1
|
Ruta V, Cipriano LA, Di Liberto G, Wojcieszak R, Vilé G. Bifunctional Pd-Pt Supported Nanoparticles for the Mild Hydrodeoxygenation and Oxidation of Biomass-Derived Compounds. CHEMSUSCHEM 2025; 18:e202402641. [PMID: 39745799 PMCID: PMC12051223 DOI: 10.1002/cssc.202402641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
The conversion of bio-based molecules into valuable chemicals is essential for advancing sustainable processes and addressing global resource challenges. However, conventional catalytic methods often demand harsh conditions and suffer from low product selectivity. This study introduces a series of bifunctional PdxPty catalysts supported on TiO2, designed for achieving selective and mild-temperature catalysis in biomass conversion. Synthesized via a sol immobilization method and characterized by XRF, N2 physisorption, HRTEM, HAADF-STEM, and XPS, these catalysts demonstrate superior selectivity and activity over monometallic counterparts. In fact, at 20 bar H2, Pt/TiO2 show a low selectivity in benzophenone hydrodeoxygenation, favoring the benzhydrol hydrogenation product; similarly, Pd/TiO2 preferentially form the diphenylmethane hydrodeoxygenation (HDO) product, but with slow conversion rates. The synergistic combination of the two metals in Pd4Pt1/TiO2 drastically improve performance, with 100 % benzophenone conversion and 73 % diphenylmethane selectivity. DFT calculations confirm the synergy between Pd and Pt as the key to drive the activity and selectivity. Additionally, the catalysts also demonstrate high recyclability with minimal performance loss, and have been generalized for the HDO of vanillin and furfural, and in HMF oxidation. Overall, this work highlights the potential of bimetallic catalysts in enabling efficient and selective bio-based molecule conversion under mild conditions.
Collapse
Affiliation(s)
- Vincenzo Ruta
- Department of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32IT-20133MilanoItaly
| | - Luis A. Cipriano
- Department of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32IT-20133MilanoItaly
| | - Giovanni Di Liberto
- Department of Material SciencesUniversity of Milan BicoccaVia R. Cozzi 55IT-20125MilanoItaly
| | - Robert Wojcieszak
- Laboratoire Lorraine de Chimie Moléculaire –L2CM UMR 7053Université de Lorraine and Centre National de la Recherche Scientifique (CNRS)F-54500Vandœuvre-lès-NancyFrance
| | - Gianvito Vilé
- Department of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32IT-20133MilanoItaly
| |
Collapse
|
2
|
Yamaguchi K, Nakagawa Y, Li C, Yabushita M, Tomishige K. Utilization of Ni as a Non-Noble-Metal Co-catalyst for Ceria-Supported Rhenium Oxide in Combination of Deoxydehydration and Hydrogenation of Vicinal Diols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kosuke Yamaguchi
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai, Miyagi980-0845, Japan
| | - Congcong Li
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi980-8579, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi980-8579, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai, Miyagi980-0845, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai980-8577, Japan
| |
Collapse
|
3
|
Yamaguchi K, Cao J, Betchaku M, Nakagawa Y, Tamura M, Nakayama A, Yabushita M, Tomishige K. Deoxydehydration of Biomass-Derived Polyols Over Silver-Modified Ceria-Supported Rhenium Catalyst with Molecular Hydrogen. CHEMSUSCHEM 2022; 15:e202102663. [PMID: 35261197 DOI: 10.1002/cssc.202102663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Olefin production from polyols via deoxydehydration (DODH) was carried out over Ag-modified CeO2 -supported heterogeneous Re catalysts with H2 as a reducing agent. Both high DODH activity and low hydrogenation ability for C=C bonds were observed in the reaction of erythritol, giving a 1,3-butadiene yield of up to 90 % under "solvent-free" conditions. This catalyst is applicable to other substrates such as methyl glycosides (methyl α-fucopyranoside: 91 % yield of DODH product; methyl β-ribofuranoside: 88 % yield), which were difficult to be converted to the DODH products over the DODH catalysts reported previously. ReOx -Ag/CeO2 was reused 3 times without a decrease of activity or selectivity after calcination as regeneration. Although the transmission electron microscopy energy-dispersive X-ray spectroscopy and X-ray absorption fine structure analyses showed that Re species were highly dispersed and Ag was present as metal particles with various sizes from well-dispersed species (<1 nm) to around 5 nm particles, the catalysts prepared from size-controlled Ag nanoparticles showed similar performance, indicating that the catalytic performance is insensitive to the Ag particle size.
