1
|
Liu B, Peng Y, Wang C, Wei H, Xu S, Liu Y, Yin X, Bi H, Guo D. Baicalin prevents experimental autoimmune uveitis by promoting macrophage polarization balance through inhibiting the HIF-1α signaling pathway. Sci Rep 2025; 15:16424. [PMID: 40355594 PMCID: PMC12069706 DOI: 10.1038/s41598-025-01286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
Uveitis is a series of autoimmune eye diseases that can seriously damage people's eyesight. This study aimed to explore the therapeutic potential of baicalin in treating uveitis, focusing on its modulation of HIF-1α expression and macrophage polarization. Using an experimental autoimmune uveitis (EAU) rat model, we found that baicalin can significantly reduce fundus inflammation in EAU rats. Spectral-domain optical coherence tomography revealed retinal vascular thickening in the EAU group, indicating severe inflammation, which baicalin effectively mitigated. Histopathological analysis confirmed reduced inflammatory cell infiltration in the ciliary body and retina. Co-immunoprecipitation analyses showed that HIF-1αinteracted with macrophage-related factors, including iNOS and ARG1. Baicalin downregulated HIF-1α and iNOS while upregulating ARG1, balancing pro-inflammatory M1 and anti-inflammatory M2 macrophage polarization. Flow cytometry demonstrated a reversal of M1/M2 macrophage ratios in the EAU group after baicalin treatment. Additionally, baicalin improved macrophage mitochondrial membrane potential and decreased reactive oxygen species (ROS) levels, shifting macrophage polarization toward an anti-inflammatory state. These findings confirm that baicalin can effectively reduce inflammation and restore immune balance by orchestrating the HIF-1α pathway, establishing a promising therapeutic candidate for uveitis and highlighting the potential of natural bioactive compounds in treating and preventing inflammatory diseases through targeted immune modulation.
Collapse
Affiliation(s)
- Bin Liu
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan, 250355, China
| | - Yuan Peng
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan, 250355, China
| | - Congling Wang
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan, 250355, China
| | - Huixia Wei
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Shandong Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan, 250355, China
| | - Yunfeng Liu
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan, 250355, China
| | - Xuewei Yin
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Shandong Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
- Shandong Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, 250002, China
| | - Dadong Guo
- Shandong Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, 250002, China.
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China.
- Shandong Academy of Eye Disease Prevention and Therapy, No. 48#, Yingxiongshan Road, Jinan, 250002, China.
| |
Collapse
|
2
|
Alsaegh MA, Shetty SR, Mahmoud O, Varma SR, Altaie AM, Rawat SS. The Expression of HIF-1α and VEGF in Radicular Cysts and Periapical Granulomas. Eur J Dent 2025; 19:531-539. [PMID: 39657933 PMCID: PMC12020581 DOI: 10.1055/s-0044-1795078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the expression levels of hypoxia-inducible factor 1-α (HIF-1α) and vascular endothelial growth factor (VEGF) in radicular cysts and periapical granulomas, thereby contributing to the understanding of their potential significance in the differential diagnosis and treatment of these lesions. MATERIALS AND METHODS In the present cross-sectional study, 51 samples of periapical lesions were included. Of them, 24 samples were radicular cysts, and 27 samples were periapical granulomas. Samples were immunohistochemically analyzed for HIF-1α and VEGF proteins expression. Chi-square tests and Spearman's rank correlation coefficient tests were used to detect differences and correlations among the parameters, respectively. RESULTS In radicular cysts, HIF-1α expression was absent in 1 (4.2%), weak in 5 (20.8%), mild in 7 (29.2%), and strong in 11 (45.8%) cases, while VEGF expression was absent in 1 (4.2%), weak in 6 (25.0%), mild in 9 (37.5%), and strong in 8 (33.3%) of the cases; nevertheless, in periapical granulomas, HIF-1α expression was absent in 8 (29.6%), weak in 6 (22.2%), mild in 9 (33.3%), and strong in 4 (14.8%) of the cases, whereas VEGF expression was absent in 4 (14.8%), weak in 16 (59.3%), mild in 4 (14.8%), and strong in 3 (11.1%) of the cases. Chi-square test revealed a significant difference in the expression of HIF-1α and VEGF between radicular cysts and periapical granuloma (chi-square test = 8.906, p = 0.031; chi-square test = 10.401, p = 0.015, respectively). Spearman's correlation test showed a significant correlation between HIF-1α and VEGF in the total samples of both radicular cysts and periapical granulomas (rho = 0.385, p = 0.005). CONCLUSION There is high expression of both HIF-1α and VEGF throughout the odontogenic epithelium and connective tissue of the radicular cyst and periapical granuloma. Both HIF-1α and VEGF are more highly expressed in radicular cysts than in periapical granulomas. These findings may aid in the diagnosis and management of suspected periapical lesions, suggesting that radicular cysts exhibit more advanced hypoxic conditions and associated pathways compared with periapical granulomas.
Collapse
Affiliation(s)
- Mohammed Amjed Alsaegh
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Shishir Ram Shetty
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Okba Mahmoud
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center for Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center for Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Alaa Muayad Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Center of Excellence for Precision Medicine, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Surendra Singh Rawat
- College of Medicine, Research and Graduate Studies, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
3
|
Li J, Chen Y, Yu Q, Li S, Zhang X, Cheng Y, Fu X, Li J, Zhu L. Estrogen receptor β alleviates colitis in intestinal epithelial cells and activates HIF-1a and ATG-9a-mediated autophagy. Exp Cell Res 2025; 447:114520. [PMID: 40107441 DOI: 10.1016/j.yexcr.2025.114520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Estrogen receptor β (ERβ) plays a pivotal role in regulating intestinal epithelial function and inflammation. Its involvement in inflammatory bowel diseases (IBD), particularly in ulcerative colitis (UC), remains poorly understood, despite emerging evidence pointing to its anti-inflammatory properties. This study investigated ERβ expression in UC patients using quantitative PCR, Western blot, and immunofluorescence. To investigate the functional role of ERβ, a DSS-induced colitis mouse model and LPS-treated HT-29 cells were used. Autophagy activity was evaluated through Western blot, transmission electron microscopy (TEM), and autophagy inhibitors. Co-immunoprecipitation (Co-IP) and dual luciferase reporter assays were employed to explore the interaction between ERβ and hypoxia-inducible factor-1α (HIF-1α), as well as the regulation of ATG-9a expression. The results demonstrated that ERβ expression was significantly downregulated in the inflammatory colons of UC patients. In vivo, ERβ activation by ERB041 alleviated DSS-induced colitis in mice, reducing weight loss, histopathological damage, and inflammatory cytokine levels. In vitro, ERB041 enhanced autophagy in LPS-treated HT-29 cells, accompanied by a reduction in pro-inflammatory cytokines. Furthermore, ERβ activation promoted the expression of tight junction proteins and preserved epithelial barrier integrity. Co-IP and dual luciferase assays revealed that ERβ interacted with HIF-1α and modulated ATG-9a-mediated autophagy. These results indicate that ERβ alleviates intestinal inflammation and activates HIF-1a and ATG-9a-mediated autophagy, providing new insights into the therapeutic potential of targeting ERβ in UC and highlighting its role in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Junrong Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Division of Gastroenterology, Chongqing Hospital Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Chongqing, China
| | - Yidong Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Yu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaopeng Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiamin Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Wu C, Zhang Y, Zhou Z, Zhang K, Zhou Y, Tang J, Zhang R, Li H, Wu F, Bai S, Wang X, Lyu Y. A Novel Selenium-Based Nanozyme (GSH-Se) Ameliorates Colitis in Mice by Modulating the Nrf2/Keap1 and GPx4 Pathways. Int J Mol Sci 2025; 26:1866. [PMID: 40076493 PMCID: PMC11900211 DOI: 10.3390/ijms26051866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Combination of selenium (Se) and glutathione peroxidase (GPx) can reduce the dose of Se used while concurrently exploiting their antioxidative performance, which can be used as a potential treatment for ulcerative colitis. Nanozymes possess higher stability, are more economical, and have more multifunctionalities than natural enzymes and thus could be an ideal approach for their combination. Therefore, this study synthesised a nanozyme using glutathione (GSH) and Se-GSH-Se-and evaluated its alleviating effects on colitis in mice induced by dextran sulphate sodium salt (DSS). Three doses of GSH-Se, 6 mM, 12 mM, and 18 mM were supplemented in DSS-induced colitis in mice. Findings showed that GSH-Se supplementation ameliorated colitis by improving the colonic mucosal integrity, reducing inflammatory responses and oxidative stress, and alleviating gut microbiota imbalance in mice with DSS-induced colitis. Moreover, an in vitro experiment was performed to unravel the molecular mechanism by which GSH-Se ameliorated colitis in mice, based on lipopolysaccharide-induced inflammation in mouse colon epithelial cells. The results suggested that the alleviating effects of GSH-Se on mouse colitis was likely mediated by the activation of the Nrf2/Keap1 (nuclear factor E2-related factor 2/Kelch-like ECH-associated protein 1) and GPx4 signalling pathways.
