and bioavailability, exosomes have been regarded as promising diagnostic and prognostic biomarkers, and therapeutic vehicles for sarcoma. This review summarizes recent studies on the roles of exosomes in TME of sarcoma, and explores the emerging clinical applications.
Collapse
Affiliation(s)
- Huali Ye
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xin Hu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Chongqi Tu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Li Min
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, Sethi G, Zarrabi A, Kumar AP, Tan SC, Papadakis M, Alexiou A, Islam MA, Mostafavi E, Ashrafizadeh M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 2022; 15:83. [PMID: 35765040 PMCID: PMC9238168 DOI: 10.1186/s13045-022-01305-4] [Citation(s) in RCA: 313] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the factors responsible for its progression need to be elucidated. Exosomes are structures with an average size of 100 nm that can transport proteins, lipids, and nucleic acids. This review focuses on the role of exosomes in cancer progression and therapy. We discuss how exosomes are able to modulate components of the tumor microenvironment and influence proliferation and migration rates of cancer cells. We also highlight that, depending on their cargo, exosomes can suppress or promote tumor cell progression and can enhance or reduce cancer cell response to radio- and chemo-therapies. In addition, we describe how exosomes can trigger chronic inflammation and lead to immune evasion and tumor progression by focusing on their ability to transfer non-coding RNAs between cells and modulate other molecular signaling pathways such as PTEN and PI3K/Akt in cancer. Subsequently, we discuss the use of exosomes as carriers of anti-tumor agents and genetic tools to control cancer progression. We then discuss the role of tumor-derived exosomes in carcinogenesis. Finally, we devote a section to the study of exosomes as diagnostic and prognostic tools in clinical courses that is important for the treatment of cancer patients. This review provides a comprehensive understanding of the role of exosomes in cancer therapy, focusing on their therapeutic value in cancer progression and remodeling of the tumor microenvironment.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohamad Javad Naghdi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Sabet
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Khoshbakht
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey.
| |
Collapse
|
32
|
Pompili S, Vetuschi A, Sferra R, Cappariello A. Extracellular Vesicles and Resistance to Anticancer Drugs: A Tumor Skeleton Key for Unhinging Chemotherapies. Front Oncol 2022; 12:933675. [PMID: 35814444 PMCID: PMC9259994 DOI: 10.3389/fonc.2022.933675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Although surgical procedures and clinical care allow reaching high success in fighting most tumors, cancer is still a formidable foe. Recurrence and metastatization dampen the patients’ overall survival after the first diagnosis; nevertheless, the large knowledge of the molecular bases drives these aspects. Chemoresistance is tightly linked to these features and is mainly responsible for the failure of cancer eradication, leaving patients without a crucial medical strategy. Many pathways have been elucidated to trigger insensitiveness to drugs, generally associated with the promotion of tumor growth, aggressiveness, and metastatisation. The main mechanisms reported are the expression of transporter proteins, the induction or mutations of oncogenes and transcription factors, the alteration in genomic or mitochondrial DNA, the triggering of autophagy or epithelial-to-mesenchymal transition, the acquisition of a stem phenotype, and the activation of tumor microenvironment cells. Extracellular vesicles (EVs) can directly transfer or epigenetically induce to a target cell the molecular machinery responsible for the acquisition of resistance to drugs. In this review, we resume the main body of knowledge supporting the crucial role of EVs in the context of chemoresistance, with a particular emphasis on the mechanisms related to some of the main drugs used to fight cancer.
Collapse
|
33
|
Khan MI, Alsayed RKME, Choudhry H, Ahmad A. Exosome-Mediated Response to Cancer Therapy: Modulation of Epigenetic Machinery. Int J Mol Sci 2022; 23:ijms23116222. [PMID: 35682901 PMCID: PMC9181065 DOI: 10.3390/ijms23116222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Exosomes, the extracellular vesicles produced in the endosomal compartments, facilitate the transportation of proteins as well as nucleic acids. Epigenetic modifications are now considered important for fine-tuning the response of cancer cells to various therapies, and the acquired resistance against targeted therapies often involves dysregulated epigenetic modifications. Depending on the constitution of their cargo, exosomes can affect several epigenetic events, thus impacting post-transcriptional regulations. Thus, a role of exosomes as facilitators of epigenetic modifications has come under increased scrutiny in recent years. Exosomes can deliver methyltransferases to recipient cells and, more importantly, non-coding RNAs, particularly microRNAs (miRNAs), represent an important exosome cargo that can affect the expression of several oncogenes and tumor suppressors, with a resulting impact on cancer therapy resistance. Exosomes often harbor other non-coding RNAs, such as long non-coding RNAs and circular RNAs that support resistance. The exosome-mediated transfer of all this cargo between cancer cells and their surrounding cells, especially tumor-associated macrophages and cancer-associated fibroblasts, has a profound effect on the sensitivity of cancer cells to several chemotherapeutics. This review focuses on the exosome-induced modulation of epigenetic events with resulting impact on sensitivity of cancer cells to various therapies, such as, tamoxifen, cisplatin, gemcitabine and tyrosine kinase inhibitors. A better understanding of the mechanisms by which exosomes can modulate response to therapy in cancer cells is critical for the development of novel therapeutic strategies to target cancer drug resistance.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.I.K.); (H.C.)
