1
|
Kwon H, Choi H, Yoon Y, Jeon B, Kang M, Park JY, Kim HY, Lee SW. Electronic Switching between Hot Electrons and Hot Holes via Schottky Junctions during Chemical Reactions. ACS NANO 2025; 19:11450-11462. [PMID: 40065735 DOI: 10.1021/acsnano.5c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Hot carriers, generated through nonadiabatic energy dissipation during exothermic catalytic reactions, play a pivotal role in enhancing catalytic performance. Upon generation, hot electrons typically reside in the sp-band above the Fermi level, while hot holes are formed in the d-band below the Fermi level, following the energy distribution of the metal's electronic structure. However, it has been technically challenging to simultaneously capture and understand the flow of these two opposite charges during chemical reactions. In this study, we employed Pt/Si Schottky nanodiodes to detect reaction-induced hot carriers. The flux of hot electrons and hot holes was observed to vary depending on whether the Pt catalyst was deposited on n-Si or p-Si, respectively. Indeed, the detection probability of hot holes was lower compared to hot electrons, attributed to the shorter mean free path of hot holes. This demonstrates that for quantitative capture of hot carriers at the metal-semiconductor Schottky junction, the transport process through which the excited carrier passes the metal must also be considered. When a forward bias was applied to the Pt/p-Si nanodiode, a switch from hot hole to hot electron transfer was observed, due to the perturbation of the band structures. Our first prototype platforms, which self-control the transfer of hot carriers during the chemical reaction using Schottky junctions, may offer insights into potential applications of hot carriers in catalytic devices, energy conversion-based devices, or chemical sensors.
Collapse
Affiliation(s)
- Hyekyung Kwon
- Department of Chemistry Education, Korea National University of Education (KNUE), Chungbuk 28173, Republic of Korea
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University (CNU), Daejeon 34134, Republic of Korea
| | - Yeji Yoon
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Beomjoon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mincheol Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University (CNU), Daejeon 34134, Republic of Korea
| | - Si Woo Lee
- Department of Chemistry Education, Korea National University of Education (KNUE), Chungbuk 28173, Republic of Korea
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
2
|
Zhang Y, Liu Y, Offenhäusser A, Mourzina Y. Hydrogen Peroxide Fuel Cells and Self-Powered Electrochemical Sensors Based on the Principle of a Fuel Cell with Biomimetic and Nanozyme Catalysts. BIOSENSORS 2025; 15:124. [PMID: 39997026 PMCID: PMC11852683 DOI: 10.3390/bios15020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/26/2025]
Abstract
The operating principle of a fuel cell is attracting increasing attention in the development of self-powered electrochemical sensors (SPESs). In this type of sensor, the chemical energy of the analyzed substance is converted into electrical energy in a galvanic cell through spontaneous electrochemical reactions, directly generating an analytical signal. Unlike conventional (amperometric, voltammetric, and impedimetric) sensors, no external energy in the form of an applied potential is required for the redox detection reactions to occur. SPESs therefore have several important advantages over conventional electrochemical sensors. They do not require a power supply and modulation system, which saves energy and costs. The devices also offer greater simplicity and are therefore more compatible for applications in wearable sensor devices as well as in vivo and in situ use. Due to the dual redox properties of hydrogen peroxide, it is possible to develop membraneless fuel cells and fuel-cell-based hydrogen peroxide SPESs, in which hydrogen peroxide in the analyzed sample is used as the only source of energy, as both an oxidant and a reductant (fuel). This also suppresses the dependence of the devices on the availability of oxygen. Electrode catalyst materials for different hydrogen peroxide reaction pathways at the cathode and the anode in a one-compartment cell are a key technology for the implementation and characteristics of hydrogen peroxide SPESs. This article provides an overview of the operating principle and designs of H2O2-H2O2 fuel cells and H2O2 fuel-cell-based SPESs, focusing on biomimetic and nanozyme catalysts, and highlights recent innovations and prospects of hydrogen-peroxide-based SPESs for (bio)electrochemical analysis.
Collapse
Affiliation(s)
- Yunong Zhang
- Institute of Biological Information Processing—Bioelectronics (IBI-3), Forschungszentrum Julich, 52425 Julich, Germany; (Y.Z.); (Y.L.); (A.O.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Yuxin Liu
- Institute of Biological Information Processing—Bioelectronics (IBI-3), Forschungszentrum Julich, 52425 Julich, Germany; (Y.Z.); (Y.L.); (A.O.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing—Bioelectronics (IBI-3), Forschungszentrum Julich, 52425 Julich, Germany; (Y.Z.); (Y.L.); (A.O.)
| | - Yulia Mourzina
- Institute of Biological Information Processing—Bioelectronics (IBI-3), Forschungszentrum Julich, 52425 Julich, Germany; (Y.Z.); (Y.L.); (A.O.)
| |
Collapse
|
3
|
Zhang T, Niu X, Chen Q, Wang J. Single-Atom-Induced Hybridization States Promote the Direct Trapping of Hot Carriers by Reactants for Photocatalysis. J Phys Chem Lett 2025; 16:675-681. [PMID: 39789747 DOI: 10.1021/acs.jpclett.4c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Single-atom manipulation has emerged as an effective strategy for enhancing the photocatalytic efficiency. However, the mechanism of photogenerated carrier dynamics under single-atom modulation remains unclear. Combining first-principles calculations and non-adiabatic molecular dynamics simulations, we systematically studied carrier transfer and recombination in the oxygen reduction reaction of single-atom-doped C3N4 systems. Unlike the conventional two-step process, where single atoms trap photogenerated carriers before transferring them to reactants, our findings reveal a direct one-step electron transfer process, where single-atom-induced hybridization states facilitate the direct trapping of hot carriers by reactants from photocatalysts. Specifically, photogenerated electron transfer time through the one-step process is 237 and 325 fs for Sb and Cu single-atom-doped systems, respectively, considerably faster than the two-step process (hundreds of picoseconds). Moreover, these systems exhibit a nanosecond-level photogenerated carrier lifetime, driving a high photocatalytic efficiency. This study elucidates the carrier dynamics in single-atom photocatalysts, facilitating the screening of high-performance photocatalysts.
Collapse
Affiliation(s)
- Tingbo Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Xianghong Niu
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qian Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Tan HL, Chai CHT, Heng JZX, Thi QV, Wu X, Ng YH, Ye E. Solar-Driven Hydrogen Peroxide Production via BiVO 4-Based Photocatalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407801. [PMID: 39648695 PMCID: PMC11789617 DOI: 10.1002/advs.202407801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Indexed: 12/10/2024]
Abstract
Solar hydrogen peroxide (H2O2) production has garnered increased research interest owing to its safety, cost-effectiveness, environmental friendliness, and sustainability. The synthesis of H2O2 relies mainly on renewable resources such as water, oxygen, and solar energy, resulting in minimal waste. Bismuth vanadate (BiVO4) stands out among various oxide semiconductors for selective H2O2 production under visible light via direct two-electron oxygen reduction reaction (ORR) and two-electron water oxidation reaction (WOR) pathways. Significant advancements have been achieved using BiVO4-based materials in solar H2O2 production over the last decade. This review explores advancements in BiVO4-based photocatalysts for H2O2 production, focusing on photocatalytic powder suspension (PS) and photoelectrochemical (PEC) systems, representing the main approaches for heterogenous artificial photosynthesis. An overview of fundamental principles, performance assessment methodologies, photocatalyst and photoelectrode development, and optimization of reaction conditions is provided. While diverse strategies, such as heterojunction, doping, crystal facet engineering, cocatalyst loading, and surface passivation, have proven effective in enhancing H2O2 generation, this review offers insights into their similar and distinct implementations within the PS and PEC systems. The challenges and future prospects in this field are also discussed to facilitate the rational design of high-performing BiVO4-based photocatalysts and photoelectrodes for H2O2 generation under visible light.
