1
|
Cabrera-Serrano AJ, Sánchez-Maldonado JM, González-Olmedo C, Carretero-Fernández M, Díaz-Beltrán L, Gutiérrez-Bautista JF, García-Verdejo FJ, Gálvez-Montosa F, López-López JA, García-Martín P, Pérez EM, Sánchez-Rovira P, Reyes-Zurita FJ, Sainz J. Crosstalk Between Autophagy and Oxidative Stress in Hematological Malignancies: Mechanisms, Implications, and Therapeutic Potential. Antioxidants (Basel) 2025; 14:264. [PMID: 40227235 PMCID: PMC11939785 DOI: 10.3390/antiox14030264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
Autophagy is a fundamental cellular process that maintains homeostasis by degrading damaged components and regulating stress responses. It plays a crucial role in cancer biology, including tumor progression, metastasis, and therapeutic resistance. Oxidative stress, similarly, is key to maintaining cellular balance by regulating oxidants and antioxidants, with its disruption leading to molecular damage. The interplay between autophagy and oxidative stress is particularly significant, as reactive oxygen species (ROS) act as both inducers and by-products of autophagy. While autophagy can function as a tumor suppressor in early cancer stages, it often shifts to a pro-tumorigenic role in advanced disease, aiding cancer cell survival under adverse conditions such as hypoxia and nutrient deprivation. This dual role is mediated by several signaling pathways, including PI3K/AKT/mTOR, AMPK, and HIF-1α, which coordinate the balance between autophagic activity and ROS production. In this review, we explore the mechanisms by which autophagy and oxidative stress interact across different hematological malignancies. We discuss how oxidative stress triggers autophagy, creating a feedback loop that promotes tumor survival, and how autophagic dysregulation leads to increased ROS accumulation, exacerbating tumorigenesis. We also examine the therapeutic implications of targeting the autophagy-oxidative stress axis in cancer. Current strategies involve modulating autophagy through specific inhibitors, enhancing ROS levels with pro-oxidant compounds, and combining these approaches with conventional therapies to overcome drug resistance. Understanding the complex relationship between autophagy and oxidative stress provides critical insights into novel therapeutic strategies aimed at improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Antonio José Cabrera-Serrano
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
| | - José Manuel Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
| | - Carmen González-Olmedo
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - María Carretero-Fernández
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
| | - Leticia Díaz-Beltrán
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Juan Francisco Gutiérrez-Bautista
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Servicio de Análisis Clínicos e Inmunología, University Hospital Virgen de las Nieves, 18014 Granada, Spain
- Department of Biochemistry, Molecular Biology and Immunology III, University of Granada, 18016 Granada, Spain
| | - Francisco José García-Verdejo
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Fernando Gálvez-Montosa
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - José Antonio López-López
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Paloma García-Martín
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Campus de la Salud Hospital, PTS, 18016 Granada, Spain
| | - Eva María Pérez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Campus de la Salud Hospital, PTS, 18016 Granada, Spain
| | - Pedro Sánchez-Rovira
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Fernando Jesús Reyes-Zurita
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
2
|
Beigoli S, Boskabady MH. The molecular basis of the immunomodulatory effects of natural products: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156028. [PMID: 39276685 DOI: 10.1016/j.phymed.2024.156028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Natural products (NPs) have long been recognized for their potential to modulate the immune system, offering a natural and holistic approach to enhancing immune function. In recent years, the immunomodulation effects of various natural products have attained significant attention. PURPOSE This article provides an overview of the role of natural products in immunomodulation, exploring their mechanisms of action, common types of NPs with immunomodulation properties, clinical applications, as well as considerations for their safety and efficacy. METHODS Extensive research has been conducted to compile important discoveries on the immunomodulatory properties of NPs through thorough searches of multiple databases such as PubMed, Science Direct, and Scopus up until January 2024. RESULTS By decreasing the levels of Th2 cytokines and