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reem K. M. E. Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Hani Choudhry
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.I.K.); (H.C.)
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar;
- Correspondence: ; Tel.: +974-44390984
| |
Collapse
|
34
|
Exosomal CTCF Confers Cisplatin Resistance in Osteosarcoma by Promoting Autophagy via the IGF2-AS/miR-579-3p/MSH6 Axis. JOURNAL OF ONCOLOGY 2022; 2022:9390611. [PMID: 35693981 PMCID: PMC9175095 DOI: 10.1155/2022/9390611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
Cancer-derived exosomes participate in carcinogenesis and progression of cancers, including metastasis and drug-resistance. Of note, CTCF has been suggested to induce drug resistance in various cancers. Herein, we aim to investigate the role of cisplatin- (CDDP-) resistant osteosarcoma- (OS-) derived exosomal CTCF in OS cell resistance to CDDP and its mechanistic basis. Differentially expressed transcription factors, long noncoding RNAs (lncRNAs), miRNAs, and genes in OS were retrieved using bioinformatics approaches. Exosomes were extracted from CDDP-resistant OS cells and then cocultured with parental OS cells, followed by lentiviral transduction to manipulate the expression of CTCF, IGF2-AS, miR-579-3p, and MSH6. We assessed the in vitro and in vivo effects on malignant phenotypes, autophagy, CDDP sensitivity, and tumor formation of OS cells. It was established that CTCF and IGF2-AS were highly expressed in CDDP-resistant OS cells, and the CDDP-resistant OS cell-derived exosomal CTCF enhanced IGF2-AS transcription. CDDP-resistant OS-derived exosomes transmitted CTCF to OS cells and increased CDDP resistance in OS cells by activating an autophagy-dependent pathway. Mechanistically, CTCF activated IGF2-AS transcription and IGF2-AS competitively bound to miR-579-3p to upregulate MSH6 expression. Additionally, the promoting function of exosomal CTCF-mediated IGF2-AS/miR-579-3p/MSH6 in OS cell resistance to CDDP was confirmed in vivo. Taken together, CDDP-resistant OS-derived exosomal CTCF enhanced resistance of OS cells to CDDP via activating the autophagy-dependent pathway, providing a potential therapeutic consideration for OS treatment.
Collapse
|
35
|
Han Z, Chen H, Guo Z, Shen J, Luo W, Xie F, Wan Y, Wang S, Li J, He J. Circular RNAs and Their Role in Exosomes. Front Oncol 2022; 12:848341. [PMID: 35574355 PMCID: PMC9096127 DOI: 10.3389/fonc.2022.848341] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022] Open
Abstract
As a novel class of endogenous non-coding RNAs discovered in recent years, circular RNAs (circRNAs) are highly conserved and stable covalently closed ring structures with no 5'-end cap or 3'-end poly(A) tail. CircRNAs are formed by reverse splicing, mainly by means of a noose structure or intron complementary pairing. Exosomes are tiny discoid vesicles with a diameter of 40-100 nm that are secreted by cells under physiological and pathological conditions. Exosomes play an important role in cell-cell communication by carrying DNA, microRNAs, mRNAs, proteins and circRNAs. In this review, we summarize the biological functions of circRNAs and exosomes, and further reveal the potential roles of exosomal circRNAs in different diseases, providing a scientific basis for the diagnosis, treatment, and prognosis of a wide variety of diseases.