Collapse
Affiliation(s)
- Hui Ling Tan
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Casandra Hui Teng Chai
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)2 Fusionopolis WaySingapore138634Singapore
| | - Jerry Zhi Xiong Heng
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)2 Fusionopolis WaySingapore138634Singapore
| | - Quyen Vu Thi
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Xuelian Wu
- School of Mechanical EngineeringChengdu UniversityChengdu610106China
| | - Yun Hau Ng
- Chemical Engineering ProgramPhysical Science and Engineering (PSE) DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE)Agency for ScienceTechnology and Research (A*STAR)2 Fusionopolis WaySingapore138634Singapore
| |
Collapse
|
5
|
Devassy AMC, Wankhede KD, Kamalakshan A, Mandal S. A robust single compartment peroxide fuel cell using mesoporous antimony doped tin oxide as the cathode material. NANOSCALE 2024; 16:12060-12070. [PMID: 38813765 DOI: 10.1039/d4nr01375a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
To date, metal oxide catalysts have not been explored as cathode materials for robust and high-performance single-compartment H2O2 fuel cells due to significant non-electrochemical disproportionation losses of H2O2 on many metal oxide surfaces. Here, for the first time, we demonstrate an acidic peroxide fuel cell with antimony doped tin oxide as the cathode and widely used Ni foam as the anode material. Our constructed peroxide fuel cell records a superior open circuit potential of nearly 0.82 V and a maximum power density of 0.32 mW cm-2 with high operational stability. The fuel cell performance is further improved by increasing the ionic strength of the electrolyte with the addition of 1 M NaCl, resulting in an increased maximum power density value of 1.1 mW cm-2.
Collapse
Affiliation(s)
| | - Karuna Dagaji Wankhede
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Adithya Kamalakshan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Sarthak Mandal
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
6
|
Kamboj N, Dey A, Birara S, Majumder M, Sengupta S, Metre RK. Designing one-compartment H 2O 2 fuel cell using electroactive phenalenyl-based [Fe 2(hnmh-PLY) 3] complex as the cathode material. Dalton Trans 2024; 53:7152-7162. [PMID: 38572846 DOI: 10.1039/d4dt00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The sustainable chemical energy of H2O2 as a fuel and an oxidant in an advantageous single-compartment fuel cell design can be converted into electric energy, which requires molecular engineering to design suitable cathodes for lowering the high overpotential associated with H2O2 reduction. The present work covers the synthesis and structural characterization of a novel cathode material, [FeIII2(hnmh-PLY)3] complex, 1, designed from a PLY-derived Schiff base ligand (E)-9-(2-((2-hydroxynaphthalen-1-yl)methylene)hydrazineyl)-1H-phenalen-1-one, hnmh-PLYH2. Complex 1, when coated on the surface of a glassy carbon electrode (GC-1) significantly catalyzed the reduction of H2O2 in an acidic medium. Therefore, a complex 1 modified glassy carbon electrode was employed in a one-compartment H2O2 fuel cell operated in 0.1 M HCl with Ni foam as the corresponding anode to produce a high open circuit potential (OCP) of 0.65 V and a peak power density (PPD) of 2.84 mW cm-2. CV studies of complex 1 revealed the crucial participation of two Fe(III) centers for initiating H2O2 reduction, and the role of coordinated redox-active PLY units is also highlighted. In the solid state, the π-conjugated network of coordinating (hnmh-PLY) ligands in complex 1 has manifested interesting face-to-face π-π stacking interactions, which have helped the reduction of the complex and facilitated the overall catalytic performance.
Collapse
Affiliation(s)
- Nisha Kamboj
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Ayan Dey
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Sunita Birara
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Moumita Majumder
- Department of Chemistry, School of Science and Environmental Studies, Dr Vishwanath Karad MIT World Peace University, Pune, Maharashtra-411038, India.
| | - Srijan Sengupta
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| |
Collapse
|
7
|
Zhang Q, Chen Y, Pan J, Daiyan R, Lovell EC, Yun J, Amal R, Lu X. Electrosynthesis of Hydrogen Peroxide through Selective Oxygen Reduction: A Carbon Innovation from Active Site Engineering to Device Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302338. [PMID: 37267930 DOI: 10.1002/smll.202302338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Indexed: 06/04/2023]
Abstract
Electrochemical synthesis of hydrogen peroxide (H2 O2 ) through the selective oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone method, while its success relies largely on the development of efficient electrocatalyst. Currently, carbon-based materials (CMs) are the most widely studied electrocatalysts for electrosynthesis of H2 O2 via ORR due to their low cost, earth abundance, and tunable catalytic properties. To achieve a high 2e- ORR selectivity, great progress is made in promoting the performance of carbon-based electrocatalysts and unveiling their underlying catalytic mechanisms. Here, a comprehensive review in the field is presented by summarizing the recent advances in CMs for H2 O2 production, focusing on the design, fabrication, and mechanism investigations over the catalytic active moieties, where an enhancement effect of defect engineering or heteroatom doping on H2 O2 selectivity is discussed thoroughly. Particularly, the influence of functional groups on CMs for a 2e- -pathway is highlighted. Further, for commercial perspectives, the significance of reactor design for decentralized H2 O2 production is emphasized, bridging the gap between intrinsic catalytic properties and apparent productivity in electrochemical devices. Finally, major challenges and opportunities for the practical electrosynthesis of H2 O2 and future research directions are proposed.
Collapse
Affiliation(s)
- Qingran Zhang
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jian Pan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rahman Daiyan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Emma C Lovell
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jimmy Yun
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, P. R. China
- Qingdao International Academician Park Research Institute, Qingdao, Shandong, 266000, China
| | - Rose Amal
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xunyu Lu
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
8
|
Hasnan NSN, Mohamed MA, Nordin NA, Wan Ishak WNR, Kassim MB. Microtubular cellulose-derived kapok fibre as a solid electron donor for boosting photocatalytic H 2O 2 production over C-doped g-C 3N 4 hybrid complexation. Carbohydr Polym 2023; 317:121096. [PMID: 37364961 DOI: 10.1016/j.carbpol.2023.121096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Cellulose continues to play an important and emerging role in photocatalysis, and its favourable properties, such as electron-rich hydroxyl groups, could enhance the performance of photocatalytic reactions. For the first time, this study exploited the kapok fibre with microtubular structure (t-KF) as a solid electron donor to enhance the photocatalytic activity of C-doped g-C3N4 (CCN) via ligand-to-metal-charge-transfer (LMCT) to improve hydrogen peroxide (H2O2) production performance. As confirmed by various characterisation techniques, the hybrid complex consisting of CCN grafted on t-KF was successfully developed in the presence of succinic acid (SA) as a cross-linker via a simple hydrothermal approach. The complexation formation between CCN and t-KF results in the CCN-SA/t-KF sample displaying a higher photocatalytic activity than pristine g-C3N4 to produce H2O2 under visible light irradiation. The enhanced physicochemical and optoelectronic properties of CCN-SA/t-KF imply that the LMCT mechanism is crucial in improving photocatalytic activity. This study promotes utilising the unique t-KF material's properties to develop a low-cost and high-performance cellulose-based LMCT photocatalyst.