pro-inflammatory cytokines, the results suggested that NPs have the ability to modulate the immune system. Therefore, NPs alleviate inflammation in various disorders such as asthma and cancer. Furthermore, the observed increase in CD4 cells and IFN-ɣ/IL4 levels, along with an increased IFN-c/IL4 ratio, indicates a stimulatory effect of NPs on Th1 activity in various inflammatory conditions. Therefore, NPs regulate the immune system by inhibiting T-cells and decreasing the growth of young B-cell lymphoma cells. CONCLUSION Reviewing studies indicated that NPs have the potential to serve as immunomodulatory candidates for treating disorders characterized by immune dysregulation. However, additional experimental and clinical studies are necessary before these agents can be implemented in clinical settings.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Andreazzoli F, Levy Yurkovski I, Ben-Arye E, Bonucci M. Conceptualizing an Integrative Multiple Myeloma Care: The Role of Nutrition, Supplements, and Complementary Modalities. Nutrients 2024; 16:237. [PMID: 38257130 PMCID: PMC10818534 DOI: 10.3390/nu16020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple Myeloma (MM) is the second most prevalent hematologic malignancy, and its incidence has been increasing enormously in recent years. The prognosis of MM has changed radically with the introduction of new drugs that have improved life expectancy; recurrences are a common occurrence during the course of the disease and are characterized by an increase in refractory to treatment. Moreover, MM patients are challenged by quality of life-related concerns while limited conventional therapy may be offered. This includes bone pain and dialysis due to the complications of acute renal failure. We, therefore, believe that it is very important to add new treatment modalities, including supplements, nutritional modifications, acupuncture, and mind-body therapies, with the goal of improving treatment tolerance, effectiveness, and patients' quality of life. Moreover, many patients use some of these supplements on their own, in the hope of reducing the side effects, so it is even more important to know their action and potential. The purpose of this review is to illustrate all these strategies potentially available to enrich our approach to this, to date, incurable disease.
Collapse
Affiliation(s)
- Francesca Andreazzoli
- Department of Hematology, Versilia’s Hospital, Viale Aurelia, 335, 55049 Camaiore, Italy
| | - Ilana Levy Yurkovski
- Hematology Unit, Bnai Zion Medical Center, Haifa 3339419, Israel
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel;
- Complementary and Integrative Medicine Service, Bnai Zion Medical Center, Haifa 3339419, Israel
| | - Eran Ben-Arye
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel;
- Integrative Oncology Program, The Oncology Service, Lin Carmel, and Zebulun Medical Centers, Clalit Health Services, Haifa 3535152, Israel
| | - Massimo Bonucci
- Artoi Foundation, Via Ludovico Micara, 73, 00165 Rome, Italy;
| |
Collapse
|
4
|
Iweala EJ, Oluwapelumi AE, Dania OE, Ugbogu EA. Bioactive Phytoconstituents and Their Therapeutic Potentials in the Treatment of Haematological Cancers: A Review. Life (Basel) 2023; 13:1422. [PMID: 37511797 PMCID: PMC10381774 DOI: 10.3390/life13071422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 07/30/2023] Open
Abstract
Haematological (blood) cancers are the cancers of the blood and lymphoid forming tissues which represents approximately 10% of all cancers. It has been reported that approximately 60% of all blood cancers are incurable. Despite substantial improvement in access to detection/diagnosis, chemotherapy and bone marrow transplantation, there is still high recurrence and unpredictable but clearly defined relapses indicating that effective therapies are still lacking. Over the past two decades, medicinal plants and their biologically active compounds are being used as potential remedies and alternative therapies for the treatment of cancer. This is due to their anti-oxidant, anti-inflammatory, anti-mutagenic, anti-angiogenic, anti-cancer activities and negligible side effects. These bioactive compounds have the capacity to reduce proliferation of haematological cancers via various mechanisms such as promoting apoptosis, transcription regulation, inhibition of signalling pathways, downregulating receptors and blocking cell cycle. This review study highlights the mechanistic and beneficial effects of nine bioactive compounds (quercetin, ursolic acid, fisetin, resveratrol, epigallocatechin gallate, curcumin, gambogic acid, butein and celastrol) as potential remedies for chemoprevention of haematological cancers. The study provides useful insights on the effectiveness of the use of bioactive compounds from plants for chemoprevention of haematological cancers.