Collapse
Affiliation(s)
- Caimei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Yuwei Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Ziyun Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Kun Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Yixuan Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Ruinan Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Fali Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Shipping Bai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Lyu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Agriculture and Rural Affairs, Ministry of Education, Chengdu 611130, China
| |
Collapse
|
5
|
Mukherjee S, Chopra A, Karmakar S, Bhat SG. Periodontitis increases the risk of gastrointestinal dysfunction: an update on the plausible pathogenic molecular mechanisms. Crit Rev Microbiol 2025; 51:187-217. [PMID: 38602474 DOI: 10.1080/1040841x.2024.2339260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Periodontitis is an immuno-inflammatory disease of the soft tissues surrounding the teeth. Periodontitis is linked to many communicable and non-communicable diseases such as diabetes, cardiovascular disease, rheumatoid arthritis, and cancers. The oral-systemic link between periodontal disease and systemic diseases is attributed to the spread of inflammation, microbial products and microbes to distant organ systems. Oral bacteria reach the gut via swallowed saliva, whereby they induce gut dysbiosis and gastrointestinal dysfunctions. Some periodontal pathogens like Porphyromonas. gingivalis, Klebsiella, Helicobacter. Pylori, Streptococcus, Veillonella, Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus, Haemophilus, Aggregatibacter actinomycetomcommitans and Streptococcus mutans can withstand the unfavorable acidic, survive in the gut and result in gut dysbiosis. Gut dysbiosis increases gut inflammation, and induce dysplastic changes that lead to gut dysfunction. Various studies have linked oral bacteria, and oral-gut axis to various GIT disorders like inflammatory bowel disease, liver diseases, hepatocellular and pancreatic ductal carcinoma, ulcerative colitis, and Crohn's disease. Although the correlation between periodontitis and GIT disorders is well established, the intricate molecular mechanisms by which oral microflora induce these changes have not been discussed extensively. This review comprehensively discusses the intricate and unique molecular and immunological mechanisms by which periodontal pathogens can induce gut dysbiosis and dysfunction.
Collapse
Affiliation(s)
- Sayantan Mukherjee
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya Giliyar Bhat
- Department of Preventive Dental Sciences, Division of Periodontology, College of Dental Surgery, Iman Abdulrahman Bin Faizal University, Dammam, Saudi Arabia
| |
Collapse
|
6
|
Park JW, Rarison RH, Truong VL, Jeong WS. Exploring the Therapeutic Potentials and Molecular Mechanisms of Coscinium fenestratum Alkaloids in Ulcerative Colitis: An Integrative Network Pharmacology and Molecular Docking Approach. Prev Nutr Food Sci 2024; 29:441-453. [PMID: 39759821 PMCID: PMC11699582 DOI: 10.3746/pnf.2024.29.4.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025] Open
Abstract
Coscinium fenestratum, a medicinal plant traditionally used in Southeast Asia, exerts protective effects against various inflammatory diseases, primarily due to its rich alkaloid content. Despite substantial evidence supporting its anti-inflammatory properties, the biological activities of C. fenestratum are unclear. This study aimed to elucidate anticolitis mechanisms of C. fenestratum alkaloids (CFAs) using an integrative approach of network pharmacology and molecular docking analyses. Key active alkaloids and core target genes were identified through pharmacological and protein-protein interaction networks. The core targets were enriched in the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways to determine the functional properties of active CFA. Finally, the binding affinity of the key compounds with the core targets was determined using molecular docking. The results showed that 11 active CFAs interactively interfered with 10 hub genes related to ulcerative colitis, including prostaglandin-endoperoxide synthase 2 (PTGS2), selectin E (SELE), kinase insert domain receptor (KDR), fms-related receptor tyrosine kinase 1 (FLT1), intracellular adhesion molecule 1 (ICAM1), C-X-C motif chemokine receptor 4 (CXCR4), hypoxia-inducible factor-1 (HIF1A), matrix metalloproteinase (MMP)-2, MMP3, and MMP9, which were functionally involved in the immunological response, tumor necrosis factor signaling pathway, and interleukin-17 signaling pathway. The molecular docking results indicated that CFA compounds had a strong binding affinity for the hub genes. The findings reveal, for the first time, a therapeutic role of CFA in alleviating ulcerative colitis through its predicted interactions with relevant biological targets.
Collapse
Affiliation(s)
- Ji-Won Park
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | | | - Van-Long Truong
- Food and Bio-industry Research Institute, School of Food Science & Biotechnology College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Woo-Sik Jeong
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Food and Bio-industry Research Institute, School of Food Science & Biotechnology College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
7
|
Coll E, Cigarran S, Portolés J, Cases A. Gut Dysbiosis and Its Role in the Anemia of Chronic Kidney Disease. Toxins (Basel) 2024; 16:495. [PMID: 39591250 PMCID: PMC11598790 DOI: 10.3390/toxins16110495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The gut dysbiosis present in chronic kidney disease (CKD) has been associated with anemia. Factors such as the accumulation of gut-derived uremic toxins, increased gut barrier permeability-induced inflammation, and a reduced intestinal production of short-chain fatty acids (SCFAs), all associated with changes in the intestinal microbiota composition in CKD, may lead to the development or worsening of anemia in renal patients. Understanding and addressing these mechanisms related to gut dysbiosis in CKD patients can help to delay the development of anemia and improve its control in this population. One approach is to avoid or reduce the use of drugs linked to gut dysbiosis in CKD, such as phosphate binders, oral iron supplementation, antibiotics, and others, unless they are indispensable. Another approach involves introducing dietary changes that promote a healthier microbiota and/or using prebiotics, probiotics, or symbiotics to improve gut dysbiosis in this setting. These measures can increase the presence of SCFA-producing saccharolytic bacteria and reduce proteolytic bacteria, thereby lowering the production of gut-derived uremic toxins and inflammation. By ameliorating CKD-related gut dysbiosis, these strategies can also improve the control of renal anemia and enhance the response to erythropoiesis-stimulating agents (ESAs) in ESA-resistant patients. In this review, we have explored the relationship between gut dysbiosis in CKD and renal anemia and propose feasible solutions, both those already known and potential future treatments.
