1
|
Gupta R, Ali SA, Upma, Ahmad T, Gupta R. Unprecedented Hydrogen Evolution Reactions Based on the Accelerating Effect of [Co-Tb]-Supramolecular Complex-Anchored CdS Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28244-28255. [PMID: 40325563 DOI: 10.1021/acsami.5c03322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
This study presents a series of 1-Tb/CdS binary heterojunctions, synthesized by combining 1-Tb (a Co3+-Tb3+-based supramolecular complex) and CdS in various weight ratios via a solvothermal process. These heterojunctions have been thoroughly characterized to elucidate their chemical, structural, and optoelectronic properties. The catalytic effectiveness of these heterojunctions was evaluated with respect to the hydrogen evolution reaction (HER), spanning photocatalytic, electrocatalytic, and photoelectrocatalytic processes. Significantly outperforming individual photocatalysts (CdS and 1-Tb) and other binary heterostructures, the 7.5-1-Tb/CdS heterojunction exhibited the highest catalytic HER efficiency. The exceptional catalytic performance of 7.5-1-Tb/CdS is attributed to a synergistic integration of 1-Tb and CdS, enabling a highly efficient Z-scheme heterojunction. This unique architecture enhances charge separation and transfer by leveraging the complementary electronic properties of the individual CdS and 1-Tb semiconductors while minimizing recombination losses. X-ray photoelectron spectroscopy, band structure analysis, photoluminescence, and electrochemical impedance spectroscopy further validated the Z-scheme mechanism, highlighting the optimal alignment of energy levels. Overall, this study highlights the potential of 1-Tb/CdS binary heterojunctions as robust and efficient catalysts for the HER. The simplicity of the synthesis process, coupled with the exceptional catalytic activity, offers a significant advancement in clean energy technologies, paving the way for sustainable hydrogen production.
Collapse
Affiliation(s)
- Ruchika Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Syed Asim Ali
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Upma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
2
|
Zhao L, Song Y, Xie Z, Velez K, Liu Q, An Q. Atomic-Level Engineering of Transition Metal Dichalcogenides for Enhanced Hydrogen Evolution Reaction. SMALL METHODS 2025:e2500223. [PMID: 40237110 DOI: 10.1002/smtd.202500223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/02/2025] [Indexed: 04/17/2025]
Abstract
2D transition metal dichalcogenides (2D-TMDs) have attracted considerable attention due to their characteristic layered structures, which provide abundant accessible surface sites. Significant research efforts are dedicated to designing nanostructures and regulating electron properties to enhance the catalytic performance of the hydrogen evolution reaction (HER) of TMDs. However, elucidating the HER mechanism, particularly the role of active sites, remains challenging owing to the complex surface and electronic structures introduced by nanoscale modification. Recent advances have focused on achieving efficient HER catalysis through atomic-level control of TMD surface structures and precise identification of the coordination environment of active sites. Atomic-level engineering of TMDs, including incorporating or removing specific atoms onto the basal surfaces or within the interlayer via advanced synthetic approaches, has emerged as a promising strategy. These modifications optimize the adsorption/desorption energy of H, increase the density of active sites, and create synergetic active sites by arranging atoms in controlled configuration, in single-atomic modified TMDs (SA-TMDs) catalysts. Further, the insights of a notable increase of HER performance in SA-TMDs are discussed in detail when compared to both their pure and conventionally doped counterparts. This review aims to advance the understanding of atomic-level catalysis and provides a basis for developing next-generation materials for energy applications.
Collapse
Affiliation(s)
- Lu Zhao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Yang Song
- Research Center of Renewable Energy, SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Zijun Xie
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Katherine Velez
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Quan Liu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
3
|
Yan X, Zheng BX, Zhu JR, Li YB, Xiao FX. Spatially Confining Atomically Precise Metal Nanoclusters Steers Photoredox Organic Transformation. Inorg Chem 2025; 64:3572-3581. [PMID: 39923244 DOI: 10.1021/acs.inorgchem.4c05401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Atomically precise metal nanoclusters (NCs) emerge as a novel class of photosensitizers, distinguished by their discrete energy band structures and abundance of catalytically active sites; however, their broader adoption in heterogeneous photocatalysis remains hindered by the challenges of ultrashort carrier lifetimes, limited stability, and the complexity of charge transport regulation. In this work, we conceptually design the metal NCs photosensitized and graphene (GR)-encapsulated transition metal chalcogenide (TMC) (GR/metal NCs/TMCs) heterostructure via a cascade electrostatic self-assembly strategy. In this multilayer ternary heterostructure, metal NCs are integrated between TMCs and GR nanosheets, which act as photosensitizers for enhancing the light absorption of TMCs and meanwhile increase the carrier density of composite photosystem. The favorable interfacial charge transport between metal NCs and TMCs along with the advantageous electron-withdrawing capability of GR simultaneously boosts charge separation over metal NCs. Benefiting from such peculiar carrier transport characteristics, the self-assembled GR/metal NCs/TMCs heterostructure demonstrates remarkably boosted and stable photoactivities toward selective photoredox organic transformation, including photocatalytic anaerobic reduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light. Furthermore, the mechanisms underlying the photocatalytic processes are elucidated with clarity. Our work affords a quintessential paradigm for customizing atomically precise metal NCs in engineered photosystems aimed at converting solar energy into chemical energy.
Collapse
Affiliation(s)
- Xian Yan
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Bing-Xiong Zheng
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Jun-Rong Zhu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
| | - Yu-Bing Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian Province 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
4
|
Zaera F. Role of Metal Cocatalysts in the Photocatalytic Production of Hydrogen from Water Revisited. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2025; 39:2422-2434. [PMID: 39936115 PMCID: PMC11808650 DOI: 10.1021/acs.energyfuels.4c06100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
The use of photocatalysts to promote the production of molecular hydrogen from water, following the so-called water splitting reaction, continues to be a promising route for the green production of fuels. The molecular basis of this photocatalysis is the photoexcitation of electrons from the valence band of semiconductors to their conduction band, from which they can be transferred to chemical reactants, protons in the case of water, to promote a reduction reaction. The mechanism by which such a process takes place has been studied extensively using titanium oxide, a simple material that fulfills most requirements for water splitting. However, photocatalysis with TiO2 tends to be highly inefficient; a cocatalyst, commonly a late transition metal (Au, Pt) in nanoparticle form, needs to be added to facilitate the production of H2. The metal is widely believed to help with the scavenging of the excited electrons from the conduction band of the semiconductor in order to prevent their recombination with the accompanying hole formed in the valence band, a step that cancels the initial photon absorption and competes with the photolytic chemical reduction. Here we review and analyze the molecular basis for that mechanism and argue for an alternative explanation, that the role of the metal is to help with the recombination of the atomic hydrogen atoms produced by proton reduction on the semiconductor surface instead. First, we summarize what is known about the electronic structure of these photocatalysts and how the electronic levels need to line up for the reduction of protons in water to be feasible. Next, we review the current understanding of the dynamics of the steps associated with the absorption of photons, the de-excitation via electron-hole pair recombination and fluorescence decay, and the electronic transitions that lead to proton reduction, and contrast those with the rates of the chemical steps required to produce molecular hydrogen. The following section addresses the changes introduced by the addition of the metal cocatalyst, comparatively evaluating its role as either an electron scavenger or a promoter of the recombination of hydrogen atoms. A discussion of the viable chemical mechanisms for the latter pathway is included. Finally, we briefly mention other associated aspects of this photocatalysis, including the possible promotion of H2 production with visible light via resonant excitation of the surface plasmon of Au nanoparticles, the use of single-metal (Au, Pt) atom catalysts and of yolk-shell nanostructures, and the reduction of organic molecules. We end with a brief personal perspective on the possible generality of the concepts introduced in this Critical Review.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center
for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Iravani S, Zarepour A, Khosravi A, Zarrabi A. Environmental and biomedical applications of 2D transition metal borides (MBenes): recent advancements. NANOSCALE ADVANCES 2025; 7:670-699. [PMID: 39711617 PMCID: PMC11656904 DOI: 10.1039/d4na00867g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Recently, interest has surged in the environmental and biomedical applications of two-dimensional transition metal borides, commonly referred to as MBenes. These materials have emerged as promising candidates for energy storage devices, such as batteries and supercapacitors. Additionally, MBenes have shown remarkable catalytic activity due to their high surface area and tunable electronic properties. They exhibit significant promise in various catalytic applications, particularly in nitrogen reduction reactions (NRRs), electrocatalytic conversion of nitrogen oxides, and several electrochemical reactions such as the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). Notably, MBenes have shown great potential in water treatment and pollutant removal applications, such as desalination and water purification. Their high water permeability, ion selectivity, and excellent stability make them suitable for efficient water treatment processes. On the other hand, MBenes are emerging as versatile materials with significant potential in various biomedical applications, particularly in biosensing, cancer therapy, and the treatment of neurodegenerative diseases. However, several challenges hinder their practical implementation in biomedical and environmental fields. One significant issue is the scalability of synthesis methods; producing MBenes in large quantities while maintaining high purity and uniformity is often complex and costly. Moreover, the stability of MBenes and their composites under different environmental and biological conditions raises concerns, as they may undergo degradation or lose their functional properties over time, which could limit their long-term effectiveness. Additionally, there is a need for comprehensive toxicity assessments to ensure the safety of MBenes in biomedical applications, particularly when interacting with human tissues or biological systems. This review aims to systematically investigate the environmental and biomedical applications of MBenes and their composites, emphasizing their unique characteristics and potential roles in addressing pressing global challenges. Furthermore, the review will identify and discuss the existing challenges and limitations in the operational performance of MBenes and their composites, providing a critical assessment of their current state in various applications.
Collapse
Affiliation(s)
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-600 077 India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University Istanbul 34959 Turkiye
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University Istanbul 34396 Turkiye
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University Taoyuan 320315 Taiwan
| |
Collapse
|
6
|
Beckedorf M, Holland J, Godin R. Cobalt-Loaded Carbon Nitride Demonstrates Enhanced Photocatalytic Production of H 2 from Lignocellulosic Biomass Components. ARTIFICIAL PHOTOSYNTHESIS (WASHINGTON, D.C.) 2025; 1:50-62. [PMID: 40200991 PMCID: PMC11783807 DOI: 10.1021/aps.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 04/10/2025]
Abstract
Photocatalytic production of hydrogen (H2) from biomass is a promising avenue for advancing sustainable energy generation. We prepared carbon nitride (CN x ) with cobalt (Co) as an oxidation cocatalyst (denoted CN x /Co) to improve photocatalytic H2 production through photoreforming components of lignocellulosic biomass under visual light irradiation. CN x /Co was synthesized by loading Co onto preformed CN x through a straightforward thermal deposition. The thermal loading of Co at 450 °C led to the formation of a mixed valence CoO x , which shifted Co2+ character to Co3+ over the course of the hydrogen evolution reaction (HER). Compared to CN x without Co, our materials with 0.3 and 0.6 wt % Co demonstrate twice the apparent quantum yield (AQY) for H2 production under irradiation at 405 nm using glucose as a sacrificial electron donor (3.0% and 2.8%, respectively, vs 1.4%). Time-resolved spectroscopic investigations indicate that the Co extracts charges in the subnanosecond time scale and promotes the formation of beneficial long-lived charges. Impressively, some photocatalytic activity is observed when using the robust polymers of cellulose and lignin as the oxidation substrates (0.2 and 0.1% AQY, respectively). The ability to oxidize abundant biomass without extensive prepreparation is promising for waste upcycling applications.