Collapse
Affiliation(s)
- Zeping Han
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Department of Laboratory Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Huafang Chen
- Department of Laboratory Medicine, Leizhou Center for Disease Control and Prevention, Leizhou, China
| | - Zhonghui Guo
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Department of Laboratory Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yu Wan
- Department of Gastroenterology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Shengbo Wang
- Department of Gastroenterology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jianhao Li
- Department of Cardiology, Central Hospital of Panyu District, Guangzhou, China
| | - Jinhua He
- Central Laboratory, Guangzhou Panyu Central Hospital, Guangzhou, China
- Department of Laboratory Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
36
|
Ye D, Gong M, Deng Y, Fang S, Cao Y, Xiang Y, Shen Z. Roles and clinical application of exosomal circRNAs in the diagnosis and treatment of malignant tumors. J Transl Med 2022; 20:161. [PMID: 35382838 PMCID: PMC8981684 DOI: 10.1186/s12967-022-03367-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Exosomes are microvesicles secreted by cells. They contain a variety of bioactive substances with important roles in intercellular communication. Circular RNA (circRNA), a type of nucleic acid molecule found in exosomes, forms a covalently bonded closed loop without 5′ caps or 3′ poly(A) tails. It is structurally stable, widely distributed, and tissue specific. CircRNAs mainly act as microRNA sponges and have important regulatory roles in gene expression; they are superior to other non-coding RNAs as molecular diagnostic markers and drug treatment targets. Exosomal-derived circRNAs in the body fluids of tumor patients can modulate tumor proliferation, invasion, metastasis, and drug resistance. They can be used as effective biomarkers for early non-invasive diagnosis and prognostic evaluation of tumors, and also represent ideal targets for early precision therapeutic intervention. This review provides a theoretical basis for exploring the applications of exosomal circRNAs in malignant tumor diagnosis and treatment. We describe the biological functions of exosomal circRNAs in the occurrence and development of malignant tumors, their potential utility in diagnosis and treatment, and possible mechanisms.
Collapse
Affiliation(s)
- Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Shuai Fang
- Department of Thoracic Surgery, Affiliated Hospital of Ningbo University, Ningbo, 315020, Zhejiang, China
| | - Yujie Cao
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
37
|
Zhou H, Zhu L, Song J, Wang G, Li P, Li W, Luo P, Sun X, Wu J, Liu Y, Zhu S, Zhang Y. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol Cancer 2022; 21:86. [PMID: 35337361 PMCID: PMC8951719 DOI: 10.1186/s12943-022-01556-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and a leading cause of carcinogenic death. To date, surgical resection is regarded as the gold standard by the operator for clinical decisions. Because conventional tissue biopsy is invasive and only a small sample can sometimes be obtained, it is unable to represent the heterogeneity of tumor or dynamically monitor tumor progression. Therefore, there is an urgent need to find a new minimally invasive or noninvasive diagnostic strategy to detect CRC at an early stage and monitor CRC recurrence. Over the past years, a new diagnostic concept called “liquid biopsy” has gained much attention. Liquid biopsy is noninvasive, allowing repeated analysis and real-time monitoring of tumor recurrence, metastasis or therapeutic responses. With the advanced development of new molecular techniques in CRC, circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes, and tumor-educated platelet (TEP) detection have achieved interesting and inspiring results as the most prominent liquid biopsy markers. In this review, we focused on some clinical applications of CTCs, ctDNA, exosomes and TEPs and discuss promising future applications to solve unmet clinical needs in CRC patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Liyong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jun Song
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Guohui Wang
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Pengzhou Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Weizheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ping Luo
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xulong Sun
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jin Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Yunze Liu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Shaihong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
38
|
FT-IR Spectral Signature of Sensitive and Multidrug-Resistant Osteosarcoma Cell-Derived Extracellular Nanovesicles. Cells 2022; 11:cells11050778. [PMID: 35269400 PMCID: PMC8909163 DOI: 10.3390/cells11050778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer in children and adolescents. Despite aggressive treatment regimens, the outcome is unsatisfactory, and multidrug resistance (MDR) is a pivotal process in OS treatment failure. OS-derived extracellular vesicles (EVs) promote drug resistance to chemotherapy and target therapy through different mechanisms. The aim of this study was to identify subpopulations of osteosarcoma-EVs by Fourier transform infrared spectroscopy (FT-IR) to define a specific spectral signature for sensitive and multidrug-resistant OS-derived EVs. EVs were isolated from sensitive and MDR OS cells as well as from mesenchymal stem cells by differential centrifugation and ultracentrifugation. EVs size, morphology and protein expression were characterized. FT-IR/ATR of EVs spectra were acquired in the region of 400–4000 cm−1 (resolution 4 cm−1, 128 scans). The FT-IR spectra obtained were consistently different in the EVs compared to cells from which they originate. A specific spectral signature, characterized by a shift and a new band (1601 cm−1), permitted to clearly distinguish EVs isolated by sensitive and multidrug-resistant OS cells. Our data suggest that FT-IR spectroscopy allows to characterize and define a specific spectral signature for sensitive and MDR OS-derived EVs.