Collapse
Affiliation(s)
- Nur Shamimie Nadzwin Hasnan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohamad Azuwa Mohamed
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Nurul Atikah Nordin
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Wan Nor Roslam Wan Ishak
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohammad B Kassim
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
9
|
Wei LW, Liu SH, Wang HP. Visible-Light Photocatalytic CO 2-to-CO and H 2O-to-H 2O 2 by g-C 3N 4/Cu 2O-Pd S-Scheme Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37192387 DOI: 10.1021/acsami.3c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Visible-light photocatalytic conversion of CO2-to-fuels for green electricity is sustainably attractive for alleviating carbon emissions. Photocatalytic CO2-to-CO frequently suffered from relatively low yields, mainly due to ineffective charge transfer rates. A new approach for photocatalytic CO2-to-CO enhanced with effective H+ from H2O-to-H2O2 through the water oxidation reaction (WOR) has been studied in the present work. Here, the nano palladium (9 wt %), serving as a cocatalyst, dispersed on the g-C3N4/Cu2O heterojunctions (i.e., g-C3N4/Cu2O-Pd) has been prepared to facilitate charge separation for the two-electron reduction of CO2 to CO. Experimentally, the g-C3N4/Cu2O-Pd heterojunctions have a higher photocatalytic H2O-to-H2O2 yield than the g-C3N4/Cu2O heterojunction by 5.3 times. The photocatalytic WOR provides sufficient electrons (e-) and H+ (2H2O → H2O2 + 2H+) for CO2-to-CO (CO2(aq) + 2H+ + 2e- → CO(g) + H2O(l)). Relatively high photocatalytic yields of H2O2 (34.0 μmol/mg) and CO (14.6 μmol/mg) affected by the heterojunctions can be achieved. Also, the heterojunctions have a high photostability with a photocatalytic generated CO/H2 ratio of 1.75 approximately. This visible-light photocatalytic CO2-to-CO and H2O-to-H2O2 by the new g-C3N4/Cu2O-Pd S-scheme heterojunctions demonstrates the feasibility of the zero carbon emission approach with additional green oxidant (H2O2) generation.
Collapse
|
10
|
Zhao Y, Gao J, Yang Z, Li L, Cui J, Zhang P, Hu C, Diao C, Choi W. Efficient Exciton Dissociation in Ionically Interacted Methyl Viologen and Polymeric Carbon Nitride for Superior H 2O 2 Photoproduction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Yubao Zhao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Jingyu Gao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Zhenchun Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Lina Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Jiahao Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Peng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Caozheng Diao
- Singapore Synchrotron Light Source, National University of Singapore, 117603 Singapore, Singapore
| | - Wonyong Choi
- KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), 58330 Naju, Korea
| |
Collapse
|
11
|
Kerschbaumer A, Wielend D, Leeb E, Schimanofsky C, Kleinbruckner N, Neugebauer H, Irimia-Vladu M, Sariciftci NS. How to use a rotating ring-disc electrode (RRDE) subtraction method to investigate the electrocatalytic oxygen reduction reaction? Catal Sci Technol 2023; 13:834-843. [PMID: 36760341 PMCID: PMC9900597 DOI: 10.1039/d2cy01744j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
When studying electrochemical oxygen reduction reactions in homogeneous media, special attention must be given to the significant background activity present with conventional electrode materials. The intrinsic electrocatalytic activity of different materials can be investigated using complementary methods, such as the rotating ring-disc electrode (RRDE) technique and chronoamperometric electrolysis with product quantification. This report presents a detailed investigation of the electrocatalytic ability of hydroxy anthraquinone derivatives and riboflavin towards hydrogen peroxide (H2O2) production via a novel RRDE subtraction method together with chronoamperometric electrolysis. Qualitative trends linking the two methods were obtained, such as a higher excess current correlating with both higher productivity and selectivity. As such, a valuable tool is provided to increase the understanding of the electrocatalytic ability of homogeneous solutions toward improving the oxygen reduction reaction.
Collapse
Affiliation(s)
- Angelina Kerschbaumer
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Dominik Wielend
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Elisabeth Leeb
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Corina Schimanofsky
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Nadine Kleinbruckner
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Helmut Neugebauer
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Mihai Irimia-Vladu
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| |
Collapse
|
12
|
Bhattacharjee A, LaVigne AR, Frazee SM, Herrera TL, McCormick TM. Photocatalytic aerobic oxidation of benzylic alcohols and concomitant hydrogen peroxide production. Chem Commun (Camb) 2023; 59:1090-1093. [PMID: 36625092 DOI: 10.1039/d2cc04351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The photochemical oxidation of benzylic alcohols using N-hydroxyphthalimide (NHPI) catalyst, with Rose Bengal as a singlet oxygen photosensitizer, and the production of hydrogen peroxide (H2O2) under metal-free conditions is presented. Computational and experimental investigations support 1O2 as the oxidant that converts NHPI to the active radical intermediate phthalimide-N-oxyl (PINO). This is a green alternative to current methods of H2O2 production.
Collapse
Affiliation(s)
- Avik Bhattacharjee
- Portland State University, Department of Chemistry, Portland, OR, 97201, USA.
| | - Aireth R LaVigne
- Portland State University, Department of Chemistry, Portland, OR, 97201, USA.
| | - Serena M Frazee
- Portland State University, Department of Chemistry, Portland, OR, 97201, USA.
| | - Tyler L Herrera
- Portland State University, Department of Chemistry, Portland, OR, 97201, USA.
| | - Theresa M McCormick
- Portland State University, Department of Chemistry, Portland, OR, 97201, USA.