Collapse
Affiliation(s)
- Kosuke Yamaguchi
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Ji Cao
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Mii Betchaku
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Masazumi Tamura
- Research Center for Artificial Photosynthesis, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Akira Nakayama
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| |
Collapse
|
4
|
Nakagawa Y, Hayasaka H, Asano T, Tamura M, Okumura K, Tomishige K. One-pot production of dioctyl ether from 1,2-octanediol over rutile-titania-supported palladium-tungsten catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2020.111208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Yun YS, Berdugo-Díaz CE, Flaherty DW. Advances in Understanding the Selective Hydrogenolysis of Biomass Derivatives. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yang Sik Yun
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Claudia E. Berdugo-Díaz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Yu Z, Lu X, Wang X, Xiong J, Li X, Zhang R, Ji N. Metal-Catalyzed Hydrogenation of Biomass-Derived Furfural: Particle Size Effects and Regulation Strategies. CHEMSUSCHEM 2020; 13:5185-5198. [PMID: 32738188 DOI: 10.1002/cssc.202001467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The hydrogenation of furfural (FUR), a typical bio-based furan derivative, is a critical reaction within the roadmap for upgrading lignocellulosic biomass into high value-added chemicals and liquid fuels, the performance of which is strongly correlated with the catalysts' intrinsic peculiarities. Metal catalysts with tailorable sizes, uniform dispersions and robust sintering resistance are generally recognized as a prerequisite for obtaining better hydrogenation activity, selectivity and stability, which has prompted intensive research into metal particle size effects and their regulation strategies. The roles of metal particle sizes and corresponding dispersions of metal catalysts used for FUR hydrogenation have been clearly recognized to be crucial over the past decade. In this regard, this systematic Minireview aims to provide profound insights into particle size effects in the metal-catalyzed hydrogenation of FUR, as well as conditional and structural approaches to regulating these effects. In addition, from the aspect of catalyst stability, the impacts and improvements of the metal particle sintering issue are analyzed. Moreover, several suggestions are proposed in response to the challenges in regulating particle size effects. Furthermore, the viewpoints presented herein would potentially contribute to the rational development of metal hydrogenation catalysts and further help to boost a more sustainable biomass refining system.
Collapse
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
- Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Xiaotong Wang
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Jian Xiong
- Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Xiaoyun Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
7
|
Shanmugaraj K, Bustamante TM, Campos CH, Torres CC. Liquid Phase Hydrogenation of Pharmaceutical Interest Nitroarenes over Gold-Supported Alumina Nanowires Catalysts. MATERIALS 2020; 13:ma13040925. [PMID: 32093015 PMCID: PMC7078662 DOI: 10.3390/ma13040925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/23/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022]
Abstract
In this work, Au nanoparticles, supported in Al2O3 nanowires (ANW) modified with (3-aminopropyl)trimethoxysilane were synthetized, for their use as catalysts in the hydrogenation reaction of 4-(2-fluoro-4-nitrophenyl)-morpholine and 4-(4-nitrophenyl)morpholin-3-one. ANW was obtained by hydrothermal techniques and the metal was incorporated by the reduction of the precursor with NaBH4 posterior to superficial modification. The catalysts were prepared at different metal loadings and were characterized by different techniques. The characterization revealed structured materials in the form of nanowires and a successful superficial modification. All catalysts show that Au is in a reduced state and the shape of the nanoparticles is spherical, with high metal dispersion and size distributions from 3.7 to 4.6 nm. The different systems supported in modified-ANW were active and selective in the hydrogenation reaction of both substrates, finding for all catalytic systems a selectivity of almost 100% to the aromatic amine. Catalytic data showed pseudo first-order kinetics with respect to the substrate for all experimental conditions used in this work. The solvent plays an important role in the activity and selectivity of the catalyst, where the highest efficiency and operational stability was achieved when ethanol was used as the solvent.
Collapse
Affiliation(s)
- Krishnamoorthy Shanmugaraj
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile; (K.S.); (T.M.B.); (C.H.C.)
| | - Tatiana M. Bustamante
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile; (K.S.); (T.M.B.); (C.H.C.)
| | - Cristian H. Campos
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile; (K.S.); (T.M.B.); (C.H.C.)
| | - Cecilia C. Torres
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano 7100, Talcahuano 4300866, Chile
- Correspondence: ; Tel.: +56-41-2662151
| |
Collapse
|
8
|
Wang T, Nakagawa Y, Tamura M, Okumura K, Tomishige K. Tungsten–zirconia-supported rhenium catalyst combined with a deoxydehydration catalyst for the one-pot synthesis of 1,4-butanediol from 1,4-anhydroerythritol. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00085j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomass-derived 1,4-anhydroerythritol is reduced to 1,4-butanediol over a reusable mixture of heterogeneous catalysts, ReOx–Au/CeO2 and ReOx/WO3–ZrO2.
Collapse
Affiliation(s)
- Tianmiao Wang
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai
- Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai
- Japan
| | - Masazumi Tamura
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai
- Japan
| | - Kazu Okumura
- Department of Applied Chemistry
- Faculty of Engineering
- Kogakuin University
- Tokyo 192-0015
- Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai
- Japan
| |
Collapse
|