Collapse
Affiliation(s)
- Elisabet Coll
- Servei de Nefrologia, Fundacio Puigvert, 08025 Barcelona, Spain
- Anemia Working Group of the Spanish Society of Nephrology, 39008 Santander, Spain; (J.P.); (A.C.)
| | | | - Jose Portolés
- Anemia Working Group of the Spanish Society of Nephrology, 39008 Santander, Spain; (J.P.); (A.C.)
- Ressearch Net RICORS 2030 Instituto de Salud Carlos III ISCIII, 28029 Madrid, Spain
- Nephrology Department, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
- Medicine Department, Facultad de Medicina, Research Institute Puerta de Hierro Segovia de Arana (IDIPHISA), Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Aleix Cases
- Anemia Working Group of the Spanish Society of Nephrology, 39008 Santander, Spain; (J.P.); (A.C.)
- Nephrology Unit, Hospital Clinic, 08036 Barcelona, Spain
| |
Collapse
|
8
|
Yang L, Hu M, Shao J. Integration of Gut Mycobiota and Oxidative Stress to Decipher the Roles of C-Type Lectin Receptors in Inflammatory Bowel Diseases. Immunol Invest 2024; 53:1177-1204. [PMID: 39115960 DOI: 10.1080/08820139.2024.2388164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) and Crohn's disease (CD) are two subtypes of inflammatory bowel disease (IBD) with rapidly increased incidence worldwide. Although multiple factors contribute to the occurrence and progression of IBD, the role of intestinal fungal species (gut mycobiota) in regulating the severity of these conditions has been increasingly recognized. C-type lectin receptors (CLRs) on hematopoietic cells, including Dectin-1, Dectin-2, Dectin-3, Mincle and DC-SIGN, are a group of pattern recognition receptors (PRRs) that primarily recognize fungi and mediate defense responses, such as oxidative stress. Recent studies have demonstrated the indispensable role of CLRs in protecting the colon from intestinal inflammation and mucosal damage. METHODS AND RESULTS This review provides a comprehensive overview of the role of CLRs in the pathogenesis of IBD. Given the significant impact of mycobiota and oxidative stress in IBD, this review also discusses recent advancements in understanding how these factors exacerbate or ameliorate IBD. Furthermore, the latest developments in CLR-guided IBD therapy are examined to highlight the modulation of CLRs in fungal recognition and oxidative burst during the IBD process. CONCLUSION This review emphasizes the importance of CLRs in IBD, offering new perspectives on the etiology and therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui 230012, P. R. China
| | - Min Hu
- Department of pathology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui 230012, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, P. R. China
| |
Collapse
|
9
|
Liu H, Guan L, Su X, Zhao L, Shu Q, Zhang J. A broken network of susceptibility genes in the monocytes of Crohn's disease patients. Life Sci Alliance 2024; 7:e202302394. [PMID: 38925865 PMCID: PMC11208737 DOI: 10.26508/lsa.202302394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Genome-wide association studies have identified over 200 genetic loci associated with inflammatory bowel disease; however, the mechanism of such a large amount of susceptibility genes remains uncertain. In this study, we integrated bioinformatics analysis and two independent single-cell transcriptome datasets to investigate the expression network of 232 susceptibility genes in Crohn's disease (CD) patients and healthy controls. The study revealed that most of the susceptibility genes are specifically and strictly expressed in the monocytes of the human intestinal tract. The susceptibility genes established a network within the monocytes of health control. The robustness of a gene network may prevent disease onset that is influenced by the genetic and environmental alteration in the expression of susceptibility genes. In contrast, we showed a sparse network in pediatric/adult CD patients, suggesting the broken network contributed to the CD etiology. The network status of susceptibility genes at the single-cell level of monocytes provided novel insight into the etiology.
Collapse
Affiliation(s)
- Hankui Liu
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, China
- BGI Genomics, Shenzhen, China
| | - Liping Guan
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, China
- BGI Genomics, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Su
- BGI Genomics, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lijian Zhao
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, China
- BGI Genomics, Shenzhen, China
- Hebei Medical University, Shijiazhuang, China
| | - Qing Shu
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jianguo Zhang
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, China
- BGI Research, Shenzhen, China
- Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Li Z, Han D, Li Z, Luo L. Hypoxia-Induced Adaptations of Embryonic Fibroblasts: Implications for Developmental Processes. BIOLOGY 2024; 13:598. [PMID: 39194536 DOI: 10.3390/biology13080598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Animal embryonic development occurs under hypoxia, which can promote various developmental processes. Embryonic fibroblasts, which can differentiate into bone and cartilage and secrete various members of the collagen protein family, play essential roles in the formation of embryonic connective tissues and basement membranes. However, the adaptations of embryonic fibroblasts under hypoxia remain poorly understood. In this study, we investigated the effects of hypoxia on mouse embryonic fibroblasts (MEFs). We found that hypoxia can induce migration, promote metabolic reprogramming, induce the production of ROS and apoptosis, and trigger the activation of multiple signaling pathways of MEFs. Additionally, we identified several hypoxia-inducible genes, including Proser2, Bean1, Dpf1, Rnf128, and Fam71f1, which are regulated by HIF1α. Furthermore, we demonstrated that CoCl2 partially mimics the effects of low oxygen on MEFs. However, we found that the mechanisms underlying the production of ROS and apoptosis differ between hypoxia and CoCl2 treatment. These findings provide insights into the complex interplay between hypoxia, fibroblasts, and embryonic developmental processes.
Collapse
Affiliation(s)
- Zeyu Li
- College of Pharmaceutical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
- Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen 518055, China
| | - Delong Han
- Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen 518055, China
| | - Zhenchi Li
- Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen 518055, China
| | - Lingjie Luo
- Marshall Laboratory of Biomedical Engineering, Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen 518055, China
| |
Collapse
|
11
|
Madhvapathy SR, Bury MI, Wang LW, Ciatti JL, Avila R, Huang Y, Sharma AK, Rogers JA. Miniaturized implantable temperature sensors for the long-term monitoring of chronic intestinal inflammation. Nat Biomed Eng 2024; 8:1040-1052. [PMID: 38499643 DOI: 10.1038/s41551-024-01183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Diagnosing and monitoring inflammatory bowel diseases, such as Crohn's disease, involves the use of endoscopic imaging, biopsies and serology. These infrequent tests cannot, however, identify sudden onsets and severe flare-ups to facilitate early intervention. Hence, about 70% of patients with Crohn's disease require surgical intestinal resections in their lifetime. Here we report wireless, miniaturized and implantable temperature sensors for the real-time chronic monitoring of disease progression, which we tested for nearly 4 months in a mouse model of Crohn's-disease-like ileitis. Local measurements of intestinal temperature via intraperitoneally implanted sensors held in place against abdominal muscular tissue via two sutures showed the development of ultradian rhythms at approximately 5 weeks before the visual emergence of inflammatory skip lesions. The ultradian rhythms showed correlations with variations in the concentrations of stress hormones and inflammatory cytokines in blood. Decreasing average temperatures over the span of approximately 23 weeks were accompanied by an increasing percentage of inflammatory species in ileal lesions. These miniaturized temperature sensors may aid the early treatment of inflammatory bowel diseases upon the detection of episodic flare-ups.