Collapse
Affiliation(s)
- Mitchell Beckedorf
- Department
of Chemistry, The University of British
Columbia, 3247 University
Way, Kelowna, BC V1V 1V7, Canada
| | - Jenna Holland
- Department
of Chemistry, The University of British
Columbia, 3247 University
Way, Kelowna, BC V1V 1V7, Canada
| | - Robert Godin
- Department
of Chemistry, The University of British
Columbia, 3247 University
Way, Kelowna, BC V1V 1V7, Canada
- Clean
Energy Research Center, University of British
Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
- Okanagan
Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Kelowna, BC V1
V 1 V7, Canada
| |
Collapse
|
7
|
Raj M, Padhi SK. Decoding the Catalytic Potential of Dinuclear 1 st-Row Transition Metal Complexes for Proton Reduction and Water Oxidation. CHEM REC 2025; 25:e202400170. [PMID: 39659073 DOI: 10.1002/tcr.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Indexed: 12/12/2024]
Abstract
The growing interest in renewable energy sources has led to a significant focus on artificial photosynthesis as a means of converting solar energy into lucrative and energy-dense carbonaceous fuels. First-row transition metals have thus been brought to light in the search for efficient and high-performance homogenous molecule catalysts that can accelerate energy transformation and reduce overpotentials during the catalytic process. Their dinuclear complexes have opportunities to enhance the efficiency and stability of these molecular catalysts, primarily for the hydrogen evolution reaction (HER) and water oxidation reaction (WOR). Recently, our group improved the catalytic activity, efficiencies, and stability of dinuclear molecular catalysts, particularly toward HER. Although one dinuclear complex has been tested for WOR, it demonstrated activity as water oxidation precatalysts. First-row transition metals are a great option for sustainable catalysis because they are readily available, reasonably priced, and have multifaceted coordination chemistry. Examples of these metals are cobalt, copper, and manganese. The structure-catalytic performance relationships of this first-row transition metal-based dinuclear catalysts are noteworthily interpreted in this account, providing avenues for optimizing their performance and advancing the development of sustainable and effective energy conversion technologies.
Collapse
Affiliation(s)
- Manaswini Raj
- Artificial Photosynthesis Laboratory, Science Block, Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, 826004, INDIA
- Department of Chemistry, Presidency University, Itgalpura, Yelahanka, Bangalore, Karnataka, 560064, INDIA
| | - Sumanta Kumar Padhi
- Artificial Photosynthesis Laboratory, Science Block, Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, 826004, INDIA
| |
Collapse
|
8
|
Temmerman W, Goeminne R, Rawat KS, Van Speybroeck V. Computational Modeling of Reticular Materials: The Past, the Present, and the Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412005. [PMID: 39723710 DOI: 10.1002/adma.202412005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Reticular materials rely on a unique building concept where inorganic and organic building units are stitched together giving access to an almost limitless number of structured ordered porous materials. Given the versatility of chemical elements, underlying nets, and topologies, reticular materials provide a unique platform to design materials for timely technological applications. Reticular materials have now found their way in important societal applications, like carbon capture to address climate change, water harvesting to extract atmospheric moisture in arid environments, and clean energy applications. Combining predictions from computational materials chemistry with advanced experimental characterization and synthesis procedures unlocks a design strategy to synthesize new materials with the desired properties and functions. Within this review, the current status of modeling reticular materials is addressed and supplemented with topical examples highlighting the necessity of advanced molecular modeling to design materials for technological applications. This review is structured as a templated molecular modeling study starting from the molecular structure of a realistic material towards the prediction of properties and functions of the materials. At the end, the authors provide their perspective on the past, present of future in modeling reticular materials and formulate open challenges to inspire future model and method developments.
Collapse
Affiliation(s)
- Wim Temmerman
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Ruben Goeminne
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Kuber Singh Rawat
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| |
Collapse
|
9
|
Tasbihi M, Kwon S, Kim B, Brüggemann D, Hou H, Lu J, Amitrano R, Grimm T, García-Antón J, Strasser P, Riedel SL, Schwarze M. Polyhydroxykanoate-Assisted Photocatalytic TiO 2 Films for Hydrogen Production. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25800-25810. [PMID: 39575695 PMCID: PMC11636239 DOI: 10.1021/acs.langmuir.4c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024]
Abstract
The photocatalytic production of hydrogen using biopolymer-immobilized titanium dioxide (TiO2) is an innovative and sustainable approach to renewable energy generation. TiO2, a well-known photocatalyst, benefits from immobilization on biopolymers due to its environmental friendliness, abundance, and biodegradability. In another way, to boost the efficiency of TiO2, its surface properties can be modified by incorporating co-catalysts like platinum (Pt) to improve charge separation. In this work, the surface of commercial TiO2 PC500 was modified with Pt nanoparticles (Pt1%@PC500) and then immobilized on glass surfaces using polyhydroxyalkanoate biopolymer poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBH). The as-prepared immobilized Pt-modified TiO2 photocatalysts were fully characterized using various physicochemical techniques. The photocatalytic activity of the photocatalyst film was investigated for photocatalytic hydrogen production through water reduction using ethanol as a sacrificial donor. The impact of the film preparation conditions, e.g., PHBH concentration, PHBH:catalyst ratio, and temperature, on activity and stability was studied in detail. The application of biopolymer PHBH as a binder provides a green alternative to conventional immobilization methods, and with the application of PHBH, a stable and active photocatalyst film that showed lower activity compared to that of the suspended photocatalyst but good recyclability in six runs was prepared. A long-term photocatalytic hydrogen production experiment was carried out. In 98 h of operation, 12 mmol of hydrogen was produced in three consecutive runs with a PHBH/Pt1%@PC500 film having an area of ∼5.3 cm2. A significantly lower hydrogen productivity was observed after the first run, possibly due to a change in film structure, but thereafter, the productivity remained almost constant for the second and third runs. Hydrogen was the main product in the gas phase (90%), but carbon dioxide (4-5%) and methane (4-5%) were obtained as important byproducts. The byproducts are a consequence of the use of the sacrificial reagent ethanol. The results of the film performance are very promising, with regard to large-scale continuous hydrogen production.
Collapse
Affiliation(s)
- Minoo Tasbihi
- Technische
Universität Berlin, Department of Chemistry, Straße des 17, Juni 124, 10623 Berlin, Germany
| | - Sunil Kwon
- Technische
Universität Berlin, Department of Chemistry, Straße des 17, Juni 124, 10623 Berlin, Germany
| | - Bumsoo Kim
- Technische
Universität Berlin, Department of Chemistry, Straße des 17, Juni 124, 10623 Berlin, Germany
| | - Daniel Brüggemann
- Technische
Universität Berlin, Department of Chemistry, Straße des 17, Juni 124, 10623 Berlin, Germany
| | - Heting Hou
- Departament
de Química, Unitat de Química Inorgànica, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Jiasheng Lu
- Technische
Universität Berlin, Department of Chemistry, Straße des 17, Juni 124, 10623 Berlin, Germany
| | - Raffaele Amitrano
- Technische
Universität Berlin, Department of Chemistry, Straße des 17, Juni 124, 10623 Berlin, Germany
| | - Thomas Grimm
- ANiMOX
GmbH, Max-Planck-Straße
3, 12489 Berlin, Germany
| | - Jordi García-Antón
- Departament
de Química, Unitat de Química Inorgànica, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Peter Strasser
- Technische
Universität Berlin, Department of Chemistry, Straße des 17, Juni 124, 10623 Berlin, Germany
| | - Sebastian L. Riedel
- Berliner
Hochschule für Technik, Department VIII - Mechanical Engineering, Event Technology and Process Engineering, Environmental
and Bioprocess Engineering Laboratory, 13353 Berlin, Germany
| | - Michael Schwarze
- Technische
Universität Berlin, Department of Chemistry, Straße des 17, Juni 124, 10623 Berlin, Germany
| |
Collapse
|
10
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
11
|
Baluchová S, Zoltowska S, Giusto P, Kumru B. Binaphthyl Mediated Low Temperature Synthesis of Carbon Nitride Photocatalyst for Photocatalytic Hydrogen Evolution. CHEMSUSCHEM 2024; 17:e202400618. [PMID: 38837891 PMCID: PMC11587680 DOI: 10.1002/cssc.202400618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Metal-free graphitic carbon nitrides are on the rise as polymer photocatalysts under visible light illumination, taking shares in a range of promising photocatalytic reactions, including water splitting. Their simple synthesis and facile structural modification afford them exceptional tunability, enabling the creation of photocatalysts with distinct properties. While their metal-free nature marks a significant step towards environmental sustainability, the high energy consumption required to produce carbon nitride photocatalysts remains a substantial barrier to their widespread adoption. Furthermore, the process of condensation at approximately 550 °C typically results in solid yields of less than 15 %, significantly challenging their economic viability. Here, we report on lowering manufacturing conditions of carbon nitride photocatalysts whilst enhancing photocatalytic activity by introducing binaphthyl diamine as a structural mediator. At 450 °C in 2 hours, carbon nitride photocatalyst shows a lower bandgap and enables visible light induced hydrogen evolution (194 μmol h-1) comparable to benchmark carbon nitride photocatalysts.
Collapse
Affiliation(s)
- Simona Baluchová
- Department of Analytical ChemistryFaculty of ScienceCharles UniversityAlbertov 6Prague 2CZ 128 00Czech Republic
| | - Sonia Zoltowska
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Paolo Giusto
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Baris Kumru
- Aerospace Structures & Materials DepartmentFaculty of Aerospace EngineeringDelft University of Technology2629HS DelftThe Netherlands
| |
Collapse
|
12
|
Kosko RM, Wang Q, Peter CYM, Phinney EO, Krauss TD, Bren KL, Matson EM. Amphiphilic, phosphonic acid-capped cadmium selenide quantum dots sensitize a thiomolybdate catalyst for hydrogen production. Chem Commun (Camb) 2024; 60:13694-13697. [PMID: 39485520 DOI: 10.1039/d4cc03656e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Combining a molecular thiomolybdate cluster, [Mo3S13]2-, with cadmium selenide quantum dots capped with tetraethyleneglycol monomethyl ether phosphonate (TEGPA) ligands results in a highly active photocatalytic system for the production of hydrogen under visible light irradiation. The system reaches turnover numbers exceeding 30 000 and remains active for ∼200 h.