Collapse
|
39
|
Long G, Ma S, Shi R, Sun Y, Hu Z, Chen K. Circular RNAs and Drug Resistance in Genitourinary Cancers: A Literature Review. Cancers (Basel) 2022; 14:866. [PMID: 35205613 PMCID: PMC8869870 DOI: 10.3390/cancers14040866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, systematic treatment has made great progress in genitourinary tumors. However, some patients develop resistance to the treatments, resulting in an increase in mortality. Circular RNAs (circRNAs) form a class of non-coding RNAs with high stability and significant clinical relevance. Accumulating evidence indicates that circRNAs play a vital role in cancer development and tumor chemotherapy resistance. This review summarizes the molecular and cellular mechanisms of drug resistance mediated by circRNAs to common drugs used in the treatment of genitourinary tumors. Several circRNAs were identified to regulate the responsiveness to systemic treatments in genitourinary tumors, including chemotherapies such as cisplatin and targeted therapies such as enzalutamide. Canonically, cicrRNAs participate in the competing endogenous RNA (ceRNA) network, or in some cases directly interact with proteins, regulate downstream pathways, and even some circRNAs have the potential to produce proteins or polypeptides. Several cellular mechanisms were involved in circRNA-dependent drug resistance, including autophagy, cancer stem cells, epithelial-mesenchymal transition, and exosomes. The potential clinical prospect of circRNAs in regulating tumor drug resistance was also discussed.
Collapse
Affiliation(s)
- Gongwei Long
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (G.L.); (S.M.); (Y.S.)
- Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Siquan Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (G.L.); (S.M.); (Y.S.)
- Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Runlin Shi
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Yi Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (G.L.); (S.M.); (Y.S.)
- Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (G.L.); (S.M.); (Y.S.)
- Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (G.L.); (S.M.); (Y.S.)
- Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
40
|
Liu XY, Zhang Q, Guo J, Zhang P, Liu H, Tian ZB, Zhang CP, Li XY. The Role of Circular RNAs in the Drug Resistance of Cancers. Front Oncol 2022; 11:790589. [PMID: 35070998 PMCID: PMC8766647 DOI: 10.3389/fonc.2021.790589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a major threat to human health and longevity. Chemotherapy is an effective approach to inhibit cancer cell proliferation, but a growing number of cancer patients are prone to develop resistance to various chemotherapeutics, including platinum, paclitaxel, adriamycin, and 5-fluorouracil, among others. Significant progress has been made in the research and development of chemotherapeutic drugs over the last few decades, including targeted therapy drugs and immune checkpoint inhibitors; however, drug resistance still severely limits the application and efficacy of these drugs in cancer treatment. Recently, emerging studies have emphasized the role of circular RNAs (circRNAs) in the proliferation, migration, invasion, and especially chemoresistance of cancer cells by regulating the expression of related miRNAs and targeted genes. In this review, we comprehensively summarized the potential roles and mechanisms of circRNAs in cancer drug resistance including the efflux of drugs, apoptosis, intervention with the TME (tumor microenvironment), autophagy, and dysfunction of DNA damage repair, among others. Furthermore, we highlighted the potential value of circRNAs as new therapeutic targets and prognostic biomarkers for cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiao-Yu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
41
|
Yao P, Lu Y, Cai Z, Yu T, Kang Y, Zhang Y, Wang X. Research Progress of Exosome-Loaded miRNA in Osteosarcoma. Cancer Control 2022; 29:10732748221076683. [PMID: 35179996 PMCID: PMC8859673 DOI: 10.1177/10732748221076683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Currently, although the improvement of surgical techniques and the development of chemotherapy drugs have brought a certain degree of development to the treatment of osteosarcoma, the treatment of osteosarcoma has many shortcomings, and its treatment is limited. MiRNAs and exosomes can be used as diagnostic tools, and they play an important role in the occurrence and chemotherapy resistance of osteosarcoma. Therefore, providing a new method for the treatment of osteosarcoma is the key to solving this problem. To systematically summarize the research status of exoskeleton drug-loaded miRNA in osteosarcoma, we identified and evaluated 208 studies and found that exosome-carrying miRNA can be used as an index for the diagnosis and prognosis of osteosarcoma and share a certain relationship with chemosensitivity. In addition, exosomes can also be used as a carrier of genetic drugs able to regulate the progression of osteosarcoma. Based on the above findings, we propose suggestions for the future development of this field, aiming to bring new ideas for the early diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Peng Yao
- Joint Surgery Department, The Second People’s Hospital of Zhangye City, Zhangye, China
| | - Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongyan Cai
- Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Tianci Yu
- Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Yuchen Kang