Collapse
Affiliation(s)
- Surabhi R Madhvapathy
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Matthew I Bury
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Chicago, IL, USA
| | - Larry W Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joanna L Ciatti
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Rice University, Houston, TX, USA
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Department of Civil Engineering, Northwestern University, Evanston, IL, USA
| | - Arun K Sharma
- Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Stanley Manne Children's Research Institute, Louis A. Simpson and Kimberly K. Querrey Biomedical Research Center, Chicago, IL, USA.
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
12
|
Dzhalilova D, Silina M, Tsvetkov I, Kosyreva A, Zolotova N, Gantsova E, Kirillov V, Fokichev N, Makarova O. Changes in the Expression of Genes Regulating the Response to Hypoxia, Inflammation, Cell Cycle, Apoptosis, and Epithelial Barrier Functioning during Colitis-Associated Colorectal Cancer Depend on Individual Hypoxia Tolerance. Int J Mol Sci 2024; 25:7801. [PMID: 39063041 PMCID: PMC11276979 DOI: 10.3390/ijms25147801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
One of the factors contributing to colorectal cancer (CRC) development is inflammation, which is mostly hypoxia-associated. This study aimed to characterize the morphological and molecular biological features of colon tumors in mice that were tolerant and susceptible to hypoxia based on colitis-associated CRC (CAC). Hypoxia tolerance was assessed through a gasping time evaluation in a decompression chamber. One month later, the animals were experimentally modeled for colitis-associated CRC by intraperitoneal azoxymethane administration and three dextran sulfate sodium consumption cycles. The incidence of tumor development in the distal colon in the susceptible to hypoxia mice was two times higher and all tumors (100%) were represented by adenocarcinomas, while in the tolerant mice, only 14% were adenocarcinomas and 86% were glandular intraepithelial neoplasia. The tumor area assessed on serially stepped sections was statistically significantly higher in the susceptible animals. The number of macrophages, CD3-CD19+, CD3+CD4+, and NK cells in tumors did not differ between animals; however, the number of CD3+CD8+ and vimentin+ cells was higher in the susceptible mice. Changes in the expression of genes regulating the response to hypoxia, inflammation, cell cycle, apoptosis, and epithelial barrier functioning in tumors and the peritumoral area depended on the initial mouse's hypoxia tolerance, which should be taken into account for new CAC diagnostics and treatment approaches development.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Maria Silina
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Ivan Tsvetkov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Natalia Zolotova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Elena Gantsova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vladimir Kirillov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Health of Russian Federation, 117513 Moscow, Russia;
| | - Nikolay Fokichev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| |
Collapse
|
13
|
Li J, Dan W, Zhang C, Liu N, Wang Y, Liu J, Zhang S. Exploration of Berberine Against Ulcerative Colitis via TLR4/NF-κB/HIF-1α Pathway by Bioinformatics and Experimental Validation. Drug Des Devel Ther 2024; 18:2847-2868. [PMID: 39006190 PMCID: PMC11246092 DOI: 10.2147/dddt.s436359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose This study aimed to delineate the molecular processes underlying the therapeutic effects of berberine on UC by employing network pharmacology tactics, molecular docking, and dynamic simulations supported by empirical validations both in vivo and in vitro. Patients and Methods We systematically screened potential targets and relevant pathways affected by berberine for UC treatment from comprehensive databases, including GeneCards, DisGeNET, and GEO. Molecular docking and simulation protocols were used to assess the interaction stability between berberine and its principal targets. The predictions were validated using both a DSS-induced UC mouse model and a lipopolysaccharide (LPS)-stimulated NCM460 cellular inflammation model. Results Network pharmacology analysis revealed the regulatory effect of the TLR4/NF-κB/HIF-1α pathway in the ameliorative action of berberine in UC. Docking and simulation studies predicted the high-affinity interactions of berberine with pivotal targets: TLR4, NF-κB, HIF-1α, and the HIF inhibitor KC7F2. Moreover, in vivo analyses demonstrated that berberine attenuates clinical severity, as reflected by decreased disease activity index (DAI) scores, reduced weight loss, and mitigated intestinal inflammation in DSS-challenged mice. These outcomes include suppression of the proinflammatory cytokines IL-6 and TNF-α and downregulation of TLR4/NF-κB/HIF-1α mRNA and protein levels. Correspondingly, in vitro findings indicate that berberine decreases cellular inflammatory injury and suppresses TLR4/NF-κB/HIF-1α signaling, with notable effectiveness similar to that of the HIF-1α inhibitor KC7F2. Conclusion Through network pharmacology analysis and experimental substantiation, this study confirmed that berberine enhances UC treatment outcomes by inhibiting the TLR4/NF-κB/HIF-1α axis, thereby mitigating inflammatory reactions and improving colonic pathology.
Collapse
Affiliation(s)
- Jilei Li
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| | - Wenchao Dan
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| | - Chenchen Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Nian Liu
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yichong Wang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| | - Jixiang Liu
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Shengsheng Zhang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| |
Collapse
|
14
|
Chen W, Huang C, Tang D, Wan J, Zhou X, Wu C, Yang X. Huangtu decoction alleviates chronic diarrhea of spleen-yang deficiency in mice by altering host metabolome and intestinal microbiota composition. Am J Transl Res 2024; 16:2248-2262. [PMID: 39006272 PMCID: PMC11236646 DOI: 10.62347/ihnx2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/06/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Huangtu decoction (HTD), a traditional Chinese medicine recipe, warms the spleen, nourishes the blood, and stops bleeding. It has been used to treat dysentery, gastrointestinal bleeding, diarrhea, and other symptoms caused by spleen-yang deficiency for more than 2,000 years in China. However, the mechanism underlying the treatment of chronic diarrhea due to spleen-yang deficiency (CDSD) using HTD remains unclear. AIMS This study investigated whether HTD could mediate intestinal flora and serum metabolites to improve CDSD symptoms using a mouse model. METHODS A CDSD mouse model induced by senna and an abnormal diet was constructed. The regulatory effects of HTD at 12.5, 25.0, and 50.0 g/kg/d on CDSD mice were assessed by measuring their bodyweight, diarrhea rate, loose stool rate, and histopathology. Changes in the intestinal flora of CDSD mice were analyzed by 16S rRNA gene sequencing. Untargeted serum metabolomic analysis was performed using ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS). RESULTS HTD had a modulating effect on CDSD by reducing the weight loss, diarrhea rate, loose stool rate, and pathologic damage. Intestinal flora analysis showed that HTD altered the community composition by decreasing the abundance of Allobaculum, Lactobacillus, and Ruminococcus. Serum metabolomics revealed that ascorbate and aldarate metabolism, aldosterone synthesis and secretion, platelet activation, hypoxia-inducible factor 1 signaling pathway, inositol phosphate metabolism, phosphatidylinositol signaling, galactose metabolism, and alpha-linolenic acid metabolism were modulated after HTD treatment. CONCLUSION HTD may alleviate CDSD symptoms by reducing weight loss, diarrhea rate, loose stool rate, and pathologic damage caused by modeling and regulating intestinal flora and serum metabolites in CDSD mice.