| |
Collapse
|
13
|
Ren X, Zeng X, Wang Y, Liu X, Li A, Xing X, Du J. Integration of an Electron Transport Layer and a p‐n Heterojunction in a ZnO photoanode for Photoelectrochemical Water Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202203608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaofei Ren
- College of Chemistry Zhengzhou University Zhengzhou 450000 P. R. China
- Henan Key Laboratory of New Optoelectronic Functional Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Xuyang Zeng
- College of Chemistry Zhengzhou University Zhengzhou 450000 P. R. China
- Henan Key Laboratory of New Optoelectronic Functional Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Yanqiu Wang
- Henan Key Laboratory of New Optoelectronic Functional Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Xuzhao Liu
- Henan Key Laboratory of New Optoelectronic Functional Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Ang Li
- Henan Key Laboratory of New Optoelectronic Functional Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Xiu‐Shuang Xing
- Henan Key Laboratory of New Optoelectronic Functional Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Jimin Du
- Henan Key Laboratory of New Optoelectronic Functional Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| |
Collapse
|
14
|
Yang J, Li P, Li X, Xie L, Wang N, Lei H, Zhang C, Zhang W, Lee YM, Zhang W, Cao R, Fukuzumi S, Nam W. Crucial Roles of a Pendant Imidazole Ligand of a Cobalt Porphyrin Complex in the Stoichiometric and Catalytic Reduction of Dioxygen. Angew Chem Int Ed Engl 2022; 61:e202208143. [PMID: 35730106 DOI: 10.1002/anie.202208143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/10/2022]
Abstract
A cobalt porphyrin complex with a pendant imidazole base ([(L1 )CoII ]) is an efficient catalyst for the homogeneous catalytic two-electron reduction of dioxygen by 1,1'-dimethylferrocene (Me2 Fc) in the presence of triflic acid (HOTf), as compared with a cobalt porphyrin complex without a pendant imidazole base ([(L2 )CoII ]). The pendant imidazole ligand plays a crucial role not only to provide an imidazolinium proton for proton-coupled electron transfer (PCET) from [(L1 )CoII ] to O2 in the presence of HOTf but also to facilitate electron transfer (ET) from [(L1 )CoII ] to O2 in the absence of HOTf. The kinetics analysis and the detection of intermediates in the stoichiometric and catalytic reduction of O2 have provided clues to clarify the crucial roles of the pendant imidazole ligand of [(L1 )CoII ] for the first time.
Collapse
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Ping Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ni Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chaochao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
15
|
Yang J, Li P, Li X, Xie L, Wang N, Lei H, Zhang C, Zhang W, Lee YM, Zhang W, Cao R, Fukuzumi S, Nam W. Crucial Roles of a Pendant Imidazole Ligand of a Cobalt Porphyrin Complex in the Stoichiometric and Catalytic Reduction of Dioxygen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jindou Yang
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Ping Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xialiang Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Lisi Xie
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ni Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Haitao Lei
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Chaochao Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wei Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yong-Min Lee
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Weiqiang Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Rui Cao
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Shunichi Fukuzumi
- Osaka University Department of Material and Life Science 2-1 Yamada-oka 565-0871 Suita JAPAN
| | - Wonwoo Nam
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| |
Collapse
|
16
|
Photoelectrocatalytic hydrogen peroxide production based on transition-metal-oxide semiconductors. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64028-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Keawsongsaeng W, Seelajareon H, Namuangruk S, Chitpakdee C, Chasing P, Promarak V, Sariciftci NS, Thamyongkit P. Benzoporphyrin‐Based Nanocomposites for Photoelectrochemical O
2
Reduction. Isr J Chem 2021. [DOI: 10.1002/ijch.202100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wittawat Keawsongsaeng
- Department of Chemistry Faculty of Science Chulalongkorn University Bangkok 10330 Thailand
| | - Hathaichanok Seelajareon
- Linz Institute for Organic Solar Cells (LIOS) Institute of Physical Chemistry Johannes Kepler University Linz 4040 Austria
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency 111 Thailand Science Park Pathum Thani 12120 Thailand
| | - Chirawat Chitpakdee
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency 111 Thailand Science Park Pathum Thani 12120 Thailand
| | - Pongsakorn Chasing
- Department of Materials Science and Engineering School of Molecular Science & Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Rayong 21210 Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering School of Molecular Science & Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Rayong 21210 Thailand
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells (LIOS) Institute of Physical Chemistry Johannes Kepler University Linz 4040 Austria
| | - Patchanita Thamyongkit
- Department of Chemistry Faculty of Science Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
18
|
Fukuzumi S, Lee YM, Nam W. Recent progress in production and usage of hydrogen peroxide. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63767-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Kalisz J, Nogala W, Adamiak W, Gocyla M, Girault HH, Opallo M. The Solvent Effect on H 2 O 2 Generation at Room Temperature Ionic Liquid|Water Interface. Chemphyschem 2021; 22:1352-1360. [PMID: 33909320 DOI: 10.1002/cphc.202100219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Indexed: 12/15/2022]
Abstract
H2 O2 is a versatile chemical and can be generated by the oxygen reduction reaction (ORR) in proton donor solution in molecular solvents or room temperature ionic liquids (IL). We investigated this reaction at interfaces formed by eleven hydrophobic ILs and acidic aqueous solution as a proton source with decamethylferrocene (DMFc) as an electron donor. H2 O2 is generated in colorimetrically detectable amounts in biphasic systems formed by alkyl imidazolium hexafluorophosphate or tetraalkylammonium bis(trifluoromethylsulfonyl)imide ionic liquids. H2 O2 fluxes were estimated close to liquid|liquid interface by scanning electrochemical microscopy (SECM). Contrary to the interfaces formed by hydrophobic electrolyte solution in a molecular solvent, H2 O2 generation is followed by cation expulsion to the aqueous phase. Weak correlation between the H2 O2 flux and the difference between DMFc/DMFc+ redox potential and 2 electron ORR standard potential indicates kinetic control of the reaction.
Collapse
Affiliation(s)
- Justyna Kalisz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Wojciech Adamiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mateusz Gocyla
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Hubert H Girault
- Laboratoire d'Electrochimie Physique et Amaytique, Ecole Polytechnique Federale de Lausanne, EPFL, Valais, Wallis, Rue d'Industrie 17, 1950, Sion, Switzerland
| | - Marcin Opallo
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
20
|
Naina VR, Wang S, Sharapa DI, Zimmermann M, Hähsler M, Niebl-Eibenstein L, Wang J, Wöll C, Wang Y, Singh SK, Studt F, Behrens S. Shape-Selective Synthesis of Intermetallic Pd 3Pb Nanocrystals and Enhanced Catalytic Properties in the Direct Synthesis of Hydrogen Peroxide. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03561] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vanitha Reddy Naina
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552 Madhya Pradesh, India
| | - Sheng Wang
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Inorganic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Dmitry I. Sharapa
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Zimmermann
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Hähsler
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Inorganic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Lukas Niebl-Eibenstein
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Junjun Wang
- Institute of Functional Interfaces, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Yuemin Wang
- Institute of Functional Interfaces, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Sanjay Kumar Singh
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552 Madhya Pradesh, India
| | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Science, Karlsruher Institut für Technologie, Engesserstr. 20, D-76131 Karlsruhe, Germany
| | - Silke Behrens
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Inorganic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| |
Collapse
|
21
|
Andrade TS, Sá BAC, Sena IC, Neto ARS, Nogueira FGE, Lianos P, Pereira MC. A photoassisted hydrogen peroxide fuel cell using dual photoelectrodes under tandem illumination for electricity generation. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Rabl H, Wielend D, Tekoglu S, Seelajaroen H, Neugebauer H, Heitzmann N, Apaydin DH, Scharber MC, Sariciftci NS. Are Polyaniline and Polypyrrole Electrocatalysts for Oxygen (O 2) Reduction to Hydrogen Peroxide (H 2O 2)? ACS APPLIED ENERGY MATERIALS 2020; 3:10611-10618. [PMID: 33251486 PMCID: PMC7687026 DOI: 10.1021/acsaem.0c01663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 05/17/2023]
Abstract
In this report, we present results on the electrocatalytic activity of conducting polymers [polyaniline (PANI) and polypyrrole (PPy)] toward the electrochemical oxygen reduction reaction (ORR) to hydrogen peroxide (H2O2). The electropolymerization of the polymers and electrolysis conditions were optimized for H2O2 production. On flat glassy carbon (GC) electrodes, the faradaic efficiency (FE) for H2O2 production was significantly improved by the polymers. Rotating disc electrode (RDE) studies revealed that this is mainly a result of blocking further H2O2 to the water reduction pathway by the polymers. PPy on carbon paper (CP) significantly increased the molar production of H2O2 by over 250% at an average FE of above 95% compared to bare CP with a FE of 25%. Thus, the polymers are acting as catalysts on the electrode for the ORR, although their catalytic mechanisms differ from other electrocatalysts.