- Lanzhou University Second Clinical Medical College, Lanzhou, China
| | - Yu Zhang
- Joint Surgery Department, The Second People’s Hospital of Zhangye City, Zhangye, China
| | - Xulong Wang
- Joint Surgery Department, The Second People’s Hospital of Zhangye City, Zhangye, China
| |
Collapse
|
42
|
De Martino V, Rossi M, Battafarano G, Pepe J, Minisola S, Del Fattore A. Extracellular Vesicles in Osteosarcoma: Antagonists or Therapeutic Agents? Int J Mol Sci 2021; 22:12586. [PMID: 34830463 PMCID: PMC8619425 DOI: 10.3390/ijms222212586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is a skeletal tumor affecting mainly children and adolescents. The presence of distance metastasis is frequent and it is localized preferentially to the lung, representing the main reason for death among patients. The therapeutic approaches are based on surgery and chemotherapeutics. However, the drug resistance and the side effects associated with the chemotherapy require the identification of new therapeutic approaches. The understanding of the complex biological scenario of the osteosarcoma will open the way for the identification of new targets for its treatment. Recently, a great interest of scientific community is for extracellular vesicles (EVs), that are released in the tumor microenvironment and are important regulators of tumor proliferation and the metastatic process. At the same time, circulating extracellular vesicles can be exploited as diagnostic and prognostic biomarkers, and they can be loaded with drugs as a new therapeutic approach for osteosarcoma patients. Thus, the characterization of OS-related EVs could represent a way to convert these vesicles from antagonists for human health into therapeutic and/or diagnostic agents.
Collapse
Affiliation(s)
- Viviana De Martino
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy; (V.D.M.); (J.P.); (S.M.)
| | - Michela Rossi
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (G.B.)
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (G.B.)
| | - Jessica Pepe
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy; (V.D.M.); (J.P.); (S.M.)
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University, 00185 Rome, Italy; (V.D.M.); (J.P.); (S.M.)
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.R.); (G.B.)
| |
Collapse
|
43
|
Yang L, Huang X, Guo H, Wang L, Yang W, Wu W, Jing D, Shao Z. Exosomes as Efficient Nanocarriers in Osteosarcoma: Biological Functions and Potential Clinical Applications. Front Cell Dev Biol 2021; 9:737314. [PMID: 34712664 PMCID: PMC8546119 DOI: 10.3389/fcell.2021.737314] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common bone tumor affecting both adolescents and children. Although localized osteosarcoma has an overall survival of >70% in the clinic, metastatic, refractory, and recurrent osteosarcoma have poorer survival rates. Exosomes are extracellular vesicles released by cells and originally thought to be a way for cells to discard unwanted products. Currently, exosomes have been reported to be involved in intercellular cross-talk and induce changes in cellular behavior by transferring cargoes (proteins, DNA, RNA, and lipids) between cells. Exosomes regulate osteosarcoma progression, and processes such as tumorigenesis, proliferation, metastasis, angiogenesis, immune evasion, and drug resistance. Increasing evidences shows that exosomes have significant potential in promoting osteosarcoma progression and development. In this review, we describe the current research status of exosomes in osteosarcoma, focusing on the biological functions of osteosarcoma exosomes as well as their application in osteosarcoma as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lingkai Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoyu Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lutong Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Doudou Jing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Cappariello A, Rucci N. Extracellular Vesicles in Bone Tumors: How to Seed in the Surroundings Molecular Information for Malignant Transformation and Progression. Front Oncol 2021; 11:722922. [PMID: 34616676 PMCID: PMC8488258 DOI: 10.3389/fonc.2021.722922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Bone is a very dynamic tissue hosting different cell types whose functions are regulated by a plethora of membrane-bound and soluble molecules. Intercellular communication was recently demonstrated to be also sustained by the exchange of extracellular vesicles (EVs). These are cell-derived nanosized structures shuttling biologically active molecules, such as nucleic acids and proteins. The bone microenvironment is a preferential site of primary and metastatic tumors, in which cancer cells find a fertile soil to “seed and blossom”. Nowadays, many oncogenic processes are recognized to be sustained by EVs. For example, EVs can directly fuel the vicious cycle in the bone/bone marrow microenvironment. EVs create a favourable environment for tumor growth by affecting osteoblasts, osteoclasts, osteocytes, adipocytes, leukocytes, and endothelial cells. At the same time other crucial tumor-mediated events, such as the premetastatic niche formation, tumor cell dormancy, as well as drug resistance, have been described to be fostered by tumor-derived EVs. In this review, we will discuss the main body of literature describing how the cancer cells use the EVs for their growth into the bone and for educating the bone microenvironment to host metastases.