Collapse
Affiliation(s)
- Emeka J Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Ogun State, Nigeria
- Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota PMB 1023, Ogun State, Nigeria
| | - Adurosakin E Oluwapelumi
- Department of Microbiology, Ladoke Akintola University of Technology, Ogbomoso PMB 4000, Oyo State, Nigeria
| | - Omoremime E Dania
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Ogun State, Nigeria
| | | |
Collapse
|
5
|
Andreazzoli F, Bonucci M. Integrative Hematology: State of the Art. Int J Mol Sci 2023; 24:ijms24021732. [PMID: 36675247 PMCID: PMC9864076 DOI: 10.3390/ijms24021732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Blood cancers are a group of diseases with thus far frequently poor prognosis. Although many new drugs, including target therapies, have been developed in recent years, there is still a need to expand our therapeutic armamentarium to better deal with these diseases. Integrative hematology was conceived as a discipline that enriches the patient's therapeutic possibilities with the use of supplements, vitamins and a nutritional approach aiming at improving the response to therapies and the clinical outcome. We will analyze the substances that have proved most useful in preclinical and clinical studies in some of the most frequent blood diseases or in those where these studies are more numerous; the importance of the nutritional approach and the role of the intestinal microbiota will also be emphasized.
Collapse
Affiliation(s)
- Francesca Andreazzoli
- Department of Hematology, Versilia’s Hospital, Viale Aurelia, 335, 55049 Camaiore, Italy
- Correspondence:
| | - Massimo Bonucci
- Association for Research on Integrative Oncology Therapies (ARTOI), Via Ludovico Micara, 73, 00165 Rome, Italy
| |
Collapse
|
6
|
Pandya SK, Pandya A, Larsen A, Gowin K. A Review of The Synergistic Effects of Curcumin with Proteasome Inhibitors in Multiple Myeloma Preclinical Models. Integr Cancer Ther 2023; 22:15347354231159322. [PMID: 36879488 PMCID: PMC9996714 DOI: 10.1177/15347354231159322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Proteasome inhibitors are the cornerstone of multiple myeloma treatment, but challenges still remain despite the increased survival rates. We conducted a review on the role of curcumin, a natural product, as an adjunct to bortezomib and carfilzomib in preclinical multiple myeloma models. Four studies reviewed showed enhanced anticancer effects when curcumin was combined with bortezomib compared to either treatment alone. Two additional studies showed similar results with carfilzomib. Synergistic mechanisms include inhibition of NF-kB, IL-6-induced signaling pathways, JNK pathway modulation, and increased cell cycle arrest.
Collapse
|
7
|
Lo Iacono M, Gaggianesi M, Bianca P, Brancato OR, Muratore G, Modica C, Roozafzay N, Shams K, Colarossi L, Colarossi C, Memeo L, Turdo A, Veschi V, Di Franco S, Todaro M, Stassi G. Destroying the Shield of Cancer Stem Cells: Natural Compounds as Promising Players in Cancer Therapy. J Clin Med 2022; 11:6996. [PMID: 36498571 PMCID: PMC9737492 DOI: 10.3390/jcm11236996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
In a scenario where eco-sustainability and a reduction in chemotherapeutic drug waste are certainly a prerogative to safeguard the biosphere, the use of natural products (NPs) represents an alternative therapeutic approach to counteract cancer diseases. The presence of a heterogeneous cancer stem cell (CSC) population within a tumor bulk is related to disease recurrence and therapy resistance. For this reason, CSC targeting presents a promising strategy for hampering cancer recurrence. Increasing evidence shows that NPs can inhibit crucial signaling pathways involved in the maintenance of CSC stemness and sensitize CSCs to standard chemotherapeutic treatments. Moreover, their limited toxicity and low costs for large-scale production could accelerate the use of NPs in clinical settings. In this review, we will summarize the most relevant studies regarding the effects of NPs derived from major natural sources, e.g., food, botanical, and marine species, on CSCs, elucidating their use in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Melania Lo Iacono
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Paola Bianca
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Ornella Roberta Brancato
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Giampaolo Muratore
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Narges Roozafzay
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Kimiya Shams
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
8
|
Abe T, Horisawa Y, Kikuchi O, Ozawa-Umeta H, Kishimoto A, Katsuura Y, Imaizumi A, Hashimoto T, Shirakawa K, Takaori-Kondo A, Yusa K, Asakura T, Kakeya H, Kanai M. Pharmacologic characterization of TBP1901, a prodrug form of aglycone curcumin, and CRISPR-Cas9 screen for therapeutic targets of aglycone curcumin. Eur J Pharmacol 2022; 935:175321. [PMID: 36228744 DOI: 10.1016/j.ejphar.2022.175321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Curcumin (aglycone curcumin) has antitumor properties in a variety of malignancies via the alteration of multiple cancer-related biological pathways; however, its clinical application has been hampered due to its poor bioavailability. To overcome this limitation, we have developed a synthesized curcumin β-D-glucuronide sodium salt (TBP1901), a prodrug form of aglycone curcumin. In this study, we aimed to clarify the pharmacologic characteristics of TBP1901. In β-glucuronidase (GUSB)-proficient mice, both curcumin β-D-glucuronide and its active metabolite, aglycone curcumin, were detected in the blood after TBP1901 injection, whereas only curcumin β-D-glucuronide was detected in GUSB-impaired mice, suggesting that GUSB plays a pivotal role in the conversion of TBP1901 into aglycone curcumin in vivo. TBP1901 itself had minimal antitumor effects in vitro, whereas it demonstrated significant antitumor effects in vivo. Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screen disclosed the genes associated with NF-κB signaling pathway and mitochondria were among the highest hit. In vitro, aglycone curcumin inhibited NF-kappa B signaling pathways whereas it caused production of reactive oxygen species (ROS). ROS scavenger, N-acetyl-L-cysteine, partially reversed antitumor effects of aglycone curcumin. In summary, TBP1901 can exert antitumor effects as a prodrug of aglycone curcumin through GUSB-dependent activation.