Collapse
Affiliation(s)
- Ryan M Kosko
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
| | - Qirui Wang
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
| | - Chari Y M Peter
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
| | - Elizabeth O Phinney
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
- Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Kara L Bren
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
| | - Ellen M Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.
| |
Collapse
|
13
|
Gupta R, Aashish, Upma, Majumdar S, Chowdhury PK, Gupta R. Visible light mediated photocatalysis by lanthanide metal-organic frameworks: enhanced specificity and mechanistic insights. Chem Sci 2024:d4sc04105d. [PMID: 39464601 PMCID: PMC11506566 DOI: 10.1039/d4sc04105d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
The utilization of earth-abundant photosensitizers with visible light absorption to enable sustainable photocatalysis is a long-standing challenge. Overcoming such a challenge, in this work, two lanthanide (Ln3+ = Tb, Eu) based metal-organic frameworks (Ln-MOFs) have been synthesized utilizing a Co3+-based metalloligand. Both Ln-MOFs function as remarkable photocatalysts for the selective oxidation of assorted alcohols and sulfides to their corresponding aldehydes/ketones and sulfoxides using visible light. The photophysical behavior of both Ln-MOFs and mechanism of photocatalysis is comprehensively investigated using time-resolved transient absorption spectroscopy, electrochemical impedance spectroscopy, electron paramagnetic resonance spectroscopy, photoluminescence and phosphorescence studies. In both Ln-MOFs, a metalloligand acts as a light-harvester, being excited by visible light, while Ln3+ ions endow the resulting MOFs with long-lived triplet excited states. Ultrafast transient absorption spectroscopy, further supported by electron paramagnetic resonance spectra, revealed excited-state electron transfer from metalloligands to the Ln3+ ions and transient generation of Ln2+ sites alongside the facilitation of intersystem crossing. The excited Ln2+ ions transfer energy to the ground-state triplet oxygen (3O2) to generate singlet oxygen (1O2). The HOMO-LUMO positions of both Ln-MOFs support the generation of ˙O2 - and 1O2 but inhibit strongly-oxidizing yet non-selective ˙OH radicals. Scavenger experiments, 1O2 traps and electron paramagnetic resonance spectra confirmed the generation of singlet oxygen. The heavy-metal effect of a lanthanide ion in Ln-MOFs for the generation of triplet excitons is confirmed by the synthesis of a non-heavy-metal analogue involving a zinc ion via a single-crystal-to-single-crystal transformation strategy. The present results are noteworthy and may aid in the development of other earth-abundant metalloligand-based photocatalysts for challenging yet sustainable catalysis.
Collapse
Affiliation(s)
- Ruchika Gupta
- Department of Chemistry, University of Delhi Delhi 110 007 India https://people.du.ac.in/∼rgupta/
| | - Aashish
- Department of Chemistry, University of Delhi Delhi 110 007 India https://people.du.ac.in/∼rgupta/
| | - Upma
- Department of Chemistry, University of Delhi Delhi 110 007 India https://people.du.ac.in/∼rgupta/
| | | | | | - Rajeev Gupta
- Department of Chemistry, University of Delhi Delhi 110 007 India https://people.du.ac.in/∼rgupta/
| |
Collapse
|
14
|
Adaikalam K, Vikraman D, Karuppasamy K, Kim HS. Solar Hydrogen Production and Storage in Solid Form: Prospects for Materials and Methods. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1560. [PMID: 39404287 PMCID: PMC11477753 DOI: 10.3390/nano14191560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Climatic changes are reaching alarming levels globally, seriously impacting the environment. To address this environmental crisis and achieve carbon neutrality, transitioning to hydrogen energy is crucial. Hydrogen is a clean energy source that produces no carbon emissions, making it essential in the technological era for meeting energy needs while reducing environmental pollution. Abundant in nature as water and hydrocarbons, hydrogen must be converted into a usable form for practical applications. Various techniques are employed to generate hydrogen from water, with solar hydrogen production-using solar light to split water-standing out as a cost-effective and environmentally friendly approach. However, the widespread adoption of hydrogen energy is challenged by transportation and storage issues, as it requires compressed and liquefied gas storage tanks. Solid hydrogen storage offers a promising solution, providing an effective and low-cost method for storing and releasing hydrogen. Solar hydrogen generation by water splitting is more efficient than other methods, as it uses self-generated power. Similarly, solid storage of hydrogen is also attractive in many ways, including efficiency and cost-effectiveness. This can be achieved through chemical adsorption in materials such as hydrides and other forms. These methods seem to be costly initially, but once the materials and methods are established, they will become more attractive considering rising fuel prices, depletion of fossil fuel resources, and advancements in science and technology. Solid oxide fuel cells (SOFCs) are highly efficient for converting hydrogen into electrical energy, producing clean electricity with no emissions. If proper materials and methods are established for solar hydrogen generation and solid hydrogen storage under ambient conditions, solar light used for hydrogen generation and utilization via solid oxide fuel cells (SOFCs) will be an efficient, safe, and cost-effective technique. With the ongoing development in materials for solar hydrogen generation and solid storage techniques, this method is expected to soon become more feasible and cost-effective. This review comprehensively consolidates research on solar hydrogen generation and solid hydrogen storage, focusing on global standards such as 6.5 wt% gravimetric capacity at temperatures between -40 and 60 °C. It summarizes various materials used for efficient hydrogen generation through water splitting and solid storage, and discusses current challenges in hydrogen generation and storage. This includes material selection, and the structural and chemical modifications needed for optimal performance and potential applications.
Collapse
Affiliation(s)
- Kathalingam Adaikalam
- Millimeter-Wave Innovation Technology Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea; (D.V.); (K.K.)
| | - K. Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea; (D.V.); (K.K.)
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea; (D.V.); (K.K.)
| |
Collapse
|
15
|
Asokan K, Bhagyasree TM, Devasia G, Krishnamurty S, Solim S, Rueda L, Al-Mohannadi DM, Al-Hashimi M, Kakosimos K, Santhosh Babu S. A scalable approach using a gC 3N 4-covalent organic framework hybrid catalyst towards sustainable hydrogen production from seawater and wastewater. Chem Sci 2024; 15:13381-13388. [PMID: 39183933 PMCID: PMC11339968 DOI: 10.1039/d4sc01387e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/05/2024] [Indexed: 08/27/2024] Open
Abstract
The photocatalytic generation of H2 using covalent organic frameworks (COFs) is gaining more interest. While numerous reports have focused on the production of H2 from deionized water using COFs, the inability to produce H2 from industrial wastewater or seawater is a common limitation in many reported catalysts. Additionally, many of these reports lack a clear path to scale up the catalyst synthesis. In this study, we explore the prospect of hybridizing a COF with gC3N4 to create a robust photocatalyst for efficient H2 generation. This hybrid exhibits outstanding performance not only in deionized water, but also in wastewater, and simulated seawater. Furthermore, we explore the feasibility of the bulk-scale synthesis and successfully produce a 20 g hybrid catalyst in a single batch, and the synthesis method is scalable to achieve the commercial target. Remarkably, a maximum HER rate of 94 873 μmol g-1 h-1 and 109 125 μmol g-1 h-1 was obtained for the hybrid catalyst from industrial wastewater and simulated seawater, respectively. The performance of bulk-scale batches closely matches that of the small-scale ones. This research paves the way for the utilization of organic photocatalysts on a commercial scale, offering a promising solution for sustainable large-scale H2 production.
Collapse
Affiliation(s)
- Kiran Asokan
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL) Dr Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - T M Bhagyasree
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL) Dr Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - George Devasia
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL) Dr Homi Bhabha Road Pune 411008 India
| | - Sailaja Krishnamurty
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL) Dr Homi Bhabha Road Pune 411008 India
| | - Sabah Solim
- Qatar Shell Research & Technology Centre Qatar Science & Technology Park, Education City Doha Qatar
| | - Lina Rueda
- Qatar Shell Research & Technology Centre Qatar Science & Technology Park, Education City Doha Qatar
| | | | | | | | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL) Dr Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
16
|
Anh Nguyen TK, Trần-Phú T, Daiyan R, Minh Chau Ta X, Amal R, Tricoli A. From Plastic Waste to Green Hydrogen and Valuable Chemicals Using Sunlight and Water. Angew Chem Int Ed Engl 2024; 63:e202401746. [PMID: 38757221 DOI: 10.1002/anie.202401746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Over 79 % of 6.3 billion tonnes of plastics produced from 1950 to 2015 have been disposed in landfills or found their way to the oceans, where they will reside for up to hundreds of years before being decomposed bringing upon significant dangers to our health and ecosystems. Plastic photoreforming offers an appealing alternative by using solar energy and water to transform plastic waste into value-added chemical commodities, while simultaneously producing green hydrogen via the hydrogen evolution reaction. This review aims to provide an overview of the underlying principles of emerging plastic photoreforming technologies, highlight the challenges associated with experimental protocols and performance assessments, discuss recent global breakthroughs on the photoreforming of plastics, and propose perspectives for future research. A critical assessment of current plastic photoreforming studies shows a lack of standardised conditions, hindering comparison amongst photocatalyst performance. Guidelines to establish a more accurate evaluation of materials and systems are proposed, with the aim to facilitate the translation of promising fundamental discovery in photocatalysts design.
Collapse
Affiliation(s)
- Thi Kim Anh Nguyen
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Thành Trần-Phú
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
- Present address: Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Rahman Daiyan
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Xuan Minh Chau Ta
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Rose Amal
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
17
|
Aggarwal S, Awasthi SK. Emerging trends in the development and applications of triazine-based covalent organic polymers: a comprehensive review. Dalton Trans 2024; 53:11601-11643. [PMID: 38916403 DOI: 10.1039/d4dt01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Owing to unique structural features, triazine-based covalent organic polymers (COPs) have attracted significant attention and emerged as novel catalysts or support materials for an array of applications. Typically formed by reacting triazine-based monomers or the in situ creation of triazine rings from nitrile monomers, these COPs possess 2D/3D meso/microporous structures held together via strong covalent linkages. The quest for efficient, stable and recyclable catalytic systems globally necessitates the need for a well-structured and comprehensive review summarizing the synthetic methodologies and applications of triazine-based COPs. This review explores the various synthetic routes and applications of these COPs in photocatalysis, heterogeneous catalysis, electrocatalysis, adsorption and sensing. By exploring the latest advancements and future directions, this review offers valuable insights into the synthesis and applications of triazine-based COPs.