Collapse
|
23
|
Wang S, Doronkin DE, Hähsler M, Huang X, Wang D, Grunwaldt J, Behrens S. Palladium-Based Bimetallic Nanocrystal Catalysts for the Direct Synthesis of Hydrogen Peroxide. CHEMSUSCHEM 2020; 13:3243-3251. [PMID: 32233108 PMCID: PMC7318153 DOI: 10.1002/cssc.202000407] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/27/2020] [Indexed: 05/20/2023]
Abstract
The direct synthesis of H2 O2 from H2 and O2 is a strongly desired reaction for green processes and a promising alternative to the commercialized anthraquinone process. The design of efficient catalysts with high activity and H2 O2 selectivity is highly desirable and yet challenging. Metal dopants enhance the performance of the active phase by increasing reaction rates, stability, and/or selectivity. The identification of efficient dopants relies mostly on catalysts prepared with a random and non-uniform deposition of active and promoter phases. To study the promotional effects of metal doping on Pd catalysts, we employ colloidal, bimetallic nanocrystals (NCs) to produce catalysts in which the active and doping metals are colocalized to a fine extent. In the absence of any acid and halide promotors, PdSn and PdGa NCs supported on acid-pretreated TiO2 (PdSn/s-TiO2 , PdGa/s-TiO2 ) were highly efficient and outperformed the monometallic Pd catalyst (Pd/s-TiO2 ), whereas in the presence of an acid promotor, the overall H2 O2 productivity was also further enhanced for the Ni-, Ga-, In-, and Sn-doped catalysts with respect to Pd/s-TiO2 .
Collapse
Affiliation(s)
- Sheng Wang
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Dmitry E. Doronkin
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyEngesserstr. 2076131KarlsruheGermany
| | - Martin Hähsler
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Xiaohui Huang
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Di Wang
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Karlsruhe Nano Micro FacilityKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Jan‐Dierk Grunwaldt
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyEngesserstr. 2076131KarlsruheGermany
| | - Silke Behrens
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
24
|
Kornienko VL, Kolyagin GA, Kornienko GV, Kenova TA. The Prospects of the in situ and ex situ Use of Aqueous Solutions of Hydrogen Peroxide Electrogenerated from Oxygen. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193520050067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Thakur S, Das NM, Kumar S, Dasmahapatra AK, Bandyopadhyay D. Microdroplet photofuel cells to harvest high-density energy and dye degradation. NANOSCALE ADVANCES 2020; 2:1613-1624. [PMID: 36132326 PMCID: PMC9418814 DOI: 10.1039/c9na00785g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/27/2020] [Indexed: 05/08/2023]
Abstract
In this study, a membraneless photofuel cell, namely, μ-DropFC, was designed and developed to harvest chemical and solar energies simultaneously. The prototypes can also perform environmental remediation to demonstrate their multitasking potential as a sustainable hybrid device in a single embodiment. A hydrogen peroxide (H2O2) microdroplet at optimal pH and salt loading was utilized as a fuel integrated with Al as an anode and zinc phthalocyanine (ZnPC)-coated Cu as a cathode. The presence of n-type semiconductor ZnPC in between the electrolyte and metal enabled the formation of a photo-active Schottky junction suitable for power generation under light. Concurrently, the oxidation and reduction of H2O2 on the electrodes helped in the conversion of chemical energy into the electrical one in the same membraneless setup. The suspension of Au nanoparticles (Au NPs) in the droplet helped in enhancing the overall power density under photonic illumination through the effects of localized surface plasmon resonance (LSPR). Furthermore, the presence of photo-active n-type CdS NPs enabled the catalytic photo-degradation of dyes under light in the same embodiment. A 40 μL μ-DropFC could show a significantly high open circuit potential of ∼0.58 V along with a power density of 0.72 mW cm-2. Under the same condition, the integration of ten such μ-DropFCs could produce a power density of ∼7 mW cm-2 at an efficiency of 3.4%, showing the potential of the prototype for a very large scale integration (VLSI). The μ-DropFC could also degrade ∼85% of an industrial pollutant, rhodamine 6G, in 1 h while generating a power density of ∼0.6 mW cm-2. The performance parameters of μ-DropFCs were found to be either comparable or superior to the existing prototypes. In a way, the affordable, portable, membraneless, and high-performance μ-DropFC could harvest energy from multiple resources while engaging in environmental remediation.
Collapse
Affiliation(s)
- Siddharth Thakur
- Department of Chemical Engineering, Indian Institute of Technology Guwahati Guwahati - 781039 India
| | - Nayan Mani Das
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati - 781039 India
| | - Sunny Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati Guwahati - 781039 India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati Guwahati - 781039 India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati - 781039 India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati Guwahati - 781039 India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati - 781039 India
| |
Collapse
|
26
|
Bhat SA, Rashid N, Rather MA, Pandit SA, Ingole PP, Bhat MA. Vitamin B12 functionalized N-Doped graphene: A promising electro-catalyst for hydrogen evolution and electro-oxidative sensing of H2O2. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Photoelectrocatalytic production of hydrogen peroxide using a photo(catalytic) fuel cell. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Photoelectrocatalytic Hydrogen Peroxide Production Using Nanoparticulate WO3 as Photocatalyst and Glycerol or Ethanol as Sacrificial Agents. Processes (Basel) 2019. [DOI: 10.3390/pr8010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Photoelectrochemical production of hydrogen peroxide was studied by using a cell functioning with a WO3 photoanode and an air breathing cathode made of carbon cloth with a hydrophobic layer of carbon black. The photoanode functioned in the absence of any sacrificial agent by water splitting, but the produced photocurrent was doubled in the presence of glycerol or ethanol. Hydrogen peroxide production was monitored in all cases, mainly in the presence of glycerol. The presence or absence of the organic fuel affected only the obtained photocurrent. The Faradaic efficiency for hydrogen peroxide production was the same in all cases, mounting up to 74%. The duplication of the photocurrent in the presence of biomass derivatives such as glycerol or ethanol and the fact that WO3 absorbed light in a substantial range of the visible spectrum promotes the presently studied system as a sustainable source of hydrogen peroxide production.