Collapse
Affiliation(s)
- Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
45
|
Zhong J, Zhang G, Yao W. Clinicopathologic significance and prognostic value of circRNAs in osteosarcoma: a systematic review and meta-analysis. J Orthop Surg Res 2021; 16:578. [PMID: 34620208 PMCID: PMC8495992 DOI: 10.1186/s13018-021-02568-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022] Open
Abstract
Abstract Background Osteosarcoma is the most prevalent malignant osseous sarcoma in children and adolescents, whose prognosis is still relatively poor nowadays. Recent studies have shown the critical function and potential clinical applications of circular RNAs (circRNAs) in osteosarcoma. Our review aimed to perform an updated meta-analysis to explore their clinicopathologic significance and prognostic value. Methods The structured literature was conducted via eight electronic databases and four gray literature sources until 20 Feb 2021 to identify eligible studies. The data was extracted directly from the articles or reconstructed based on Kaplan-Meier curves. The Newcastle-Ottawa Scale (NOS) tool was used to assess study quality. The clinicopathologic significance of circRNAs was measured through odds ratios (ORs) and their 95% confidence intervals (CIs), while the prognostic value was evaluated through hazard ratios (HRs) and their 95% CIs of overall survival (OS) and disease-free survival (DFS). Heterogeneity and publication bias were assessed. Sensitivity analyses were conducted. Subgroup analyses were performed according to study characteristics. An additional analysis was performed to investigate the relation between circ_0002052 and osteosarcoma. Results Fifty-two studies were identified, in which 38 on clinicopathologic features and 36 on survival prognosis were included in quantitative analysis. The overall study quality was moderate with a median NOS score of 5.5 stars (range 3 to 8). For clinicopathologic features, dysregulated circRNAs were related to larger tumor size (OR 2.122, 95%CI 1.418–3.175), advanced clinical stage (OR 2.847, 95%CI 2.059–3.935), and present of metastasis (OR 2.630, 95%CI 1.583–4.371). For chemotherapy, dysregulated circRNAs suggest a better response (OR 0.443, 95%CI 0.231–0.849), but a higher probability of resistance (OR 9.343, 95%CI 5.352–16.309). For survival prognosis, dysregulated circRNAs were significantly correlated with poor OS (HR 2.437, 95%CI 2.224–2.670) and DFS (HR 2.125, 95%CI 1.621–2.786). The results did not show differences among subgroups. Higher circ_0002052 expression showed a relation with poor OS (HR 3.197, 95%CI 2.054–4.976). Conclusions Our review demonstrated that abnormally expressed circRNAs have a relation with advanced clinicopathologic features and better response, but a higher probability of resistance and poor survival prognosis in osteosarcoma patients. However, more studies are encouraged to provide more robust evidence to translate circRNAs into clinical practice. Trial registration PROSPERO ID: CRD42021235031 Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02568-2.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Guangcheng Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
46
|
Li S. The basic characteristics of extracellular vesicles and their potential application in bone sarcomas. J Nanobiotechnology 2021; 19:277. [PMID: 34535153 PMCID: PMC8447529 DOI: 10.1186/s12951-021-01028-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are rare cancers accompanied by metastatic disease, mainly including osteosarcoma, Ewing sarcoma and chondrosarcoma. Extracellular vesicles (EVs) are membrane vesicles released by cells in the extracellular matrix, which carry important signal molecules, can stably and widely present in various body fluids, such as plasma, saliva and scalp fluid, spinal cord, breast milk, and urine liquid. EVs can transport almost all types of biologically active molecules (DNA, mRNA, microRNA (miRNA), proteins, metabolites, and even pharmacological compounds). In this review, we summarized the basic biological characteristics of EVs and focused on their application in bone sarcomas. EVs can be use as biomarker vehicles for diagnosis and prognosis in bone sarcomas. The role of EVs in bone sarcoma has been analyzed point-by-point. In the microenvironment of bone sarcoma, bone sarcoma cells, mesenchymal stem cells, immune cells, fibroblasts, osteoclasts, osteoblasts, and endothelial cells coexist and interact with each other. EVs play an important role in the communication between cells. Based on multiple functions in bone sarcoma, this review provides new ideas for the discovery of new therapeutic targets and new diagnostic analysis.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China.