Collapse
Affiliation(s)
- Simran Aggarwal
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
18
|
Boecker M, Lander S, Müller R, Gaus AL, Neumann C, Moser J, Micheel M, Turchanin A, Delius MV, Synatschke CV, Leopold K, Wächtler M, Weil T. Screening Cobalt-based Catalysts on Multicomponent CdSe@CdS Nanorods for Photocatalytic Hydrogen Evolution in Aqueous Media. ACS APPLIED NANO MATERIALS 2024; 7:14146-14153. [PMID: 38962509 PMCID: PMC11217917 DOI: 10.1021/acsanm.4c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
We present CdSe@CdS nanorods coated with a redox-active polydopamine (PDA) layer functionalized with cobaloxime-derived photocatalysts for efficient solar-driven hydrogen evolution in aqueous environments. The PDA-coating provides reactive groups for the functionalization of the nanorods with different molecular catalysts, facilitates charge separation and transfer of electrons from the excited photosensitizer to the catalyst, and reduces photo-oxidation of the photosensitizer. X-ray photoelectron spectroscopy (XPS) confirms the successful functionalization of the nanorods with cobalt-based catalysts, whereas the catalyst loading per nanorod is quantified by total reflection X-ray fluorescence spectrometry (TXRF). A systematic comparison of different types of cobalt-based catalysts was carried out, and their respective performance was analyzed in terms of the number of nanorods and the amount of catalyst in each sample [turnover number, (TON)]. This study shows that the performance of these multicomponent photocatalysts depends strongly on the catalyst loading and less on the specific structure of the molecular catalyst. Lower catalyst loading is advantageous for increasing the TON because the catalysts compete for a limited number of charge carriers at the nanoparticle surface. Therefore, increasing the catalyst loading relative to the absolute amount of hydrogen produced does not lead to a steady increase in the photocatalytic activity. In our work, we provide insights into how the performance of a multicomponent photocatalytic system is determined by the intricate interplay of its components. We identify the stable attachment of the catalyst and the ratio between the catalyst and photosensitizer as critical parameters that must be fine-tuned for optimal performance.
Collapse
Affiliation(s)
- Marcel Boecker
- Department
for Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Sarah Lander
- Department
of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Riccarda Müller
- Institute
of Analytical and Bioanalytical Chemistry, University Ulm, Ulm 89081, Germany
| | - Anna-Laurine Gaus
- Institute
of Organic Chemistry I, University Ulm, Ulm 89081, Germany
| | - Christof Neumann
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julia Moser
- Department
for Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Mathias Micheel
- Department
of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Andrey Turchanin
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany
- Abbe Center
of Photonics (ACP), Jena 07745, Germany
| | - Max von Delius
- Institute
of Organic Chemistry I, University Ulm, Ulm 89081, Germany
| | - Christopher V. Synatschke
- Department
for Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Kerstin Leopold
- Institute
of Analytical and Bioanalytical Chemistry, University Ulm, Ulm 89081, Germany
| | - Maria Wächtler
- Department
of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Tanja Weil
- Department
for Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| |
Collapse
|
19
|
Andreou E, Vamvasakis I, Armatas GS. Efficient Visible Light Photocatalytic Hydrogen Evolution by Boosting the Interfacial Electron Transfer in Mesoporous Mott-Schottky Heterojunctions of Co 2P-Modified CdIn 2S 4 Nanocrystals. ACS APPLIED ENERGY MATERIALS 2024; 7:4891-4903. [PMID: 38911345 PMCID: PMC11192152 DOI: 10.1021/acsaem.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024]
Abstract
Photocatalytic water splitting for hydrogen generation is an appealing means of sustainable solar energy storage. In the past few years, mesoporous semiconductors have been at the forefront of investigations in low-cost chemical fuel production and energy conversion technologies. Mesoporosity combined with the tunable electronic properties of semiconducting nanocrystals offers the desired large accessible surface and electronic connectivity throughout the framework, thus enhancing photocatalytic activity. In this work, we present the construction of rationally designed 3D mesoporous networks of Co2P-modified CdIn2S4 nanoscale crystals (ca. 5-6 nm in size) through an effective soft-templating synthetic route and demonstrate their impressive performance for visible-light-irradiated catalytic hydrogen production. Spectroscopic characterizations combined with electrochemical studies unravel the multipathway electron transfer dynamics across the interface of Co2P/CdIn2S4 Mott-Schottky nanoheterojunctions and shed light on their impact on the photocatalytic hydrogen evolution chemistry. The strong Mott-Schottky interaction occurring at the heterointerface can regulate the charge transport toward greatly improved hydrogen evolution performance. The hybrid catalyst with 10 wt % Co2P content unveils a H2 evolution rate of 20.9 mmol gcat -1 h-1 under visible light irradiation with an apparent quantum efficiency (AQE) up to 56.1% at 420 nm, which is among the highest reported activities. The understanding of interfacial charge-transfer mechanism could provide valuable insights into the rational development of highly efficient catalysts for clean energy applications.
Collapse
Affiliation(s)
- Evangelos
K. Andreou
- Department of Materials Science
and Engineering University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | - Ioannis Vamvasakis
- Department of Materials Science
and Engineering University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | - Gerasimos S. Armatas
- Department of Materials Science
and Engineering University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| |
Collapse
|
20
|
Fan Y, Liu Y, Zhang Y, Yang X, Si S, Cui G, Shi X, Tang B. Photocatalytic Hydrogen and Oxygen Evolution Performed by a Long-Afterglow Material. Inorg Chem 2024; 63:10397-10402. [PMID: 38767325 DOI: 10.1021/acs.inorgchem.4c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
A micron-sized long-afterglow material, Sr2MgSi2O7:Eu,Ce, was utilized to conduct the hydrogen evolution reaction and oxygen evolution reaction, two half-reactions of water splitting, in the presence of sacrificial agents under both light and dark conditions for the first time. The as-synthesized Sr2MgSi2O7:Eu,Ce exhibited higher photocatalytic activity compared to that of the referenced Sr2MgSi2O7:Eu and Sr2MgSi2O7:Ce samples. Herein, in addition to benefiting from the long photogenerated carrier lifetime of long-afterglow materials, the higher photocatalytic activity was attributed to the conjugated electronic structure between Eu and Ce ions. This structure facilitates charge and energy transfer between them, leading to an enhanced photocatalytic efficiency. This research provides a new strategy for designing efficient long-afterglow material photocatalysts through the construction of conjugated electronic structures.
Collapse
Affiliation(s)
- Yanfei Fan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yujia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Xiuli Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Shizhao Si
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Guanwei Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Xifeng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
- Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
21
|
Savateev O, Shvalagin V, Tang J. Increasing Profitability of Ethanol Photoreforming by Simultaneous Production of H 2 and Acetal. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300078. [PMID: 38868603 PMCID: PMC11165521 DOI: 10.1002/gch2.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Indexed: 06/14/2024]
Abstract
Often, H2 is produced photocatalytically at the expense of sacrificial agents. When a sacrificial agent is selectively oxidized, this allows coupling of H2 production with synthesis of value-added organic compounds. Herein, it is argued that the conversion of bioethanol into 1,1-diethoxyethane with simultaneous H2 production increases the economic viability of photocatalysis and suggests a semiconductor material that is the most relevant for this purpose.
Collapse
Affiliation(s)
- Oleksandr Savateev
- Colloid Chemistry DepartmentMax Planck Institute of colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
| | - Vitaliy Shvalagin
- Colloid Chemistry DepartmentMax Planck Institute of colloids and InterfacesAm Muehlenberg 114476PotsdamGermany
- Pisarzhevskii Institute of Physical Chemistry of the NAS of UkraineProspect Nauky, 31Kyiv03028Ukraine
| | - Junwang Tang
- Department of Chemical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- Industrial Catalysis CenterDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
22
|
Diab GAA, da Silva MAR, Rocha GFSR, Noleto LFG, Rogolino A, de Mesquita JP, Jiménez‐Calvo P, Teixeira IF. A Solar to Chemical Strategy: Green Hydrogen as a Means, Not an End. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300185. [PMID: 38868607 PMCID: PMC11165522 DOI: 10.1002/gch2.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/24/2023] [Indexed: 06/14/2024]
Abstract
Green hydrogen is the key to the chemical industry achieving net zero emissions. The chemical industry is responsible for almost 2% of all CO2 emissions, with half of it coming from the production of simple commodity chemicals, such as NH3, H2O2, methanol, and aniline. Despite electrolysis driven by renewable power sources emerging as the most promising way to supply all the green hydrogen required in the production chain of these chemicals, in this review, it is worth noting that the photocatalytic route may be underestimated and can hold a bright future for this topic. In fact, the production of H2 by photocatalysis still faces important challenges in terms of activity, engineering, and economic feasibility. However, photocatalytic systems can be tailored to directly convert sunlight and water (or other renewable proton sources) directly into chemicals, enabling a solar-to-chemical strategy. Here, a series of recent examples are presented, demonstrating that photocatalysis can be successfully employed to produce the most important commodity chemicals, especially on NH3, H2O2, and chemicals produced by reduction reactions. The replacement of fossil-derived H2 in the synthesis of these chemicals can be disruptive, essentially safeguarding the transition of the chemical industry to a low-carbon economy.
Collapse
Affiliation(s)
- Gabriel A. A. Diab
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Marcos A. R. da Silva
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Guilherme F. S. R. Rocha
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Luis F. G. Noleto
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Andrea Rogolino
- Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| | - João P. de Mesquita
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
- Departamento de QuímicaUniversidade Federal dos Vales Jequitinhonha e MucuriRodovia MGT 367 – Km 583, n° 5000, Alto da JacubaDiamantinaMG39100Brazil
| | - Pablo Jiménez‐Calvo
- Department for Materials SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstrasse 7D‐91058ErlangenGermany
- Chemistry of Thin Film MaterialsFriedrich‐Alexander‐Universität Erlangen‐NürnbergIZNF, Cauerstraße 3D‐91058ErlangenGermany
| | - Ivo F. Teixeira
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| |
Collapse
|
23
|
Sportelli G, Marchi M, Fornasiero P, Filippini G, Franco F, Melchionna M. Photoelectrocatalysis for Hydrogen Evolution Ventures into the World of Organic Synthesis. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400012. [PMID: 38868602 PMCID: PMC11165553 DOI: 10.1002/gch2.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Indexed: 06/14/2024]
Abstract
The use of light as a catalytic prompt for the synthesis of industrial relevant compounds is widely explored in the past years, with a special consideration over the hydrogen evolution reaction (HER). However, semiconductors for heterogeneous photocatalysis suffer from fast charge recombination and, consequently, low solar-to-hydrogen efficiency. These drawbacks can be mitigated by coupling photocatalysts with an external circuit that can physically separate the photogenerated charge carriers (electrons and holes). For this reason, photoelectrochemical (PEC) production of hydrogen is under the spotlight as promising green and sustainable technique and widely investigated in numerous publications. However, considering that a significant fraction of the hydrogen produced is used for reduction processes, the development of PEC devices for direct in situ hydrogenation can address the challenges associated with hydrogen storage and distribution. This Perspective aims at highlighting the fundamental aspects of HER from PEC systems, and how these can be harnessed toward the implementation of suitable settings for the hydrogenation of organic compounds of industrial value.