Collapse
Affiliation(s)
| | - Yoshihito Horisawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Kikuchi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tadashi Asakura
- Radioisotope Research Facilities, Jikei University School of Medicine, Tokyo, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | - Masashi Kanai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
9
|
Izuegbuna OO. Polyphenols: Chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr 2022; 9:1008893. [PMID: 36386899 PMCID: PMC9643866 DOI: 10.3389/fnut.2022.1008893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2024] Open
Abstract
Polyphenols are one of the largest plant-derived natural product and they play an important role in plants' defense as well as in human health and disease. A number of them are pleiotropic molecules and have been shown to regulate signaling pathways, immune response and cell growth and proliferation which all play a role in cancer development. Hematological malignancies on the other hand, are cancers of the blood. While current therapies are efficacious, they are usually expensive and with unwanted side effects. Thus, the search for newer less toxic agents. Polyphenols have been reported to possess antineoplastic properties which include cell cycle arrest, and apoptosis via multiple mechanisms. They also have immunomodulatory activities where they enhance T cell activation and suppress regulatory T cells. They carry out these actions through such pathways as PI3K/Akt/mTOR and the kynurenine. They can also reverse cancer resistance to chemotherapy agents. In this review, i look at some of the molecular mechanism of action of polyphenols and their potential roles as therapeutic agents in hematological malignancies. Here i discuss their anti-proliferative and anti-neoplastic activities especially their abilities modulate signaling pathways as well as immune response in hematological malignancies. I also looked at clinical studies done mainly in the last 10-15 years on various polyphenol combination and how they enhance synergism. I recommend that further preclinical and clinical studies be carried out to ensure safety and efficacy before polyphenol therapies be officially moved to the clinics.
Collapse
Affiliation(s)
- Ogochukwu O. Izuegbuna
- Department of Haematology, Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Ogbomoso, Nigeria
| |
Collapse
|
10
|
Racz LZ, Racz CP, Pop LC, Tomoaia G, Mocanu A, Barbu I, Sárközi M, Roman I, Avram A, Tomoaia-Cotisel M, Toma VA. Strategies for Improving Bioavailability, Bioactivity, and Physical-Chemical Behavior of Curcumin. Molecules 2022; 27:molecules27206854. [PMID: 36296447 PMCID: PMC9608994 DOI: 10.3390/molecules27206854] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/23/2022] Open
Abstract
Curcumin (CCM) is one of the most frequently explored plant compounds with various biological actions such as antibacterial, antiviral, antifungal, antineoplastic, and antioxidant/anti-inflammatory properties. The laboratory data and clinical trials have demonstrated that the bioavailability and bioactivity of curcumin are influenced by the feature of the curcumin molecular complex types. Curcumin has a high capacity to form molecular complexes with proteins (such as whey proteins, bovine serum albumin, β-lactoglobulin), carbohydrates, lipids, and natural compounds (e.g., resveratrol, piperine, quercetin). These complexes increase the bioactivity and bioavailability of curcumin. The current review provides these derivatization strategies for curcumin in terms of biological and physico-chemical aspects with a strong focus on different type of proteins, characterization methods, and thermodynamic features of protein–curcumin complexes, and with the aim of evaluating the best performances. The current literature review offers, taking into consideration various biological effects of the CCM, a whole approach for CCM-biomolecules interactions such as CCM-proteins, CCM-nanomaterials, and CCM-natural compounds regarding molecular strategies to improve the bioactivity as well as the bioavailability of curcumin in biological systems.