Collapse
|
29
|
Zhao Q, An J, Wang S, Qiao Y, Liao C, Wang C, Wang X, Li N. Superhydrophobic Air-Breathing Cathode for Efficient Hydrogen Peroxide Generation through Two-Electron Pathway Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35410-35419. [PMID: 31465198 DOI: 10.1021/acsami.9b09942] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Electrochemical catalysis of carbon-based material via two-electron pathway oxygen reduction reaction (ORR) offers great potential for in situ hydrogen peroxide (H2O2) production. In this work, we tuned catalyst mesostructure and hydrophilicity/hydrophobicity by adjusting polytetrafluoroethylene (PTFE) content in graphite/carbon black/PTFE hybrid catalyst layer (CL), aimed to improving the two-electron ORR activity for efficient H2O2 generation. As the only superhydrophobic CL with initiating contact angles of 141.11°, PTFE0.57 obtained the highest H2O2 yield of 3005 ± 58 mg L-1 h-1 (at 25 mA cm-2) and highest current efficiency (CE) of 84% (at 20 mA cm-2). Rotating ring disk electrode (RRDE) results demonstrated that less PTFE content in CLs results in less electrons transferred and better selectivity toward two-electron ORR. Though the highest H2 concentration (2 μmol L-1 at 25 mA cm-2) was monitored from PTFE0.57 which contained the lowest PTFE, the CE decreased inversely with increasing content of PTFE, which proved that the H2O2 decomposition reaction was the major side reaction. Higher PTFE content increased the hydrophilicity of CL for excessive H+ and insufficient O2 diffusion, which induced H2O2 decomposition into H2O. Simultaneously, the electroactive surface area of CLs decreased with higher PTFE content, from 0.0041 m2 g-1 of PTFE0.57 to 0.0019 m2 g-1 of PTFE4.56. Besides, higher PTFE content in CL leads to the increase of total impedance (from 14.5 Ω of PTFE0.57 to 18.3 Ω of PTFE4.56), which further hinders the electron transfer and ORR activity.
Collapse
Affiliation(s)
- Qian Zhao
- Tianjin Key Lab Indoor Air Environmental Quality Control, School of Environmental Science and Engineering , Tianjin University , No. 92 Weijin Road, Nankai District , Tianjin 300072 , China
| | - Jingkun An
- Tianjin Key Lab Indoor Air Environmental Quality Control, School of Environmental Science and Engineering , Tianjin University , No. 92 Weijin Road, Nankai District , Tianjin 300072 , China
| | - Shu Wang
- Tianjin Key Lab Indoor Air Environmental Quality Control, School of Environmental Science and Engineering , Tianjin University , No. 92 Weijin Road, Nankai District , Tianjin 300072 , China
| | - Yujie Qiao
- Tianjin Key Lab Indoor Air Environmental Quality Control, School of Environmental Science and Engineering , Tianjin University , No. 92 Weijin Road, Nankai District , Tianjin 300072 , China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control , Nankai University , No. 38 Tongyan Road, Jinnan District , Tianjin 300350 , China
| | - Cong Wang
- Tianjin Key Lab Indoor Air Environmental Quality Control, School of Environmental Science and Engineering , Tianjin University , No. 92 Weijin Road, Nankai District , Tianjin 300072 , China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control , Nankai University , No. 38 Tongyan Road, Jinnan District , Tianjin 300350 , China
| | - Nan Li
- Tianjin Key Lab Indoor Air Environmental Quality Control, School of Environmental Science and Engineering , Tianjin University , No. 92 Weijin Road, Nankai District , Tianjin 300072 , China
| |
Collapse
|
30
|
Lukyanov DA, Funt LD, Konev AS, Povolotskiy AV, Vereshchagin AA, Levin OV, Khlebnikov AF. Novel homogeneous photocatalyst for oxygen to hydrogen peroxide reduction in aqueous media. Photochem Photobiol Sci 2019; 18:1982-1989. [PMID: 31237303 DOI: 10.1039/c9pp00206e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An isoquinolinium-pyrrole donor-acceptor dyad was found to exhibit photocatalytic activity in oxygen-to-peroxide photoreduction with oxalate as a sacrificial electron donor. The concentration of hydrogen peroxide was shown to reach a plateau of 0.57 mM. The screening of related pyridinium-pyrrole dyads showed the importance of the isoquinoline moiety in securing the photocatalytic activity.
Collapse
Affiliation(s)
- Daniil A Lukyanov
- Institute of Chemistry, Saint Petersburg University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
| | | | | | | | | | | | | |
Collapse
|
31
|
Htet Y, Lu Z, Trauger SA, Tennyson AG. Hydrogen peroxide as a hydride donor and reductant under biologically relevant conditions. Chem Sci 2019; 10:2025-2033. [PMID: 30881631 PMCID: PMC6381410 DOI: 10.1039/c8sc05418e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 11/21/2022] Open
Abstract
Some ruthenium-hydride complexes react with O2 to yield H2O2, therefore the principle of microscopic reversibility dictates that the reverse reaction is also possible, that H2O2 could transfer an H- to a Ru complex. Mechanistic evidence is presented, using the Ru-catalyzed ABTS˙- reduction reaction as a probe, which suggests that a Ru-H intermediate is formed via deinsertion of O2 from H2O2 following coordination to Ru. This demonstration that H2O2 can function as an H- donor and reductant under biologically-relevant conditions provides the proof-of-concept that H2O2 may function as a reductant in living systems, ranging from metalloenzyme-catalyzed reactions to cellular redox homeostasis, and that H2O2 may be viable as an environmentally-friendly reductant and H- source in green catalysis.
Collapse
Affiliation(s)
- Yamin Htet
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Cambridge , MA 02138 , USA
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , MA 02138 , USA
| | - Zhuomin Lu
- Department of Chemistry , Clemson University , Clemson , SC 29634 , USA .
| | - Sunia A Trauger
- Harvard FAS Small Molecule Mass Spectrometry Facility , Harvard University , Cambridge , MA 02138 , USA
| | - Andrew G Tennyson
- Department of Chemistry , Clemson University , Clemson , SC 29634 , USA .
- Department of Materials Science and Engineering , Clemson University , Clemson , SC 29634 , USA
- Center for Optical Materials Science and Engineering Technologies , Anderson , SC 29625 , USA
| |
Collapse
|
32
|
Liu Y, Han Y, Zhang Z, Zhang W, Lai W, Wang Y, Cao R. Low overpotential water oxidation at neutral pH catalyzed by a copper(ii) porphyrin. Chem Sci 2019; 10:2613-2622. [PMID: 30996977 PMCID: PMC6419937 DOI: 10.1039/c8sc04529a] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Low-overpotential water oxidation catalyzed by copper(ii) porphyrin to produce O2 in neutral aqueous solution and H2O2 in acidic solution.
Low overpotential water oxidation under mild conditions is required for new energy conversion technologies with potential application prospects. Extensive studies on molecular catalysis have been performed to gain fundamental knowledge for the rational designing of cheap, efficient and robust catalysts. We herein report a water-soluble CuII complex of tetrakis(4-N-methylpyridyl)porphyrin (1), which catalyzes the oxygen evolution reaction (OER) in neutral aqueous solutions with small overpotentials: the onset potential of the catalytic water oxidation wave measured at current density j = 0.10 mA cm–2 is 1.13 V versus a normal hydrogen electrode (NHE), which corresponds to an onset overpotential of 310 mV. Constant potential electrolysis of 1 at neutral pH and at 1.30 V versus NHE displayed a substantial and stable current for O2 evolution with a faradaic efficiency of >93%. More importantly, in addition to the 4e water oxidation to O2 at neutral pH, 1 can catalyze the 2e water oxidation to H2O2 in acidic solutions. The produced H2O2 is detected by rotating ring–disk electrode measurements and by the sodium iodide method after bulk electrolysis at pH 3.0. This work presents an efficient and robust Cu-based catalyst for water oxidation in both neutral and acidic solutions. The observation of H2O2 during water oxidation catalysis is rare and will provide new insights into the water oxidation mechanism.