Collapse
Affiliation(s)
- Giuseppe Sportelli
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
- Department of Science, Technology and SocietyUniversity School for Advanced Studies IUSS PaviaPiazza della Vittoria 15Pavia27100Italy
| | - Miriam Marchi
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
- Center for EnergyEnvironment and Transport “Giacomo Ciamician” and ICCOM‐CNR Trieste Research UnitUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
| | - Federico Franco
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
- Center for EnergyEnvironment and Transport “Giacomo Ciamician” and ICCOM‐CNR Trieste Research UnitUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
| |
Collapse
|
24
|
Kurnosenko SA, Silyukov OI, Rodionov IA, Baeva AS, Burov AA, Kulagina AV, Novikov SS, Zvereva IA. Hydrothermally Synthesized ZnCr- and NiCr-Layered Double Hydroxides as Hydrogen Evolution Photocatalysts. Molecules 2024; 29:2108. [PMID: 38731599 PMCID: PMC11085494 DOI: 10.3390/molecules29092108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The layered double hydroxides (LDHs) of transition metals are of great interest as building blocks for the creation of composite photocatalytic materials for hydrogen production, environmental remediation and other applications. However, the synthesis of most LDHs is reported only by the conventional coprecipitation method, which makes it difficult to control the catalyst's crystallinity. In the present study, ZnCr- and NiCr-LDHs have been successfully prepared using a facile hydrothermal approach. Varying the hydrothermal synthesis conditions allowed us to obtain target products with a controllable crystallite size in the range of 2-26 nm and a specific surface area of 45-83 m2∙g-1. The LDHs synthesized were investigated as photocatalysts of hydrogen generation from aqueous methanol. It was revealed that the photocatalytic activity of ZnCr-LDH samples grows monotonically with the increase in their average crystallite size, while that of NiCr-LDH ones reaches a maximum with intermediate-sized crystallites and then decreases due to the specific surface area reduction. The concentration dependence of the hydrogen evolution activity is generally consistent with the standard Langmuir-Hinshelwood model for heterogeneous catalysis. At a methanol content of 50 mol. %, the rate of hydrogen generation over ZnCr- and NiCr-LDHs reaches 88 and 41 μmol∙h-1∙g-1, respectively. The hydrothermally synthesized LDHs with enhanced crystallinity may be of interest for further fabrication of their nanosheets being promising components of new composite photocatalysts.
Collapse
Affiliation(s)
| | - Oleg I. Silyukov
- Department of Chemical Thermodynamics and Kinetics, Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.A.K.); (I.A.R.); (A.S.B.); (A.A.B.); (A.V.K.); (S.S.N.); (I.A.Z.)
| | | | | | | | | | | | | |
Collapse
|
25
|
Chen Z, Yan Y, Sun K, Tan L, Guo F, Du X, Shi W. Plasmonic coupling-boosted photothermal composite photocatalyst for achieving near-infrared photocatalytic hydrogen production. J Colloid Interface Sci 2024; 661:12-22. [PMID: 38295694 DOI: 10.1016/j.jcis.2024.01.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
The development of photocatalysts that effectively utilize low-energy photons for efficient photocatalysis still faces a number of challenges. Herein, an efficient NIR-driven system based on WO3-x/ZnIn2S4 (WO3-x/ZIS) prepared by a simple low-temperature water-bath method, and the optimal WO3-x/ZIS-3 composites can reach a hydrogen-production efficiency of 14.05 μmol g-1h-1 under NIR light irradiation. The localized surface plasmon (LSPR) resonance effect in WO3-x quantum dots (QDs) not only broadens the ZIS photo-response range, but also the photothermal effect of WO3-x can increase the local reaction temperature of WO3-x/ZIS composite system, thus enhancing the photothermal-assisted photocatalytic activity. In addition, density functional theory (DFT) calculations show that the difference in work function between WO3-x and ZIS can lead to the formation of interfacial electric field (IEF), which not only promotes the separation and migration efficiency of photogenerated carriers, but also facilitates the photocatalytic water splitting for hydrogen production. This study provides possible directions for the construction of NIR-driven photothermal-assisted photocatalytic hydrogen production system.
Collapse
Affiliation(s)
- Zhouze Chen
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yujie Yan
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Kaiqu Sun
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Lei Tan
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, PR China
| | - Feng Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| | - Xin Du
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| |
Collapse
|
26
|
Qian A, Han X, Liu Q, Fan M, Ye L, Pu X, Chen Y, Liu J, Sun H, Zhao J, Ling H, Wang R, Li J, Jia X. Photocatalytic Hydrogen Production from Pure Water Using a IEF-11/g-C 3N 4 S-Scheme Heterojunction. CHEMSUSCHEM 2024; 17:e202301538. [PMID: 38376216 DOI: 10.1002/cssc.202301538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Indexed: 02/21/2024]
Abstract
Construction of S-scheme heterojunction offers a promising way to enhance the photocatalytic performance of photocatalysts for converting solar energy into chemical energy. However, the photocatalytic H2 production in pure water without sacrificial agents is still a challenge. Herein, the IEF-11 with the best photocatalytic H2 production performance in MOFs and suitable band structure was selected and firstly constructed with g-C3N4 to obtain a S-scheme heterojunction for photocatalytic H2 production from pure water. As a result, the novel IEF-11/g-C3N4 heterojunction photocatalysts exhibited significantly improved photocatalytic H2 production performance in pure water without any sacrificial agent, with a rate of 576 μmol/g/h, which is about 8 times than that of g-C3N4 and 23 times of IEF-11. The novel IEF-11/g-C3N4 photocatalysts also had a photocatalytic H2 production rate of up to 92 μmol/g/h under visible light and a good photocatalytic stability. The improved performance can be attributed to the efficient separation of photogenerated charge carriers, faster charge transfer efficiency and longer photogenerated carrier lifetimes, which comes from the forming of S-scheme heterojunction in the IEF-11/g-C3N4 photocatalyst. This work is a promising guideline for obtaining MOF-based or g-C3N4-based photocatalysts with great photocatalytic water splitting performance.
Collapse
Affiliation(s)
- An Qian
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237
| | - Xin Han
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237
| | - Qiaona Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237
| | - Minwei Fan
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237
| | - Lei Ye
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237
| | - Xin Pu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237
| | - Ying Chen
- SINOPEC Shanghai Engineering Co., Ltd.(SSEC), Shanghai, 200120, China
| | - Jichang Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University, Shihezi, 832003, China
| | - Hui Sun
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237
| | - Jigang Zhao
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237
| | - Hao Ling
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237
| | - Rongjie Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University, Shihezi, 832003, China
| | - Jiangbing Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University, Shihezi, 832003, China
| | - Xin Jia
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University, Shihezi, 832003, China
| |
Collapse
|
27
|
Liu JA, Yin L, Liu G. Ferro/Nonferroelectric Vertical Heterostructure Superlattice as a Visible-Light-Responsive Photocatalyst: A DFT Prediction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7026-7037. [PMID: 38306579 DOI: 10.1021/acsami.3c15068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Developing narrow-band-gap ferroelectric semiconducting photocatalysts is a promising strategy for efficient photocatalytic water splitting with high energy conversion efficiency. Within this context, six ferro/nonferroelectric vertical heterostructure superlattices (VHSs) are constructed in this work by stacking ferroelectric SiS or GeS with nonferroelectric layered organic photocatalysts (C2N, g-C3N4, and melon), layer by layer. The geometry and electronic structures of these six VHSs are systematically investigated by density functional theory calculations. Consequently, four VHSs (SiS/g-C3N4, GeS/C2N, GeS/g-C3N4, and GeS/melon) are predicted to simultaneously possess several important and highly desirable features for photocatalytic water splitting, namely excellent visible-light adsorption, remarkable spontaneous polarization (0.49-0.70 C/m2), spatial charge separation, as well as suitable band-edge positions, thus serving as potential candidates for photocatalytic water splitting to produce hydrogen. This work not only provides a new strategy to use narrow-band-gap ferroelectric semiconductors for photocatalytic water splitting but also offers inspiration for developing photocatalysts with high energy conversion efficiency.
Collapse
Affiliation(s)
- Jian-An Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Gang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
28
|
Kim JH, Wu S, Zdrazil L, Denisov N, Schmuki P. 2D Metal-Organic Framework Nanosheets based on Pd-TCPP as Photocatalysts for Highly Improved Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202319255. [PMID: 38157446 DOI: 10.1002/anie.202319255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
In this report, a 2D MOF nanosheet derived Pd single-atom catalyst, denoted as Pd-MOF, was fabricated and examined for visible light photocatalytic hydrogen evolution reaction (HER). This Pd-MOF can provide a remarkable photocatalytic activity (a H2 production rate of 21.3 mmol/gh in the visible range), which outperforms recently reported Pt-MOFs (with a H2 production rate of 6.6 mmol/gh) with a similar noble metal loading. Notably, this high efficiency of Pd-MOF is not due to different chemical environment of the metal center, nor by changes in the spectral light absorption. The higher performance of the Pd-MOF in comparison to the analogue Pt-MOF is attributed to the longer lifetime of the photogenerated electron-hole pairs and higher charge transfer efficiency.
Collapse
Affiliation(s)
- Ji Hyeon Kim
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Siming Wu
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Lukas Zdrazil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 78371, Olomouc, Czech Republic
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Nikita Denisov
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| |
Collapse
|
29
|
Kang W, Guo F, Mao L, Liu Y, Han C, Yuan L. Ni(OH) 2 surface-modified hierarchical ZnIn 2S 4 nanosheets: dual photocatalytic application and mechanistic insights. Phys Chem Chem Phys 2023. [PMID: 38048074 DOI: 10.1039/d3cp04443b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The simultaneous utilization of electrons and holes to couple photocatalytic H2 production with selective biomass transformation has attracted immense interest toward achieving sustainability in the fields of energy and chemical industry. In this study, by assembling highly dispersed Ni(OH)2 onto ZnIn2S4 (ZIS), efficient H2 evolution along with highly selective photocatalytic oxidation of furfuryl alcohol (FA) to furfural (FF) in pure water was achieved under anaerobic conditions. The H2 production and FA conversion rates over the optimal Ni-ZIS sample reached about 686 and 583 μmol g-1 h-1, respectively, about 4.9 and 1.7 folds as those of pure ZIS. Moreover, the formation of by-products with C-C coupling was dramatically suppressed over Ni-ZIS, resulting in higher selectivity for FF (97%), which is about 2.7-fold that of pure ZIS (36%). Deep mechanistic studies were conducted to reveal the structural evolution and cocatalyst effects of Ni(OH)2. This study not only offers a feasible paradigm for modifying the surface of catalysts to tune the photoactivity and selectivity for product-oriented alcohol oxidation coupled with efficient H2 production in water but also reveals the working mechanism of the deposited Ni(OH)2 over ZIS toward coupling reactions.