Collapse
Affiliation(s)
- Levente Zsolt Racz
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Csaba Pal Racz
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Lucian-Cristian Pop
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Gheorghe Tomoaia
- Department of Orthopedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, 47 Gen. Traian Mosoiu Str., RO-400132 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., RO-050044 Bucharest, Romania
| | - Aurora Mocanu
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Ioana Barbu
- Faculty of Biology and Geology, Babes-Bolyai University, 4-6 Clinicilor Str., RO-400006 Cluj-Napoca, Romania
| | | | - Ioana Roman
- Institute of Biological Research, Branch of NIRDBS Bucharest, 48 Republicii Str., RO-400015 Cluj-Napoca, Romania
| | - Alexandra Avram
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
| | - Maria Tomoaia-Cotisel
- Research Center in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., RO-400028 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., RO-050044 Bucharest, Romania
| | - Vlad-Alexandru Toma
- Faculty of Biology and Geology, Babes-Bolyai University, 4-6 Clinicilor Str., RO-400006 Cluj-Napoca, Romania
- Institute of Biological Research, Branch of NIRDBS Bucharest, 48 Republicii Str., RO-400015 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
11
|
Yu CC, Li Y, Cheng ZJ, Wang X, Mao W, Zhang YW. Active Components of Traditional Chinese Medicinal Material for Multiple Myeloma: Current Evidence and Future Directions. Front Pharmacol 2022; 13:818179. [PMID: 35153791 PMCID: PMC8834085 DOI: 10.3389/fphar.2022.818179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by clonal expansion of plasma cells in bone marrow, leading to the overproduction of monoclonal immunoglobulins. The clinical manifestations resulting from monoclonal proteins and malignant cells include signs of end-organ damage, such as hypercalcemia, renal failure, anemia, and bone lesions. Despite improvement in the survival of MM patients with use of myeloma-targeted and immunomodulatory therapies, MM remains an incurable disease. Moreover, patients with relapsed or refractory MM show poor survival outcomes. In recent years, there has been a growing interest in the use of traditional Chinese medicinal materials (TCMMs) for management of a wide spectrum of diseases. The bioactive ingredients derived from TCMMs hold great potential for the development of anticancer drugs. Here we summarize the evidence of the pharmacological effects of the active components in TCMMs on MM, including curcumin, resveratrol, baicalein, berberine, bufalin, cinobufagin, gambogic acid, ginsenoside, icariin, daidzin, formononetin, polysaccharides extracts from Hedyotis difus, and scutellarein. Available evidence indicates that the anti-MM effects of these bioactive ingredients are mediated via regulation of proliferation, apoptosis, autophagy, cell cycle, osteogenic differentiation, and drug resistance. In the future, the underlying mechanisms of the anti-MM effects of these components should be further investigated. Large-scale and well-designed clinical trials are also required to validate the efficacy of these bioactive constituents for MM.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhao-Jun Cheng
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Wang
- Department of Oncology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Wei Mao
- Peking University Shenzhen Hospital Hua Wei Clinic, Shenzhen, China
| | - Ying-Wen Zhang
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Cháirez-Ramírez MH, de la Cruz-López KG, García-Carrancá A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front Pharmacol 2021; 12:710304. [PMID: 34744708 PMCID: PMC8565650 DOI: 10.3389/fphar.2021.710304] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Polyphenols constitute an important group of natural products that are traditionally associated with a wide range of bioactivities. These are usually found in low concentrations in natural products and are now available in nutraceuticals or dietary supplements. A group of polyphenols that include apigenin, quercetin, curcumin, resveratrol, EGCG, and kaempferol have been shown to regulate signaling pathways that are central for cancer development, progression, and metastasis. Here, we describe novel mechanistic insights on the effect of this group of polyphenols on key elements of the signaling pathways impacting cancer. We describe the protein modifications induced by these polyphenols and their effect on the central elements of several signaling pathways including PI3K, Akt, mTOR, RAS, and MAPK and particularly those affecting the tumor suppressor p53 protein. Modifications of p53 induced by these polyphenols regulate p53 gene expression and protein levels and posttranslational modifications such as phosphorylation, acetylation, and ubiquitination that influence stability, subcellular location, activation of new transcriptional targets, and the role of p53 in response to DNA damage, apoptosis control, cell- cycle regulation, senescence, and cell fate. Thus, deep understanding of the effects that polyphenols have on these key players in cancer-driving signaling pathways will certainly lead to better designed targeted therapies, with less toxicity for cancer treatment. The scope of this review centers on the regulation of key elements of cancer signaling pathways by the most studied polyphenols and highlights the importance of a profound understanding of these regulations in order to improve cancer treatment and control with natural products.