Collapse
Affiliation(s)
- Wenwen Chen
- Department of Pharmacy, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China Chengdu 610091, Sichuan, China
| | - Chunyan Huang
- Department of Quality Assurance and Scientific Research, Chengdu Institute for Drug Control Chengdu 610045, Sichuan, China
| | - Dandan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137, Sichuan, China
| | - Jun Wan
- College of Life Science and Engineering, Southwest Jiaotong University Chengdu 610031, Sichuan, China
| | - Xia Zhou
- College of Life Science and Engineering, Southwest Jiaotong University Chengdu 610031, Sichuan, China
| | - Chunjie Wu
- Department of Quality Assurance and Scientific Research, Chengdu Institute for Drug Control Chengdu 610045, Sichuan, China
| | - Xiao Yang
- Department of Obstetrics, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China Chengdu 610091, Sichuan, China
| |
Collapse
|
15
|
Wang C, Chu Q, Dong W, Wang X, Zhao W, Dai X, Liu W, Wang B, Liu T, Zhong W, Jiang C, Cao H. Microbial metabolite deoxycholic acid-mediated ferroptosis exacerbates high-fat diet-induced colonic inflammation. Mol Metab 2024; 84:101944. [PMID: 38642891 PMCID: PMC11070703 DOI: 10.1016/j.molmet.2024.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
High-fat diet (HFD) has long been recognized as risk factors for the development and progression of ulcerative colitis (UC), but the exact mechanism remained elusive. Here, HFD increased intestinal deoxycholic acid (DCA) levels, and DCA further exacerbated colonic inflammation. Transcriptome analysis revealed that DCA triggered ferroptosis pathway in colitis mice. Mechanistically, DCA upregulated hypoxia-inducible factor-2α (HIF-2α) and divalent metal transporter-1 (DMT1) expression, causing the ferrous ions accumulation and ferroptosis in intestinal epithelial cells, which was reversed by ferroptosis inhibitor ferrostatin-1. DCA failed to promote colitis and ferroptosis in intestine-specific HIF-2α-null mice. Notably, byak-angelicin inhibited DCA-induced pro-inflammatory and pro-ferroptotic effects through blocking the up-regulation of HIF-2α by DCA. Moreover, fat intake was positively correlated with disease activity in UC patients consuming HFD, with ferroptosis being more pronounced. Collectively, our findings demonstrated that HFD exacerbated colonic inflammation by promoting DCA-mediated ferroptosis, providing new insights into diet-related bile acid dysregulation in UC.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qiao Chu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wenjing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Dai
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
16
|
Zhang X, Zhou L, Qian X. The Mechanism of "Treating Different Diseases with the Same Treatment" by Qiangji Jianpi Decoction in Ankylosing Spondylitis Combined with Inflammatory Bowel Disease: A Comprehensive Analysis of Multiple Methods. Gastroenterol Res Pract 2024; 2024:9709260. [PMID: 38808131 PMCID: PMC11132832 DOI: 10.1155/2024/9709260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Background Ankylosing spondylitis (AS) and inflammatory bowel disease (IBD) are prevalent autoimmune disorders that often co-occur, posing significant treatment challenges. This investigation adopts a multidisciplinary strategy, integrating bioinformatics, network pharmacology, molecular docking, and Mendelian randomization, to elucidate the relationship between AS and IBD and to investigate the potential mechanisms of traditional Chinese medicine formulations, represented by Qiangji Jianpi (QJJP) decoction, in treating these comorbid conditions. Methods We utilized databases to pinpoint common targets among AS, IBD, and QJJP decoction's active compounds through intersection analysis. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we mapped a network in Cytoscape, isolating critical targets. Molecular docking with AutoDock validated the affinity between targets and compounds. ROC analysis and dataset validation assessed diagnostic performance, while Gene Set Enrichment Analysis (GSEA) offered pathway insights. Mendelian randomization explored the AS-IBD causal relationship. Results Screening identified 105 targets for QJJP decoction, 414 for AS, and 2420 for IBD, with 85 overlapping. These targets predominantly participate in organismal responses and DNA transcription factor binding, with a significant cellular presence in the endoplasmic reticulum and vesicle lumen. Molecular docking, facilitated by Cytoscape, confirmed IL1A, IFNG, TGFB1, and EDN1 as critical targets, with IFNG demonstrating diagnostic potential through GEO dataset validation. The integration of GSEA with network pharmacology highlighted the therapeutic significance of the relaxin, osteoclast differentiation, HIF-1, and AGE-RAGE signaling pathways in QJJP decoction's action. Mendelian randomization analysis indicated a positive causal relationship between IBD and AS, pinpointing rs2193041 as a key SNP influencing IFNG. Conclusion Based on the principle of "treating different diseases with the same method" in traditional Chinese medicine theory, we explored the intricate mechanisms through which QJJP decoction addresses AS and IBD comorbidity. Our research spotlighted the pivotal role of the IFNG gene. IFNG emerges not only as a key therapeutic target but also assumes significance as a potential diagnostic biomarker through its genetic underpinnings. This investigation establishes a solid base for subsequent experimental inquiries. Our findings introduce novel approaches for incorporating traditional Chinese medicine into the treatment of AS-IBD comorbidity, setting the stage for groundbreaking research directions.
Collapse
Affiliation(s)
- Xuhong Zhang
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Lamei Zhou
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Xian Qian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Yang MJ, Zhang YN, Qiao Z, Xu RY, Chen SM, Hu P, Yu HL, Pan Y, Cao J. An investigation into the HIF-dependent intestinal barrier protective mechanism of Qingchang Wenzhong decoction in ulcerative colitis management. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117807. [PMID: 38280661 DOI: 10.1016/j.jep.2024.117807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease affecting the colon and rectum with an etiology that remains elusive. Traditional Chinese medicine (TCM) has been widely used on long-term UC treatment to better maintain the efficacy than traditional aminosalicylic acid or glucocorticosteroids and to ease financial burden of patients. Qingchang Wenzhong Decoction (QCWZD) is a modern TCM decoction with established clinical efficacy but the mechanism of its protection on intestinal barrier function remains unclear. AIM OF THE STUDY Current findings highlight that the activation of the hypoxia inducible factor (HIF) pathway can facilitate the repair of intestinal epithelium barrier. This study is to investigate the protective effects of QCWZD and its HIF-targeted ingredients on hypoxia-dependent intestinal barrier. METHODS The mice model of UC was induced by dextran sulfate sodium (DSS). Disease activity index (DAI) and histopathology scores and colon length were used to measure the severity of colitis. The DAO activity in serum and protein expression of tight junction (TJ) proteins were detected to explore the function of intestinal barrier. The protein levels of HIF-1α and its downstream gene heme oxygenase-1 (HO-1) were measured as well. HIF-targeted active ingredients in QCWZD were selected by network pharmacology and molecular docking. Protective effects of six constituents on HIF-related anti-oxidative and barrier protective pathway were evaluated by lipopolysaccharide (LPS)-induced HT29 and RAW264.7 cells, through the measurement of the production of ROS and mRNA level of pro-inflammatory cytokines. HIF-1α knockdown was carried out to explore the correlation of protection effects with HIF-related pathway of the active ingredients. RESULTS QCWZD effectively alleviated colitis induced by DSS and demonstrated a protective effect on intestinal barrier function by upregulating HIF-related pathways. Six specific ingredients in QCWZD, targeting HIF, successfully reduced the production of cellular ROS and proinflammatory cytokines in LPS-induced cells. It is noteworthy that the barrier protection provided by these molecules is intricately linked with the HIF-related pathway. CONCLUSIONS This study elucidates the HIF-related molecular mechanism of QCWZD in protecting the function of the epithelial barrier. Six compounds targeting the activation of the HIF-dependent pathway were demonstrated to unveil a novel therapeutic approach for managing UC.