Collapse
Affiliation(s)
- Yanju Liu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Yongzhen Han
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Zongyao Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Wenzhen Lai
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation , Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China.,Institute of Drug Discovery Technology , Ningbo University , Ningbo 315211 , China
| | - Rui Cao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China . .,Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| |
Collapse
|
33
|
Zhao Y, Yu G, Wang F, Wei P, Liu J. Bioinspired Transition‐Metal Complexes as Electrocatalysts for the Oxygen Reduction Reaction. Chemistry 2018; 25:3726-3739. [DOI: 10.1002/chem.201803764] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Ye‐Min Zhao
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Guo‐Qiang Yu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Fei‐Fei Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Ping‐Jie Wei
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Jin‐Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
34
|
Sun CQ. Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1544446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chang Q. Sun
- EBEAM, Yangtze Normal University, Chongqing, People's Republic of China
- NOVITAS, EEE, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
35
|
Konev AS, Kayumov MY, Karushev MP, Novoselova YV, Lukyanov DA, Alekseeva EV, Levin OV. Polymeric Metal Salen-Type Complexes as Catalysts for Photoelectrocatalytic Hydrogen Peroxide Production. ChemElectroChem 2018. [DOI: 10.1002/celc.201800846] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander S. Konev
- Institute of Chemistry; St. Petersburg State University; Universitetskii pr. 26, Peterhof St. Petersburg 198504 Russia
| | - Mikhail Yu. Kayumov
- Institute of Chemistry; St. Petersburg State University; Universitetskii pr. 26, Peterhof St. Petersburg 198504 Russia
| | - Mikhail P. Karushev
- Institute of Chemistry; St. Petersburg State University; Universitetskii pr. 26, Peterhof St. Petersburg 198504 Russia
| | - Yuliia V. Novoselova
- Institute of Chemistry; St. Petersburg State University; Universitetskii pr. 26, Peterhof St. Petersburg 198504 Russia
| | - Daniil A. Lukyanov
- Institute of Chemistry; St. Petersburg State University; Universitetskii pr. 26, Peterhof St. Petersburg 198504 Russia
| | - Elena V. Alekseeva
- Institute of Chemistry; St. Petersburg State University; Universitetskii pr. 26, Peterhof St. Petersburg 198504 Russia
| | - Oleg V. Levin
- Institute of Chemistry; St. Petersburg State University; Universitetskii pr. 26, Peterhof St. Petersburg 198504 Russia
| |
Collapse
|
36
|
Yan K, Zhu Y, Ji W, Chen F, Zhang J. Visible Light-Driven Membraneless Photocatalytic Fuel Cell toward Self-Powered Aptasensing of PCB77. Anal Chem 2018; 90:9662-9666. [DOI: 10.1021/acs.analchem.8b02302] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kai Yan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yuhan Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Weihao Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Fang Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jingdong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
37
|
Wang YH, Goldsmith ZK, Schneider PE, Anson CW, Gerken JB, Ghosh S, Hammes-Schiffer S, Stahl SS. Kinetic and Mechanistic Characterization of Low-Overpotential, H2O2-Selective Reduction of O2 Catalyzed by N2O2-Ligated Cobalt Complexes. J Am Chem Soc 2018; 140:10890-10899. [DOI: 10.1021/jacs.8b06394] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yu-Heng Wang
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Zachary K. Goldsmith
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Patrick E. Schneider
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Colin W. Anson
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - James B. Gerken
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Soumya Ghosh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
38
|
Guo X, Li X, Liu XC, Li P, Yao Z, Li J, Zhang W, Zhang JP, Xue D, Cao R. Selective visible-light-driven oxygen reduction to hydrogen peroxide using BODIPY photosensitizers. Chem Commun (Camb) 2018; 54:845-848. [PMID: 29318236 DOI: 10.1039/c7cc09383g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Selective visible-light-driven O2 reduction to H2O2 was realized using BODIPY photosensitizers (PS) in the presence of ferrocene (Fc) as the reductant and acetic acid as the proton source. Mechanistic studies suggested that O2 could be activated by 3PS* through an energy transfer pathway to give singlet oxygen (1O2) in the absence of Fc. However, with Fc, 3PS* was first reductively quenched to PS˙-, which was able to reduce O2 to the superoxide radical form in a subsequent electron transfer step.
Collapse
Affiliation(s)
- Xiaojun Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fukuzumi S, Lee Y, Nam W. Solar‐Driven Production of Hydrogen Peroxide from Water and Dioxygen. Chemistry 2018; 24:5016-5031. [DOI: 10.1002/chem.201704512] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Graduate School of Science and Engineering Meijo University, Nagoya Aichi 468-8502 Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
40
|
Miglbauer E, Wójcik PJ, Głowacki ED. Single-compartment hydrogen peroxide fuel cells with poly(3,4-ethylenedioxythiophene) cathodes. Chem Commun (Camb) 2018; 54:11873-11876. [DOI: 10.1039/c8cc06802j] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Efficient single-compartment hydrogen peroxide fuel cells can be fabricated using the conducting polymer poly(3,4-ethylenedioxythiophene), PEDOT as a cathodic electrocatalyst.
Collapse
Affiliation(s)
- Eva Miglbauer
- Laboratory of Organic Electronics
- ITN Campus Norrköping
- Linköping University
- Norrköping
- Sweden
| | | | - Eric Daniel Głowacki
- Laboratory of Organic Electronics
- ITN Campus Norrköping
- Linköping University
- Norrköping
- Sweden
| |
Collapse
|
41
|
Isaka Y, Kondo Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanoparticles. Chem Commun (Camb) 2018; 54:9270-9273. [DOI: 10.1039/c8cc02679c] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic H2O2 production via two-electron reduction of O2 is realized by visible-light irradiation of a Ti-based metal–organic framework, MIL-125-NH2.