Collapse
Affiliation(s)
- Wanqiong Kang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Fen Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Lei Mao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Yi Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China.
| | - Chuang Han
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Lan Yuan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
30
|
Ashraf M, Ali R, Khan I, Ullah N, Ahmad MS, Kida T, Wooh S, Tremel W, Schwingenschlögl U, Tahir MN. Bandgap Engineering of Melon using Highly Reduced Graphene Oxide for Enhanced Photoelectrochemical Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301342. [PMID: 37548517 DOI: 10.1002/adma.202301342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/30/2023] [Indexed: 08/08/2023]
Abstract
The uncondensed form of polymeric carbon nitrides (PCN), generally known as melon, is a stacked 2D structure of poly(aminoimino)heptazine. Melon is used as a photocatalyst in solar energy conversion applications, but suffers from poor photoconversion efficiency due to weak optical absorption in the visible spectrum, high activation energy, and inefficient separation of photoexcited charge carriers. Experimental and theoretical studies are reported to engineer the bandgap of melon with highly reduced graphene oxide (HRG). Three HRG@melon nanocomposites with different HRG:melon ratios (0.5%, 1%, and 2%) are prepared. The 1% HRG@melon nanocomposite shows higher photocurrent density (71 µA cm-2 ) than melon (24 µA cm-2 ) in alkaline conditions. The addition of a hole scavenger further increases the photocurrent density to 630 µA cm-2 relative to the reversible hydrogen electrode (RHE). These experimental results are validated by calculations using density functional theory (DFT), which revealed that HRG results in a significant charge redistribution and an improved photocatalytic hydrogen evolution reaction (HER).
Collapse
Affiliation(s)
- Muhammad Ashraf
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dharan, 31261, Kingdom of Saudi Arabia
| | - Roshan Ali
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ibrahim Khan
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dharan, 31261, Kingdom of Saudi Arabia
| | - Muhammad Sohail Ahmad
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Tetsuya Kida
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
- Department of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Sanghyuk Wooh
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Wolfgang Tremel
- Chemistry Department, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Udo Schwingenschlögl
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Nawaz Tahir
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dharan, 31261, Kingdom of Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
31
|
Ferdous N, Islam MS, Alam MS, Zamil MY, Biney J, Vatani S, Park J. Intriguing type-II g-GeC/AlN bilayer heterostructure for photocatalytic water decomposition and hydrogen production. Sci Rep 2023; 13:18778. [PMID: 37907550 PMCID: PMC10618537 DOI: 10.1038/s41598-023-45744-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Adapting two-dimensional (2D) van der Walls bilayer heterostructure is an efficient technique for realizing fascinating properties and playing a key role in solar energy-driven water decomposition schemes. By means of first-principles calculations, this study reveals the intriguing potential of a novel 2D van der Walls hetero-bilayer consisting of GeC and AlN layer in the photocatalytic water splitting method to generate hydrogen. The GeC/AlN heterostructure has an appropriate band gap of 2.05 eV, wherein the band edges are in proper energetic positions to provoke the water redox reaction to generate hydrogen and oxygen. The type-II band alignment of the bilayer facilitates the real-space spontaneous separation of the photogenerated electrons and holes in the different layers, improving the photocatalytic activity significantly. Analysis of the electrostatic potential and the charge density difference unravels the build-up of an inherent electric field at the interface, preventing electron-hole recombination. The ample absorption spectrum of the bilayer from the ultra-violet to the near-infrared region, reaching up to 8.71 × 105/cm, combined with the resiliency to the biaxial strain, points out the excellent photocatalytic performance of the bilayer heterostructure. On top of rendering useful information on the key features of the GeC/AlN hetero-bilayer, the study offers informative details on the experimental design of the van der Walls bilayer heterostructure for solar-to-hydrogen conversion applications.
Collapse
Affiliation(s)
- Naim Ferdous
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA
| | - Md Sherajul Islam
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA.
- Department of Electrical and Electronic Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh.
| | - Md Shahabul Alam
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA
| | - Md Yasir Zamil
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA
| | - Jeshurun Biney
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA
| | - Sareh Vatani
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA
| | - Jeongwon Park
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, 89557, USA
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, K1N6N5, Canada
| |
Collapse
|
32
|
Yousaf AB, Imran M, Farooq M, Kausar S, Yasmeen S, Kasak P. Graphitic Carbon Nitride Nanosheets Decorated with Zinc-Cadmium Sulfide for Type-II Heterojunctions for Photocatalytic Hydrogen Production. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2609. [PMID: 37764638 PMCID: PMC10535485 DOI: 10.3390/nano13182609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
In this study, we fabricated graphitic carbon nitride (g-C3N4) nanosheets with embedded ZnCdS nanoparticles to form a type II heterojunction using a facile synthesis approach, and we used them for photocatalytic H2 production. The morphologies, chemical structure, and optical properties of the obtained g-C3N4-ZnCdS samples were characterized by a battery of techniques, such as TEM, XRD, XPS, and UV-Vis DRS. The as-synthesized g-C3N4-ZnCdS photocatalyst exhibited the highest hydrogen production rate of 108.9 μmol·g-1·h-1 compared to the individual components (g-C3N4: 13.5 μmol·g-1·h-1, ZnCdS: 45.3 μmol·g-1·h-1). The improvement of its photocatalytic activity can mainly be attributed to the heterojunction formation and resulting synergistic effect, which provided more channels for charge carrier migration and reduced the recombination of photogenerated electrons and holes. Meanwhile, the g-C3N4-ZnCdS heterojunction catalyst also showed a higher stability over a number of repeated cycles. Our work provides insight into using g-C3N4 and metal sulfide in combination so as to develop low-cost, efficient, visible-light-active hydrogen production photocatalysts.
Collapse
Affiliation(s)
- Ammar Bin Yousaf
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Muhammad Imran
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China;
| | - Muhammad Farooq
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Samaira Kausar
- Department of Chemistry, National Science College, Satellite Town, Gujranwala 52250, Pakistan; (S.K.); (S.Y.)
| | - Samina Yasmeen
- Department of Chemistry, National Science College, Satellite Town, Gujranwala 52250, Pakistan; (S.K.); (S.Y.)
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
33
|
Le PA, Trung VD, Nguyen PL, Bac Phung TV, Natsuki J, Natsuki T. The current status of hydrogen energy: an overview. RSC Adv 2023; 13:28262-28287. [PMID: 37753405 PMCID: PMC10519154 DOI: 10.1039/d3ra05158g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Hydrogen is the most environmentally friendly and cleanest fuel that has the potential to supply most of the world's energy in the future, replacing the present fossil fuel-based energy infrastructure. Hydrogen is expected to solve the problem of energy shortages in the near future, especially in complex geographical areas (hills, arid plateaus, etc.) and harsh climates (desert, ice, etc.). Thus, in this report, we present a current status of achievable hydrogen fuel based on various scopes, including production methods, storage and transportation techniques, the global market, and the future outlook. Its objectives include analyzing the effectiveness of various hydrogen generation processes and their effects on the economy, society, and environment. These techniques are contrasted in terms of their effects on the environment, manufacturing costs, energy use, and energy efficiency. In addition, hydrogen energy market trends over the next decade are also discussed. According to numerous encouraging recent advancements in the field, this review offers an overview of hydrogen as the ideal renewable energy for the future society, its production methods, the most recent storage technologies, and transportation strategies, which suggest a potential breakthrough towards a hydrogen economy. All these changes show that this is really a profound revolution in the development process of human society and has been assessed as having the same significance as the previous industrial revolution.
Collapse
Affiliation(s)
- Phuoc-Anh Le
- Center for Environmental Intelligence and College of Engineering & Computer Science, VinUniversity Hanoi 100000 Vietnam
| | - Vuong Dinh Trung
- Interdisciplinary Graduate School of Science and Technology, Shinshu University Ueda Nagano 386-8567 Japan
| | - Phi Long Nguyen
- Center for Environmental Intelligence and College of Engineering & Computer Science, VinUniversity Hanoi 100000 Vietnam
| | - Thi Viet Bac Phung
- Center for Environmental Intelligence and College of Engineering & Computer Science, VinUniversity Hanoi 100000 Vietnam
| | - Jun Natsuki
- College of Textiles and Apparel, Quanzhou Normal University Quanzhou 362000 China
- Institute of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University Ueda Nagano 386-8567 Japan
| | - Toshiaki Natsuki
- College of Textiles and Apparel, Quanzhou Normal University Quanzhou 362000 China
- Institute of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University Ueda Nagano 386-8567 Japan
| |
Collapse
|
34
|
Althabaiti SA, Khan Z, Malik MA, Bawaked SM, Al-Sheheri SZ, Mokhtar M, Siddiqui SI, Narasimharao K. Biomass-derived carbon deposited TiO 2 nanotube photocatalysts for enhanced hydrogen production. NANOSCALE ADVANCES 2023; 5:3671-3683. [PMID: 37441261 PMCID: PMC10334416 DOI: 10.1039/d3na00211j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023]
Abstract
In this study, titanium oxide nanotubes (TiO2NTs) were deposited on the surface of activated carbon (AC) by varying the wt% of AC. The physicochemical properties of synthesized TiO2NTs-AC nanocomposites were analysed by various characterization techniques such as XRD, FT-IR, Raman, DRUV-vis, HR-TEM, XPS, PL, and N2 physisorption. The FT-IR, EDX, and XPS analyses proved the existence of interaction between AC and TiO2NTs. This study found that as the content of AC increases, the surface area and pore volume increase while the energy bandgap decreases. The TiO2NTs-AC nanocomposite with 40% AC exhibited a surface area of 291 m2 g-1, pore volume of 0.045 cm3 g-1 and half pore width = 8.4 Å and had a wide band gap energy (3.15 eV). In addition, the photocatalytic application of the prepared nanocomposites for photocatalytic H2 production was investigated. The H2 was produced via photo-reforming in the presence of a sacrificial agent (methanol) under sunlight irradiation. It was found that the prepared TiO2NTs-AC nanocomposite with 40% AC acted as an efficient photocatalyst for aqueous-methanol reforming under various optimization conditions. Approximately 18 000 μmol-1 hydrogen gas was produced via aqueous-methanol reforming under optimized conditions (catalyst dose = 100 mg, temperature = 25 °C, time = 12 hours, vol. of methanol = 20% (v/v), and pH = 7). The reusability of the TiO2NTs-AC nanocomposite was also investigated for 5 consecutive cycles, and the results suggested only a slight decline in efficiency even after the fifth cycle. This study demonstrates the ability of an activated carbon deposited TiO2NT catalyst to produce hydrogen effectively under sunlight.
Collapse
Affiliation(s)
- Shaeel Ahmed Althabaiti
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Zaheer Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia New Delhi 110025 India
| | - Salem Mohamed Bawaked
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Soad Zahir Al-Sheheri
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mohamed Mokhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | | | - Katabathini Narasimharao
- Chemistry Department, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
35
|
Samal A, Das N. Mini-review on remediation of plastic pollution through photoreforming: progress, possibilities, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83138-83152. [PMID: 37351752 DOI: 10.1007/s11356-023-28253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The increasing plastic pollution has raised significant concerns about the environment and the destruction of its precious resources. Making value-added products out of plastic waste is an effective way to reduce plastic pollution and use it as a valuable resource. Plastic reforming driven by sunlight offers a quick and low-energy way to produce hydrogen from waste. Photoreforming of plastic waste is an emerging technology that cannot only break down plastic polymer waste into value-added chemicals but also produce solar fuel cell quality H2. Technologies, such as pyrolysis, combustion, and advanced oxidation, are right now being studied for converting plastic pollution into energy. A thorough summary and comparison of different technologies have not yet been published. Open dumping and combustion are two main steps to deal with waste plastics, but these processes experience inefficiencies and cannot adequately address the challenges. In this mini-review, we aimed to provide a short overview of the recently reported conventional and novel plastic waste treatment methods. The current research on the photoreforming of plastics conducted by various groups and some advantages and disadvantages of this practice has been discussed thoroughly. Also, some notes were made on the prospective future scope present in this particular research area to achieve a carbon-free fuel system. The purpose of this review is to encourage the utilisation of plastic garbage as an alternative source of energy.