Collapse
Affiliation(s)
- Meng-Juan Yang
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Yi-Nuo Zhang
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Zhi Qiao
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Rui-Ying Xu
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Si-Min Chen
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Po Hu
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Hong-Li Yu
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Yang Pan
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Jing Cao
- School of pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
18
|
Gao X, Zhang Y, Zhu Q, Han Y, Jia R, Zhang W. Effects of myeloperoxidase on inflammatory responses with hypoxia in Citrobacter rodentium-infectious mice. Immun Inflamm Dis 2024; 12:e1157. [PMID: 38415976 PMCID: PMC10836036 DOI: 10.1002/iid3.1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/29/2024] Open
Abstract
PURPOSE Myeloperoxidase (MPO) has been identified as a mediator in various inflammatory diseases. Bacterial infection of the intestine and hypoxia can both lead to inflammatory responses, but the role of MPO in these phenomena remains unclear. METHODS By building the MPO-/- mice, we evaluated relevant inflammatory factors and tissue damage in mice with intestinal Citrobacter rodentium infection and hypoxia. The body weight and excreted microorganisms were monitored. Intestinal tissues were collected 7 days after bacterial infection under hypoxia to undergo haematoxylin-eosin staining and assess the degree of pathological damage. ELISA assays were performed to quantify the serum levels of TNF-α, IFN-γ, IL-6, and IL-1β inflammatory cytokines. PCR, WB, and IF assays were conducted to determine the expression of chemokines MCP1, MIP2, and KC in the colon and spleen. RESULTS The C. rodentium infection and hypoxia caused weight loss, intestinal colitis, and splenic inflammatory cells active proliferation in wild-type mice. MPO deficiency alleviated this phenomenon. MPO-/- mice also displayed a significant decline in bacteria clearing ability. The level of TNF-α in the serum and spleen was both lower in MPO-/- hypoxia C. rodentium-infected mice than that in wild-type mice. The chemokines expression levels of MIP2, KC, and MCP1 in the spleen and colon of each bacterial infected group were significantly increased (p < .05), while in hypoxia, the factors in the spleen and colon were decreased (p < .05). MPO deficiency was found to lower the levels of these chemokines compared with wild-type mice. CONCLUSION MPO plays an important role of the inflammatory responses in infectious enteritis and hypoxia in mice, and the loss of MPO may greatly reduce the body's inflammatory responses to fight diseases.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Basic Medical Sciences, Medical CollegeQinghai UniversityXiningQinghaiChina
- Research Centre for High Altitude Medicine, Research Centre for High Altitude MedicineQinghai UniversityXiningQinghaiChina
- The Key Laboratory of High‐Altitude Medical Application of Qinghai ProvinceXiningQinghaiChina
| | - Yu Zhang
- Department of Basic Medical Sciences, Medical CollegeQinghai UniversityXiningQinghaiChina
| | - Qinfang Zhu
- Research Centre for High Altitude Medicine, Research Centre for High Altitude MedicineQinghai UniversityXiningQinghaiChina
- The Key Laboratory of High‐Altitude Medical Application of Qinghai ProvinceXiningQinghaiChina
| | - Ying Han
- Department of Basic Medical Sciences, Medical CollegeQinghai UniversityXiningQinghaiChina
- Research Centre for High Altitude Medicine, Research Centre for High Altitude MedicineQinghai UniversityXiningQinghaiChina
- The Key Laboratory of High‐Altitude Medical Application of Qinghai ProvinceXiningQinghaiChina
| | - Ruhan Jia
- Department of Basic Medical Sciences, Medical CollegeQinghai UniversityXiningQinghaiChina
- Research Centre for High Altitude Medicine, Research Centre for High Altitude MedicineQinghai UniversityXiningQinghaiChina
- The Key Laboratory of High‐Altitude Medical Application of Qinghai ProvinceXiningQinghaiChina
| | - Wei Zhang
- Department of Basic Medical Sciences, Medical CollegeQinghai UniversityXiningQinghaiChina
- Research Centre for High Altitude Medicine, Research Centre for High Altitude MedicineQinghai UniversityXiningQinghaiChina
- The Key Laboratory of High‐Altitude Medical Application of Qinghai ProvinceXiningQinghaiChina
| |
Collapse
|
19
|
Xu Q, Yao Y, Liu Y, Zhang J, Mao L. The mechanism of traditional medicine in alleviating ulcerative colitis: regulating intestinal barrier function. Front Pharmacol 2023; 14:1228969. [PMID: 37876728 PMCID: PMC10590899 DOI: 10.3389/fphar.2023.1228969] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Ulcerative colitis (UC) is an idiopathic inflammatory disease mainly affects the large bowel and the rectum. The pathogenesis of this disease has not been fully elucidated, while the disruption of the intestinal barrier function triggered by various stimulating factors related to the host genetics, immunity, gut microbiota, and environment has been considered to be major mechanisms that affect the development of UC. Given the limited effective therapies, the treatment of this disease is not ideal and its incidence and prevalence are increasing. Therefore, developing new therapies with high efficiency and efficacy is important for treating UC. Many recent studies disclosed that numerous herbal decoctions and natural compounds derived from traditional herbal medicine showed promising therapeutic activities in animal models of colitis and have gained increasing attention from scientists in the study of UC. Some of these decoctions and compounds can effectively alleviate colonic inflammation and relieve clinical symptoms in animal models of colitis via regulating intestinal barrier function. While no study is available to review the underlying mechanisms of these potential therapies in regulating the integrity and function of the intestinal barrier. This review aims to summarize the effects of various herbal decoctions or bioactive compounds on the severity of colonic inflammation via various mechanisms, mainly including regulating the production of tight junction proteins, mucins, the composition of gut microbiota and microbial-associated metabolites, the infiltration of inflammatory cells and mediators, and the oxidative stress in the gut. On this basis, we discussed the related regulators and the affected signaling pathways of the mentioned traditional medicine in modulating the disruption or restoration of the intestinal barrier, such as NF-κB/MAPK, PI3K, and HIF-1α signaling pathways. In addition, the possible limitations of current studies and a prospect for future investigation and development of new UC therapies are provided based on our knowledge and current understanding. This review may improve our understanding of the current progression in studies of traditional medicine-derived therapies in protecting the intestinal barrier function and their roles in alleviating animal models of UC. It may be beneficial to the work of researchers in both basic and translational studies of UC.