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
47
|
Jing Z, Chen K, Gong L. The Significance of Exosomes in Pathogenesis, Diagnosis, and Treatment of Esophageal Cancer. Int J Nanomedicine 2021; 16:6115-6127. [PMID: 34511909 PMCID: PMC8423492 DOI: 10.2147/ijn.s321555] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
Esophageal cancer is one of the most common malignancy in China with high mortality. Understanding pathogenesis and identifying early diagnosis biomarkers can significantly improve the prognosis of patients with esophageal cancer. Exosomes are small vesicular structures containing a variety of components (including DNA, RNA, and proteins) mediating cell-to-cell material exchange and signal communication. Growing evidences have shown that exosomes and its components are involved in growth, metastasis and angiogenesis in cancer, and could also be used as diagnostic and prognostic markers. In this review, we summarized recent progress to elucidate the significance of exosomes in the esophageal cancer progression, microenvironment remodeling, therapeutic resistance, and immunosuppression. We also discuss the utility of exosomes as diagnostic and prognostic biomarkers and therapeutic tool in esophageal cancer.
Collapse
Affiliation(s)
- Zhao Jing
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Kai Chen
- Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ling Gong
- Department of Infectious Disease (Liver Diseases), The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
48
|
Drug Resistance in Osteosarcoma: Emerging Biomarkers, Therapeutic Targets and Treatment Strategies. Cancers (Basel) 2021; 13:cancers13122878. [PMID: 34207685 PMCID: PMC8228414 DOI: 10.3390/cancers13122878] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Despite the adoption of aggressive, multimodal treatment schedules, the cure rate of high-grade osteosarcoma (HGOS) has not significantly improved in the last 30 years. The most relevant problem preventing improvement in HGOS prognosis is drug resistance. Therefore, validated novel biomarkers that help to identify those patients who could benefit from innovative treatment options and the development of drugs enabling personalized therapeutic protocols are necessary. The aim of this review was to give an overview on the most relevant emerging drug resistance-related biomarkers, therapeutic targets and new agents or novel candidate treatment strategies, which have been highlighted and suggested for HGOS to improve the success rate of clinical trials. Abstract High-grade osteosarcoma (HGOS), the most common primary malignant tumor of bone, is a highly aggressive neoplasm with a cure rate of approximately 40–50% in unselected patient populations. The major clinical problems opposing the cure of HGOS are the presence of inherent or acquired drug resistance and the development of metastasis. Since the drugs used in first-line chemotherapy protocols for HGOS and clinical outcome have not significantly evolved in the past three decades, there is an urgent need for new therapeutic biomarkers and targeted treatment strategies, which may increase the currently available spectrum of cure modalities. Unresponsive or chemoresistant (refractory) HGOS patients usually encounter a dismal prognosis, mostly because therapeutic options and drugs effective for rescue treatments are scarce. Tailored treatments for different subgroups of HGOS patients stratified according to drug resistance-related biomarkers thus appear as an option that may improve this situation. This review explores drug resistance-related biomarkers, therapeutic targets and new candidate treatment strategies, which have emerged in HGOS. In addition to consolidated biomarkers, specific attention has been paid to the role of non-coding RNAs, tumor-derived extracellular vesicles, and cancer stem cells as contributors to drug resistance in HGOS, in order to highlight new candidate markers and therapeutic targets. The possible use of new non-conventional drugs to overcome the main mechanisms of drug resistance in HGOS are finally discussed.
Collapse
|