Collapse
Affiliation(s)
- Alaka Samal
- Department of Chemistry, Utkal University, Bhubaneswar, Odisha, 751 004, India
| | - Nigamananda Das
- Department of Chemistry, Utkal University, Bhubaneswar, Odisha, 751 004, India.
| |
Collapse
|
36
|
Schlenkrich J, Lübkemann-Warwas F, Graf RT, Wesemann C, Schoske L, Rosebrock M, Hindricks KDJ, Behrens P, Bahnemann DW, Dorfs D, Bigall NC. Investigation of the Photocatalytic Hydrogen Production of Semiconductor Nanocrystal-Based Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208108. [PMID: 36828791 DOI: 10.1002/smll.202208108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Indexed: 05/25/2023]
Abstract
Destabilization of a ligand-stabilized semiconductor nanocrystal solution with an oxidizing agent can lead to a macroscopic highly porous self-supporting nanocrystal network entitled hydrogel, with good accessibility to the surface. The previously reported charge carrier delocalization beyond a single nanocrystal building block in such gels can extend the charge carrier mobility and make a photocatalytic reaction more probable. The synthesis of ligand-stabilized nanocrystals with specific physicochemical properties is possible, thanks to the advances in colloid chemistry made in the last decades. Combining the properties of these nanocrystals with the advantages of nanocrystal-based hydrogels will lead to novel materials with optimized photocatalytic properties. This work demonstrates that CdSe quantum dots, CdS nanorods, and CdSe/CdS dot-in-rod-shaped nanorods as nanocrystal-based hydrogels can exhibit a much higher hydrogen production rate compared to their ligand-stabilized nanocrystal solutions. The gel synthesis through controlled destabilization by ligand oxidation preserves the high surface-to-volume ratio, ensures the accessible surface area even in hole-trapping solutions and facilitates photocatalytic hydrogen production without a co-catalyst. Especially with such self-supporting networks of nanocrystals, the problem of colloidal (in)stability in photocatalysis is circumvented. X-ray photoelectron spectroscopy and photoelectrochemical measurements reveal the advantageous properties of the 3D networks for application in photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Jakob Schlenkrich
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, 30167, Hannover, Germany
| | - Franziska Lübkemann-Warwas
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany
| | - Rebecca T Graf
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, 30167, Hannover, Germany
- Laboratory of Nano- and Quantum Engineering, Leibniz University Hannover, 30167, Hannover, Germany
| | - Christoph Wesemann
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, 30167, Hannover, Germany
| | - Larissa Schoske
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany
| | - Marina Rosebrock
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany
| | - Karen D J Hindricks
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstraße 9, 30167, Hannover, Germany
| | - Peter Behrens
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany
- Laboratory of Nano- and Quantum Engineering, Leibniz University Hannover, 30167, Hannover, Germany
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstraße 9, 30167, Hannover, Germany
| | - Detlef W Bahnemann
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstraße 5, 30167, Hannover, Germany
- Laboratory "Photoactive Nanocomposite Materials", Saint-Petersburg State University, Ulyanovskaya str. 1, Saint-Petersburg, 198504, Peterhof, Russia
| | - Dirk Dorfs
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany
- Laboratory of Nano- and Quantum Engineering, Leibniz University Hannover, 30167, Hannover, Germany
| | - Nadja C Bigall
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany
- Laboratory of Nano- and Quantum Engineering, Leibniz University Hannover, 30167, Hannover, Germany
| |
Collapse
|
37
|
Farah J, Malloggi F, Miserque F, Kim J, Gravel E, Doris E. Continuous Flow Photocatalytic Hydrogen Production from Water Synergistically Activated by TiO 2, Gold Nanoparticles, and Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1184. [PMID: 37049277 PMCID: PMC10097087 DOI: 10.3390/nano13071184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Titanium dioxide nanoparticles were combined with carbon nanotubes and gold to develop improved photocatalysts for the production of hydrogen from water. The entangled nature of the nanotubes allowed for the integration of the photoactive hybrid catalyst, as a packed-bed, in a microfluidic photoreactor, and the chips were studied in the photocatalyzed continuous flow production of hydrogen. The combination of titanium dioxide with carbon nanotubes and gold significantly improved hydrogen production due to a synergistic effect between the multi-component system and the stabilization of the active catalytic species. The titanium dioxide/carbon nanotubes/gold system permitted a 2.5-fold increase in hydrogen production, compared to that of titanium dioxide/carbon nanotubes, and a 20-fold increase, compared to that of titanium dioxide.
Collapse
Affiliation(s)
- Joseph Farah
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SCBM, 91191 Gif-sur-Yvette, France
| | - Florent Malloggi
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Frédéric Miserque
- Université Paris-Saclay, Service de Recherche en Corrosion et Comportement des Matériaux, CEA, 91191 Gif-sur-Yvette, France
| | - Jongwook Kim
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Edmond Gravel
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SCBM, 91191 Gif-sur-Yvette, France
| | - Eric Doris
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SCBM, 91191 Gif-sur-Yvette, France
| |
Collapse
|
38
|
Anagnostopoulou M, Zindrou A, Cottineau T, Kafizas A, Marchal C, Deligiannakis Y, Keller V, Christoforidis KC. MOF-Derived Defective Co 3O 4 Nanosheets in Carbon Nitride Nanocomposites for CO 2 Photoreduction and H 2 Production. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6817-6830. [PMID: 36719032 DOI: 10.1021/acsami.2c19683] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In photocatalysis, especially in CO2 reduction and H2 production, the development of multicomponent nanomaterials provides great opportunities to tune many critical parameters toward increased activity. This work reports the development of tunable organic/inorganic heterojunctions comprised of cobalt oxides (Co3O4) of varying morphology and modified carbon nitride (CN), targeting on optimizing their response under UV-visible irradiation. MOF structures were used as precursors for the synthesis of Co3O4. A facile solvothermal approach allowed the development of ultrathin two-dimensional (2D) Co3O4 nanosheets (Co3O4-NS). The optimized CN and Co3O4 structures were coupled forming heterojunctions, and the content of each part was optimized. Activity was significantly improved in the nanocomposites bearing Co3O4-NS compared with the corresponding bulk Co3O4/CN composites. Transient absorption spectroscopy revealed a 100-fold increase in charge carrier lifetime on Co3O4-NS sites in the composite compared with the bare Co3O4-NS. The improved photocatalytic activity in H2 production and CO2 reduction is linked with (a) the larger interface imposed from the matching 2D structure of Co3O4-NS and the planar surface of CN, (b) improvements in charge carrier lifetime, and (c) the enhanced CO2 adsorption. The study highlights the importance of MOF structures used as precursors in forming advanced materials and the stepwise functionalization of the individual parts in nanocomposites for the development of materials with superior activity.
Collapse
Affiliation(s)
- Maria Anagnostopoulou
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
| | - Areti Zindrou
- Department of Physics, University of Ioannina, Ioannina 45110, Greece
| | - Thomas Cottineau
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
| | - Andreas Kafizas
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City, London W12 0BZ, United Kingdon
| | - Clément Marchal
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
| | | | - Valérie Keller
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
| | - Konstantinos C Christoforidis
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
- Department of Environmental Engineering, Democritus University of Thrace, Xanthi 67100, Greece
| |
Collapse
|
39
|
Gil-Londoño J, Krambrock K, de Oliveira R, Cremona M, Maia da Costa MEH, Marinkovic BA. Extrinsic Point Defects in TiO 2-Acetylacetone Charge-Transfer Complex and Their Effects on Optical and Photochemical Properties. Inorg Chem 2023; 62:2273-2288. [PMID: 36700852 DOI: 10.1021/acs.inorgchem.2c04016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
TiO2-based visible-light-sensitive nanomaterials are widely studied for photocatalytic applications under UV-Vis radiation. Among the mechanisms of visible-light sensitization, extrinsic oxygen vacancies have been introduced into TiO2 and charge-transfer complexes (CTCs) have been formed between chelating ligands, such as acetylacetone, and nanocrystalline TiO2 (TiO2-ACAC). However, the influence of extrinsic oxygen vacancies on the photocatalytic performance of TiO2-based CTCs is unknown. In this work, surface/bulk extrinsic oxygen vacancies were introduced into TiO2-ACAC through calcination at 270 °C under static air, argon, and hydrogen atmospheres. TiO2-ACAC CTCs were characterized by X-ray powder diffraction, thermogravimetric analysis, diffuse-reflectance spectroscopy, photoluminescence, electron paramagnetic resonance (EPR), and X-ray photoelectron spectroscopy techniques. The correlation between EPR-spin trapping and tetracycline (TC) photodegradation, using scavengers, highlighted the key role of the superoxide radical in TC degradation by TiO2-ACAC CTCs under low-power visible-light radiation. The increased extrinsic oxygen vacancies concentration was not beneficial for the photocatalytic performance of TiO2 CTCs, since bulk extrinsic oxygen vacancies additionally act as recombination centers. In fact, the TiO2-ACAC CTC with the lowest extrinsic oxygen vacancies concentration exhibited the highest photocatalytic performance for TC degradation due to an adequate distribution of extrinsic bulk oxygen vacancies, which led to the trapped electrons undergoing repeated hopping, reducing the recombination rates and improving the efficiency in superoxide radicals production. Our findings indicated that TiO2-ACAC CTCs are able to degrade pollutants via interactions with electronic holes and principally superoxide radicals and also, provided fundamental information about the influence of surface/bulk extrinsic oxygen vacancies on the photocatalytic performance, lattice parameters, and optical and photochemical properties of TiO2-based CTCs.