Collapse
Affiliation(s)
- Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yuan Yao
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yongchao Liu
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
20
|
Zhong G, He C, Wang S, Lin C, Li M. Research progress on the mechanism of cholesterol-25-hydroxylase in intestinal immunity. Front Immunol 2023; 14:1241262. [PMID: 37720208 PMCID: PMC10500599 DOI: 10.3389/fimmu.2023.1241262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Inflammatory bowel disease (IBD), a general term encompassing Crohn's disease (CD) and ulcerative colitis (UC), and other conditions, is a chronic and relapsing autoimmune disease that can occur in any part of the digestive tract. While the cause of IBD remains unclear, it is acknowledged that the disease has much to do with the dysregulation of intestinal immunity. In the intestinal immune regulatory system, Cholesterol-25-hydroxylase (CH25H) plays an important role in regulating the function of immune cells and lipid metabolism through catalyzing the oxidation of cholesterol into 25-hydroxycholesterol (25-HC). Specifically, CH25H focuses its mechanism of regulating the inflammatory response, signal transduction and cell migration on various types of immune cells by binding to relevant receptors, and the mechanism of regulating lipid metabolism and immune cell function via the transcription factor Sterol Regulator-Binding Protein. Based on this foundation, this article will review the function of CH25H in intestinal immunity, aiming to provide evidence for supporting the discovery of early diagnostic and treatment targets for IBD.
Collapse
Affiliation(s)
| | | | | | | | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Tang X, Hu W, You W, Fang T. Exploration of key ferroptosis-related genes and immune infiltration in Crohn's disease using bioinformatics. Sci Rep 2023; 13:12769. [PMID: 37550393 PMCID: PMC10406931 DOI: 10.1038/s41598-023-40093-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
Crohn's disease (CD) is a type of inflammatory bowel disease (IBD) that manifests mainly as chronic inflammation in different parts of the gastrointestinal tract, and its incidence has come to be increasing in recent years. Ferroptosis, a novel type of programmed cell death, it seems the role of ferroptosis-related biomarkers in CD has not been mentioned. Thus, the role of ferroptosis in CD and its relationship with immune infiltration were explored in this study. The CD dataset was downloaded from the Gene Expression Omnibus database. The validated ferroptosis genes (FRGs) were retrieved from the public FerrDb database. The gene expression matrix of the CD dataset was analyzed with the "limma" package in R language to obtain differentially expressed genes (DEGs) between diseased and healthy samples. Then, intersecting genes between DEGs and FRGs were identified as differentially expressed ferroptosis-associated genes (DE-FRGs). Protein-protein interaction (PPI) network analysis and visualization were carried out with STRING and Cytoscape, and key CD ferroptosis-related genes (CD-FRGs) were identified along with their Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using the clusterProfiler package. Immune cell infiltration was analyzed with CIBERSORT. The correlation between key CD-FRGs and immune-infiltrated cells in CD was studied by Spearman's correlation method. A total of 37 DE-FRGs and 6 key CD-FRGs (CAV1, CD44, HIF1A, IFNG, TIMP1 and TLR4) were identified. GO and KEGG functional analysis indicated these genes enrichment in programmed cell death and apoptotic process, HIF-1 signaling pathway and IBD. Infiltration matrix analysis of immune cells showed abundant T cells CD4 memory activated, M1 macrophages, M2 macrophages, Mast cells activated and Neutrophils in CD intestinal tissues. The 6 key CD-FRGs were correlated with immune-infiltrated cells in CD based on correlation analysis. Taken together, immune cells with abnormal infiltration can be implicated in CD due to ferroptosis. This study identified 6 key CD-FRGs that may be key biomarkers of ferroptosis in CD; they include CAV1, CD44, HIF1A, IFNG, TIMP1 and TLR4. These findings suggest that the immune response is critical in CD caused by ferroptosis through the interaction between key CD-FRGs and immune infiltrating cells.
Collapse
Affiliation(s)
- Xiaoting Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, 362000, Fujian, People's Republic of China
| | - Weitao Hu
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China
| | - Wei You
- Department of Neurosurgery, Zhangzhou Municipal Hospital of Fujian Province and Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, Fujian Province, People's Republic of China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, 362000, Fujian, People's Republic of China.
| |
Collapse
|
22
|
Tai Y, Zheng L, Liao J, Wang Z, Zhang L. Roles of the HIF-1α pathway in the development and progression of keloids. Heliyon 2023; 9:e18651. [PMID: 37636362 PMCID: PMC10448433 DOI: 10.1016/j.heliyon.2023.e18651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Keloids, a pathological scar that is induced by the consequence of aberrant wound healing, is still a major global health concern for its unsatisfactory treatment outcomes. HIF-1α, a main regulator of hypoxia, mainly acts through some proteins or signaling pathways and plays important roles in a variety of biological processes. Accumulating evidence has shown that HIF-1α played a crucial role in the process of keloid formation. In this review, we attempted to summarize the current knowledge on the association between HIF-1α expression and the development and progression of keloids. Through a comprehensive analysis, the molecular mechanisms underlying HIF-1α in keloids were shown to be correlated to the proliferation of fibroblasts, angiogenesis, and collagen deposits. The affected proteins and the signaling pathways were multiple. For instance, HIF-1α was reported to promote keloids formation by enhancing angiogenesis, fibroblast proliferation, and collagen deposition through the activation of periostin PI3K/Akt, TGF-β/Smad and TLR4/MyD88/NF-κB pathway. However, the specific effects of HIF-1α on keloids keloid illnesses in clinical practice is are entirely unclear, and further studies in clinical trials are still warranted. Therefore, an in-depth understanding of the biological mechanisms of HIF-1α in keloid formation is significant to develop promising therapeutic targets for the treatment of keloids in clinical practice.
Collapse
Affiliation(s)
- Yuncheng Tai
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Liying Zheng
- Postgraduate Department, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Jiao Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, China
| | - Zixiong Wang
- Department of Burn and Plastic Surgery, Xinjiang Military General Hospital, Urumqi, 830063, Xinjiang, China
| | - Lai Zhang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
23
|
Ramachandramoorthy H, Dang T, Srinivasa A, Nguyen KT, Nguyen P. Development of a Smart Portable Hypoxic Chamber with Accurate Sensing, Control and Visualization of In Vitro Cell Culture for Replication of Cancer Microenvironment. Cancers (Basel) 2023; 15:3645. [PMID: 37509306 PMCID: PMC10378062 DOI: 10.3390/cancers15143645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Clinical resistance towards treatment is a major concern in cancer therapy. This is due to in vitro studies lacking essential microenvironmental aspects. Tumor-hypoxia is an important pathophysiological phenomenon in numerous malignant tumors. Various studies have shown the importance of a hypoxic microenvironment (HME) in cancer drug resistance and its effects on cellular signaling and metabolism pathways. Most drugs fail in transition from a laboratory to clinical trials because of the variability in the testing microenvironment conditions. It is, thus, very crucial that research work needs to replicate these conditions in vitro to test the drugs and/or drug carriers for cancer therapy. Previous works have used a portable hypoxia chamber to reduce the cell microenvironment to hypoxic conditions. These techniques lack reliability and consistency due to a lack of control and visualization. In this research, we developed a smart portable hypoxia chamber that could accurately control the oxygen inside the portable chamber and have a global visualization. The proposed hypoxia chamber provided ease of use with the ranges of 1% to 20% oxygen with increments of 0.5%, as well as reproducibility and accuracy. The chamber displayed great precision on reaching the set oxygen limit and a high stability in maintaining that set level of oxygen compared to the uncontrolled setup for extended durations (24 h). For instance, at a 2% oxygen level, our automated system maintained this level over 1400 min, whereas the oxygen level fluctuated up to 4.5% in the conventional hypoxic chamber. We have also demonstrated the pitfalls of uncontrolled and non-visualized hypoxia chamber setup and the dire need for our system. The hypoxia-induced factor (HIF-1α) expression in cancer cell lines was tested and compared between the conventional hypoxia setup and our automated hypoxia chamber. We observed that there was a twofold increase in HIF-1α expression in the automated controlled chamber compared to the conventional device. The device also provided real-time sensing, visualization and control of the chamber conditions, which could aid in complex in vitro studies.