Collapse
Affiliation(s)
- Manuel Humberto Cháirez-Ramírez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Karen Griselda de la Cruz-López
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
13
|
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells with a clinical course characterized by multiple relapses and treatment refractoriness. While recent treatment advancements have extended overall survival (OS), refractory MM has a poor prognosis, with a median OS of between 4 and 6 months. Nuclear export inhibition, specifically inhibition of CRM1/XPO1, is an emerging novel treatment modality that has shown promise in treatment-refractory MM. Initially discovered in yeast in 1983, early clinical applications were met with significant toxicities that limited their utility. The creation of small molecule inhibitors of nuclear export (SINE) has improved on toxicity limitations and has led to investigation in a number of malignancies at the preclinical and clinical stages. Preclinical studies of SINEs in MM have shown that these molecules are cytotoxic to myeloma cells, play a role in therapy resensitization, and suggest a role in limiting bone disease progression. In July 2019, selinexor became the first nuclear export inhibitor approved for use in relapsed/refractory MM based on the STORM trial. As of May 2020, there were eight ongoing trials combining selinexor with standard treatment regimens in relapsed/refractory MM. Eltanexor, a second-generation SINE, is also under investigation and has shown preliminary signs of efficacy in an early clinical trial while potentially having an improved toxicity profile compared with selinexor. Results in ongoing trials will help further define the role of SINEs in MM.
Collapse
Affiliation(s)
| | - Guido Lancman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, Box 1185, New York, NY, 10029, USA
| | - Ajai Chari
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, Box 1185, New York, NY, 10029, USA.
| |
Collapse
|
14
|
Moludi M, Rashidian A, Asghari MH, Nassireslami E, Yousefi Zoshk M, Hami Z, Paknejad B, Chamanara M. Curcumin induces potent cytotoxic effects on myeloma cells independent of caspase activation. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1892763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Milad Moludi
- Department of Pharmacology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ehsan Nassireslami
- Department of Pharmacology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi Zoshk
- Department of Pediatrics, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Zahra Hami
- Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Babak Paknejad
- Department of Pharmacology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Memarzia A, Khazdair MR, Behrouz S, Gholamnezhad Z, Jafarnezhad M, Saadat S, Boskabady MH. Experimental and clinical reports on anti-inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. Biofactors 2021; 47:311-350. [PMID: 33606322 DOI: 10.1002/biof.1716] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Curcuma longa (C. longa) or turmeric is a plant with a long history of use in traditional medicine, especially for treating inflammatory conditions C. longa and its main constituent, curcumin (CUR), showed various pharmacological effects such as antioxidant and anti-microbial properties. The updated knowledge of anti-inflammatory, antioxidant, and immunomodulatory effects of C. longa and CUR is provided in this review article. Pharmacological effects of C. longa, and CUR, including anti-inflammatory, antioxidant, and immunomodulatory properties, were searched using various databases and appropriate keywords until September 2020. Various studies showed anti-inflammatory effects of C. longa and CUR, including decreased white blood cell, neutrophil, and eosinophil numbers, and its protective effects on serum levels of inflammatory mediators such as phospholipase A2 and total protein in different inflammatory disorders. The antioxidant effects of C. longa and CUR were also reported in several studies. The plant extracts and CUR decreased malondialdehyde and nitric oxide levels but increased thiol, superoxide dismutase, and catalase levels in oxidative stress conditions. Treatment with C. longa and CUR also improved immunoglobulin E (Ig)E, pro-inflammatory cytokine interleukin 4 (IL)-4, transforming growth factor-beta, IL-17, interferon-gamma levels, and type 1/type 2 helper cells (Th1)/(Th2) ratio in conditions with disturbance in the immune system. Therefore C. longa and CUR showed anti-inflammatory, antioxidant, and immunomodulatory effects, indicating a potential therapeutic effect of the plant and its constituent, CUR, for treating of inflammatory, oxidative, and immune dysregulation disorders.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad R Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Jafarnezhad
- Department of Anesthesia, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad H Boskabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|