Collapse
Affiliation(s)
- Jessica Gil-Londoño
- Department of Chemical and Materials Engineering, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro22453-900, Brazil
| | - Klaus Krambrock
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte31270-901, Brazil
| | - Raphaela de Oliveira
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte31270-901, Brazil
| | - Marco Cremona
- Department of Physics, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro22453-900, Brazil
| | - Marcelo E H Maia da Costa
- Department of Physics, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro22453-900, Brazil
| | - Bojan A Marinkovic
- Department of Chemical and Materials Engineering, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro22453-900, Brazil
| |
Collapse
|
40
|
Jiao Y, Xiang W, Xia Y, Xie Q, Yu Y, Yang Z. The Side-chain design of rhodamine dye and the performance research of photocatalytic hydrogen production system by the first principles. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Balsamo SA, La Greca E, Calà Pizzapilo M, Sciré S, Fiorenza R. CeO 2-rGO Composites for Photocatalytic H 2 Evolution by Glycerol Photoreforming. MATERIALS (BASEL, SWITZERLAND) 2023; 16:747. [PMID: 36676491 PMCID: PMC9863801 DOI: 10.3390/ma16020747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The interaction between CeO2-GO or CeO2-rGO and gold as co-catalysts were here investigated for solar H2 production by photoreforming of glycerol. The materials were prepared by a solar photoreduction/deposition method, where in addition to the activation of CeO2 the excited electrons were able to reduce the gold precursor to metallic gold and the GO into rGO. The presence of gold was fundamental to boost the H2 production, whereas the GO or the rGO extended the visible-light activity of cerium oxide (as confirmed by UV-DRS). Furthermore, the strong interaction between CeO2 and Au (verified by XPS and TEM) led to good stability of the CeO2-rGO-Au sample with the evolved H2 that increased during five consecutive runs of glycerol photoreforming. This catalytic behaviour was ascribed to the progressive reduction of GO into rGO, as shown by Raman measurements of the photocatalytic runs. The good charge carrier separation obtained with the CeO2-rGO-Au system allowed the simultaneous production of H2 and reduction of GO in the course of the photoreforming reaction. These peculiar features exhibited by these unconventional photocatalysts are promising to propose new solar-light-driven photocatalysts for green hydrogen production.
Collapse
Affiliation(s)
- Stefano Andrea Balsamo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Eleonora La Greca
- Institute for The Study of Nanostructured Materials (ISMN)-CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Marta Calà Pizzapilo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Salvatore Sciré
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Roberto Fiorenza
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
42
|
Bouakaz H, Abbas M, Benallal S, Brahimi R, Trari M. Semiconducting and Electrochemical Properties of the Spinel FeCo2O4 Synthetized by Co-precipitation. Application to H2 production Under Visible Light. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Interface engineering of 0D-1D Cu2NiSnS4/TiO2(B) p–n heterojunction nanowires for efficient photocatalytic hydrogen evolution. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
44
|
Feliczak-Guzik A. Nanomaterials as Photocatalysts-Synthesis and Their Potential Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010193. [PMID: 36614532 PMCID: PMC9822232 DOI: 10.3390/ma16010193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 05/25/2023]
Abstract
Increasing demand for energy and environmental degradation are the most serious problems facing the man. An interesting issue that can contribute to solving these problems is the use of photocatalysis. According to literature, solar energy in the presence of a photocatalyst can effectively (i) be converted into electricity/fuel, (ii) break down chemical and microbial pollutants, and (iii) help water purification. Therefore, the search for new, efficient, and stable photocatalysts with high application potential is a point of great interest. The photocatalysts must be characterized by the ability to absorb radiation from a wide spectral range of light, the appropriate position of the semiconductor energy bands in relation to the redox reaction potentials, and the long diffusion path of charge carriers, besides the thermodynamic, electrochemical, and photoelectrochemical stabilities. Meeting these requirements by semiconductors is very difficult. Therefore, efforts are being made to increase the efficiency of photo processes by changing the electron structure, surface morphology, and crystal structure of semiconductors. This paper reviews the recent literature covering the synthesis and application of nanomaterials in photocatalysis.
Collapse
Affiliation(s)
- Agnieszka Feliczak-Guzik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
45
|
Althabaiti SA, Malik MA, Kumar Khanna M, Bawaked SM, Narasimharao K, Al-Sheheri SZ, Fatima B, Siddiqui SI. One-Pot Facile Synthesis of CuO-CdWO 4 Nanocomposite for Photocatalytic Hydrogen Production. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4472. [PMID: 36558324 PMCID: PMC9782073 DOI: 10.3390/nano12244472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen (H2) is a well-known renewable energy source that produces water upon its burning, leaving no harmful emissions. Nanotechnology is utilized to increase hydrogen production using sacrificial reagents. It is an interesting task to develop photocatalysts that are effective, reliable, and affordable for producing H2 from methanol and acetic acid. In the present study, CuO, CdWO4, and CuO-CdWO4 nanocomposite heterostructures were prepared using a cost-efficient, enviro-friendly, and facile green chemistry-based approach. The prepared CuO, CdWO4, and CuO-CdWO4 nanocomposites were characterized using X-ray diffraction pattern, Fourier-transform infrared spectroscopy, diffuse reflectance ultraviolet-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction (SAED) pattern, N2 physisorption, photoluminescence, and X-ray photoelectron spectroscopy techniques. The synthesized photocatalysts were utilized for photocatalytic H2 production using aqueous methanol and acetic acid as the sacrificial reagents under visible light irradiation. The influence of different variables, including visible light irradiation time, catalyst dosage, concentration of sacrificial reagents, and reusability of catalysts, was studied. The maximum H2 was observed while using methanol as a sacrificial agent over CuO-CdWO4 nanocomposite. This enhancement was due to the faster charge separation, higher visible light absorption, and synergistic effect between the CuO-CdWO4 nanocomposite and methanol.
Collapse
Affiliation(s)
- Shaeel Ahmed Althabaiti
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Manoj Kumar Khanna
- Department of Physics, Ramjas College, University of Delhi, Delhi 110007, India
| | - Salem Mohamed Bawaked
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Katabathini Narasimharao
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Soad Zahir Al-Sheheri
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Bushra Fatima
- Department of Chemistry, Jamia Millia Islamia, Delhi 110025, India
| | - Sharf Ilahi Siddiqui
- Department of Chemistry, Jamia Millia Islamia, Delhi 110025, India
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India
| |
Collapse
|
46
|
Photocatalytic Hydrogen Generation from Aqueous Methanol Solution over n-Butylamine-Intercalated Layered Titanate H2La2Ti3O10: Activity and Stability of the Hybrid Photocatalyst. Catalysts 2022. [DOI: 10.3390/catal12121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The stability of platinized n-butylamine-intercalated layered titanate H2La2Ti3O10 during the process of photocatalytic hydrogen production from aqueous methanol under UV irradiation has been thoroughly investigated by means of XRD, CHN, TG, 13C NMR, BET, SEM and GC-MS analysis. It was revealed that n-butylamine completely abandons the interlayer space and transforms into n-butyraldehyde within 3 h of the reaction, while the particle morphology and specific surface area of the photocatalyst are preserved. The resulting solid phase contains carbon in at least two different oxidation states, which are attributed to the intermediate products of methanol oxidation bound to the perovskite matrix. The activity of the photocatalyst formed in this way is stable in time and strongly depends on the medium pH, which is not typical of either the parent H2La2Ti3O10 or TiO2. An approximate linear equation φ ≈ 29−2∙pH holds for the apparent quantum efficiency of hydrogen production in the 220–340 nm range at 1 mol. % methanol concentration. In the acidic medium, the photocatalyst under study outperforms the platinized H2La2Ti3O10 by more than one order of magnitude. The variation in methanol concentration allowed a maximum quantum efficiency of hydrogen production of 44% at 10 mol. % to be reached.
Collapse
|
47
|
Kubovics M, Silva CG, López-Periago AM, Faria JL, Domingo C. Photocatalytic Hydrogen Production using Porous 3D Graphene-Based Aerogels Supporting Pt/TiO 2 Nanoparticles. Gels 2022; 8:719. [PMID: 36354627 PMCID: PMC9689606 DOI: 10.3390/gels8110719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
Composites involving reduced graphene oxide (rGO) aerogels supporting Pt/TiO2 nanoparticles were fabricated using a one-pot supercritical CO2 gelling and drying method, followed by mild reduction under a N2 atmosphere. Electron microscopy images and N2 adsorption/desorption isotherms indicate the formation of 3D monolithic aerogels with a meso/macroporous morphology. A comprehensive evaluation of the synthesized photocatalyst was carried out with a focus on the target application: the photocatalytic production of H2 from methanol in aqueous media. The reaction conditions (water/methanol ratio, catalyst concentration), together with the aerogel composition (Pt/TiO2/rGO ratio) and architecture (size of the aerogel pieces), were the factors that varied in optimizing the process. These experimental parameters influenced the diffusion of the reactants/products inside the aerogel, the permeability of the porous structure, and the light-harvesting properties, all determined in this study towards maximizing H2 production. Using methanol as the sacrificial agent, the measured H2 production rate for the optimized system (18,800 µmolH2h-1gNPs-1) was remarkably higher than the values found in the literature for similar Pt/TiO2/rGO catalysts and reaction media (2000-10,000 µmolH2h-1gNPs-1).
Collapse
Affiliation(s)
- Márta Kubovics
- Instituto de Ciencia de Materiales de Barcelona, CSIC, Campus UAB s/n, 8193 Bellaterra, Spain
| | - Cláudia G. Silva
- LSRE-LCM-Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana M. López-Periago
- Instituto de Ciencia de Materiales de Barcelona, CSIC, Campus UAB s/n, 8193 Bellaterra, Spain
| | - Joaquim L. Faria
- LSRE-LCM-Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Concepción Domingo
- Instituto de Ciencia de Materiales de Barcelona, CSIC, Campus UAB s/n, 8193 Bellaterra, Spain
| |
Collapse
|
48
|
Establishing a water-to-energy platform via dual-functional photocatalytic and photoelectrocatalytic systems: A comparative and perspective review. Adv Colloid Interface Sci 2022; 309:102793. [DOI: 10.1016/j.cis.2022.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022]
|
49
|
Liu X, Dai D, Cui Z, Zhang Q, Gong X, Wang Z, Liu Y, Zheng Z, Cheng H, Dai Y, Huang B, Wang P. Optimizing the Reaction Pathway by Active Site Regulation in the CdS/Fe 2O 3 Z-Scheme Heterojunction System for Highly Selective Photocatalytic Benzylamine Oxidation Integrated with H 2 Production. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaolei Liu
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Dujuan Dai
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zihao Cui
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Qianqian Zhang
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xueqin Gong
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeyan Wang
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Liu
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
50
|
Constructing porous carbon nitride nanosheets for efficient visible-light-responsive photocatalytic hydrogen evolution. J Colloid Interface Sci 2022; 628:214-221. [PMID: 35988516 DOI: 10.1016/j.jcis.2022.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022]
Abstract
The photocatalytic performance of polymeric carbon nitride (CN) is mainly restricted by the poor mass charge separation efficiency and poor light absorption due to its polymeric nature. The conventional strategies to address these problems involved constructing a nanosheets structure would result in a blue shifted light absorption and increased exciton binding energy. Here, with combination of ammonia etching and selectively hydrogen-bond breaking, holey carbon nitride nanosheets (hCNNS) were constructed, thus widening the light absorption range, and spontaneously shortening the migration distance of electrons and holes in the lateral and vertical directions, respectively. Further analysis also found out the reserved atomic structure order endowed hCNNS with the relatively high redox potential. When irradiated with visible light (λ > 420 nm) and loaded with 3 wt% Pt as the cocatalyst, the hydrogen evolution rate of hCNNS was about 40 times higher than the bulk CN, and the apparent quantum yield (AQY) of hCNNS is 1.47% at 435 ± 15 nm. We expect this research can provide a new sight for achieving highly efficient solar utilization of CN-based photocatalysts.
Collapse
|