Collapse
Affiliation(s)
- Harish Ramachandramoorthy
- Department of Bioengineering, University of Texas, Arlington, TX 76019, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tuan Dang
- Department of Computer Science, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ankitha Srinivasa
- Department of Bioengineering, University of Texas, Arlington, TX 76019, USA
| | - Kytai Truong Nguyen
- Department of Bioengineering, University of Texas, Arlington, TX 76019, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phuc Nguyen
- Department of Computer Science, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
24
|
Roxadustat protect mice from DSS-induced colitis in vivo by up-regulation of TLR4. Genomics 2023; 115:110585. [PMID: 36801437 DOI: 10.1016/j.ygeno.2023.110585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/22/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND The incidence of inflammatory bowel disease (IBD) is growing in the population. At present, the etiology of inflammatory bowel disease remains unclear, and there is no effective and low-toxic therapeutic drug. The role of the PHD-HIF pathway in relieving DSS-induced colitis is gradually being explored. METHODS Wild-type C57BL/6 mice were used as a model of DSS-induced colitis to explore the important role of Roxadustat in alleviating DSS-induced colitis. High-throughput RNA-Seq and qRT-PCR methods were used to screen and verify the key differential genes in the colon of mice between normal saline (NS) and Roxadustat groups. RESULTS Roxadustat could alleviate DSS-induced colitis. Compared with the mice in the NS group, TLR4 were significantly up-regulated in the Roxadustat group. TLR4 KO mice were used to verify the role of TLR4 in the alleviation of DSS-induced colitis by Roxadustat. CONCLUSION Roxadustat has a repairing effect on DSS-induced colitis, and may alleviate DSS-induced colitis by targeting the TLR4 pathway and promote intestinal stem cell proliferation.
Collapse
|
25
|
Peroxiredoxins and Hypoxia-Inducible Factor-1α in Duodenal Tissue: Emerging Factors in the Pathophysiology of Pediatric Celiac Disease Patients. Curr Issues Mol Biol 2023; 45:1779-1793. [PMID: 36826059 PMCID: PMC9954839 DOI: 10.3390/cimb45020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Celiac disease (CD) is an autoimmune enteropathy. Peroxiredoxins (PRDXs) are powerful antioxidant enzymes having an important role in significant cellular pathways including cell survival, apoptosis, and inflammation. This study aimed at investigating the expression levels of all PRDX isoforms (1-6) and their possible relationships with a transcription factor, HIF-1α, in the small intestinal tissue samples of pediatric CD patients. The study groups consisted of first-diagnosed CD patients (n = 7) and non-CD patients with functional gastrointestinal tract disorders as the controls (n = 7). The PRDXs and HIF-1α expression levels were determined by using real-time PCR and Western blotting in duodenal biopsy samples. It was observed that the mRNA and protein expression levels of PRDX 5 were significantly higher in the CD patients, whereas the PRDX 1, -2, and -4 expressions were decreased in each case compared to the control group. No significant differences were detected in the PRDX 3 and PRDX 6 expressions. The expression of HIF-1α was also significantly elevated in CD patients. These findings indicate, for the first time, that PRDXs, particularly PRDX 5, may play a significant role in the pathogenesis of CD. Furthermore, our results suggest that HIF-1α may upregulate PRDX-5 transcription in the duodenal tissue of CD.
Collapse
|
26
|
Hypoxia and Intestinal Inflammation: Common Molecular Mechanisms and Signaling Pathways. Int J Mol Sci 2023; 24:ijms24032425. [PMID: 36768744 PMCID: PMC9917195 DOI: 10.3390/ijms24032425] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The gastrointestinal tract (GI) has a unique oxygenation profile. It should be noted that the state of hypoxia can be characteristic of both normal and pathological conditions. Hypoxia-inducible factors (HIF) play a key role in mediating the response to hypoxia, and they are tightly regulated by a group of enzymes called HIF prolyl hydroxylases (PHD). In this review, we discuss the involvement of inflammation hypoxia and signaling pathways in the pathogenesis of inflammatory bowel disease (IBD) and elaborate in detail on the role of HIF in multiple immune reactions during intestinal inflammation. We emphasize the critical influence of tissue microenvironment and highlight the existence of overlapping functions and immune responses mediated by the same molecular mechanisms. Finally, we also provide an update on the development of corresponding therapeutic approaches that would be useful for treatment or prophylaxis of inflammatory bowel disease.
Collapse
|
27
|
Zhang X, Xiao H, Fu S, Yu J, Cheng Y, Jiang Y. Investigate the genetic mechanisms of diabetic kidney disease complicated with inflammatory bowel disease through data mining and bioinformatic analysis. Front Endocrinol (Lausanne) 2022; 13:1081747. [PMID: 36726458 PMCID: PMC9884696 DOI: 10.3389/fendo.2022.1081747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Patients with diabetic kidney disease (DKD) often have gastrointestinal dysfunction such as inflammatory bowel disease (IBD). This study aims to investigate the genetic mechanism leading to IBD in DKD patients through data mining and bioinformatics analysis. METHODS The disease-related genes of DKD and IBD were searched from the five databases of OMIM, GeneCards, PharmGkb, TTD, and DrugBank, and the intersection part of the two diseases were taken to obtain the risk genes of DKD complicated with IBD. A protein-protein interaction (PPI) network analysis was performed on risk genes, and three topological parameters of degree, betweenness, and closeness of nodes in the network were used to identify key risk genes. Finally, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on the risk genes to explore the related mechanism of DKD merging IBD. RESULTS This study identified 495 risk genes for DKD complicated with IBD. After constructing a protein-protein interaction network and screening for three times, six key risk genes were obtained, including matrix metalloproteinase 2 (MMP2), hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF2), interleukin (IL)-18, IL-13, and C-C motif chemokine ligand 5 (CCL5). Based on GO enrichment analysis, we found that DKD genes complicated with IBD were associated with 3,646 biological processes such as inflammatory response regulation, 121 cellular components such as cytoplasmic vesicles, and 276 molecular functions such as G-protein-coupled receptor binding. Based on KEGG enrichment analysis, we found that the risk genes of DKD combined with IBD were associated with 181 pathways, such as the PI3K-Akt signaling pathway, advanced glycation end product-receptor for AGE (AGE-RAGE) signaling pathway and hypoxia-inducible factor (HIF)-1 signaling pathway. CONCLUSION There is a genetic mechanism for the complication of IBD in patients with CKD. Oxidative stress, chronic inflammatory response, and immune dysfunction were possible mechanisms for DKD complicated with IBD.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaojie Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Jinyu Yu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yanli Cheng, ; Yang Jiang,
| | - Yang Jiang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yanli Cheng, ; Yang Jiang,
| |
Collapse
|