Collapse
Affiliation(s)
- Yusuke Isaka
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | | | - Yudai Kawase
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Yasutaka Kuwahara
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| | - Kohsuke Mori
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| | - Hiromi Yamashita
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| |
Collapse
|
42
|
Fukuzumi S, Lee YM, Nam W. Fuel Production from Seawater and Fuel Cells Using Seawater. CHEMSUSCHEM 2017; 10:4264-4276. [PMID: 28914497 DOI: 10.1002/cssc.201701381] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Seawater is the most abundant resource on our planet and fuel production from seawater has the notable advantage that it would not compete with growing demands for pure water. This Review focuses on the production of fuels from seawater and their direct use in fuel cells. Electrolysis of seawater under appropriate conditions affords hydrogen and dioxygen with 100 % faradaic efficiency without oxidation of chloride. Photoelectrocatalytic production of hydrogen from seawater provides a promising way to produce hydrogen with low cost and high efficiency. Microbial solar cells (MSCs) that use biofilms produced in seawater can generate electricity from sunlight without additional fuel because the products of photosynthesis can be utilized as electrode reactants, whereas the electrode products can be utilized as photosynthetic reactants. Another important source for hydrogen is hydrogen sulfide, which is abundantly found in Black Sea deep water. Hydrogen produced by electrolysis of Black Sea deep water can also be used in hydrogen fuel cells. Production of a fuel and its direct use in a fuel cell has been made possible for the first time by a combination of photocatalytic production of hydrogen peroxide from seawater and dioxygen in the air and its direct use in one-compartment hydrogen peroxide fuel cells to obtain electric power.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate School of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
43
|
Fukuzumi S, Lee Y, Nam W. Artificial Photosynthesis for Production of ATP, NAD(P)H, and Hydrogen Peroxide. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Graduate School of Science and Engineering Meijo University, Nagoya Aichi 468-8502 Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
44
|
Fukuzumi S, Lee YM, Nam W. Mechanisms of Two-Electron versus Four-Electron Reduction of Dioxygen Catalyzed by Earth-Abundant Metal Complexes. ChemCatChem 2017. [DOI: 10.1002/cctc.201701064] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
- Faculty of Science and Engineering; Meijo University; SENTAN, Japan, Science and Technology Agency, JST; Nagoya Aichi 468-8502 Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 03760 Korea
| |
Collapse
|
45
|
Kolyagin GA, Kornienko GV, Kornienko VL, Ponomarenko IV. Electrochemical reduction of oxygen to hydrogen peroxide in a gas-diffusion electrode based on mesoporous carbon. RUSS J APPL CHEM+ 2017. [DOI: 10.1134/s1070427217070187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Chen JS, Yao C, Liu XJ, Zhang X, Sun CQ, Huang YL. H2
O2
and HO−
Solvation Dynamics: Solute Capabilities and Solute-Solvent Molecular Interactions. ChemistrySelect 2017. [DOI: 10.1002/slct.201701334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiasheng S. Chen
- Key Laboratory of Low-dimensional Materials and Application Technology (Ministry of Education); School of Materials Science and Engineering; Xiangtan University; Xiangtan - 411105 China
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM); Yangtze Normal University; Chongqing - 408100 China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM); Yangtze Normal University; Chongqing - 408100 China
| | - Xinjuan J. Liu
- Institute for Coordination Bond Engineering; China Jiliang University; Hangzhou - 310018 China
| | - Xi Zhang
- Institute of Nanosurface Science and Engineering; Shenzhen University; Shenzhen - 518060 China
| | - Chang Q. Sun
- NOVITAS, School of EEE; Nanyang Technological University; Singapore - 639798
| | - Yongli L. Huang
- Key Laboratory of Low-dimensional Materials and Application Technology (Ministry of Education); School of Materials Science and Engineering; Xiangtan University; Xiangtan - 411105 China
| |
Collapse
|
47
|
Mukherjee A, Sau SC, Mandal SK. Exploring Closed-Shell Cationic Phenalenyl: From Catalysis to Spin Electronics. Acc Chem Res 2017; 50:1679-1691. [PMID: 28665582 DOI: 10.1021/acs.accounts.7b00141] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The odd alternant hydrocarbon phenalenyl (PLY) can exist in three different forms, a closed-shell cation, an open-shell radical, and a closed-shell anion, using its nonbonding molecular orbital (NBMO). The chemistry of PLY-based molecules began more than five decades ago, and so far, the progress has mainly involved the open-shell neutral radical state. Over the last two decades, we have witnessed the evolution of a range of PLY-based radicals generating an array of multifunctional materials. However, it has been admitted that the practical applications of PLY radicals are greatly challenged by the low stability of the open-shell (radical) state. Recently, we took a different route to establish the utility of these PLY molecules using the closed-shell cationic state. In such a design, the closed-shell unit of PLY can readily accept free electrons, stabilizing in its NBMO upon generation of the open-shell state of the molecule. Thus, one can synthetically avoid the unstable open-shell state but still take advantage of this state by in situ generating the radical through external electron transfer or spin injection into the empty NBMO. It is worth noting that such approaches using closed-shell phenalenyl have been missing in the literature. This Account focuses on our recent developments using the closed-shell cationic state of the PLY molecule and its application in broad multidisciplinary areas spanning from catalysis to spin electronics. We describe how this concept has been utilized to develop a variety of homogeneous catalysts. For example, this concept was used in designing an iron(III) PLY-based electrocatalyst for a single-compartment H2O2 fuel cell, which delivered the best electrocatalytic activity among previously reported iron complexes, organometallic catalysts for various homogeneous organic transformations (hydroamination and polymerization), an organic Lewis acid catalyst for the ring opening of epoxides, and transition-metal-free C-H functionalization catalysts. Moreover, this concept of using the empty NBMO present in the closed-shell cationic state of the PLY moiety to capture electron(s) was further extended to an entirely different area of spin electronics to design a PLY-based spin-memory device, which worked by a spin-filtration mechanism using an organozinc compound based on a PLY backbone deposited over a ferromagnetic substrate. In this Account, we summarize our recent efforts to understand how this unexplored closed-shell state of the phenalenyl molecule, which has been known for over five decades, can be utilized in devising an array of materials that not only are important from an organometallic chemistry or organic chemistry point of view but also provide new understanding for device physics.
Collapse
Affiliation(s)
- Arup Mukherjee
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Samaresh Chandra Sau
- Department
of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Swadhin K. Mandal
- Department
of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
48
|
Fuku K, Miyase Y, Miseki Y, Funaki T, Gunji T, Sayama K. Photoelectrochemical Hydrogen Peroxide Production from Water on a WO3/BiVO4Photoanode and from O2on an Au Cathode Without External Bias. Chem Asian J 2017; 12:1111-1119. [DOI: 10.1002/asia.201700292] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/17/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Kojiro Fuku
- Research Center for Photovoltaics (RCPV); National Institute of Advanced Industrial Science and Technology (AIST); Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Yuta Miyase
- Research Center for Photovoltaics (RCPV); National Institute of Advanced Industrial Science and Technology (AIST); Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
- Department of Pure and Applied Chemistry; Tokyo University of Science; 2641 Yamasaki Noda Chiba 278-8514 Japan
| | - Yugo Miseki
- Research Center for Photovoltaics (RCPV); National Institute of Advanced Industrial Science and Technology (AIST); Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Takashi Funaki
- Research Center for Photovoltaics (RCPV); National Institute of Advanced Industrial Science and Technology (AIST); Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Takahiro Gunji
- Research Center for Photovoltaics (RCPV); National Institute of Advanced Industrial Science and Technology (AIST); Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
- Department of Pure and Applied Chemistry; Tokyo University of Science; 2641 Yamasaki Noda Chiba 278-8514 Japan
| | - Kazuhiro Sayama
- Research Center for Photovoltaics (RCPV); National Institute of Advanced Industrial Science and Technology (AIST); Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
- Department of Pure and Applied Chemistry; Tokyo University of Science; 2641 Yamasaki Noda Chiba 278-8514 Japan
| |
Collapse
|
49
|
Reuillard B, Ly KH, Hildebrandt P, Jeuken LJC, Butt JN, Reisner E. High Performance Reduction of H 2O 2 with an Electron Transport Decaheme Cytochrome on a Porous ITO Electrode. J Am Chem Soc 2017; 139:3324-3327. [PMID: 28221032 PMCID: PMC5411108 DOI: 10.1021/jacs.6b12437] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Indexed: 11/28/2022]
Abstract
The decaheme cytochrome MtrC from Shewanella oneidensis MR-1 immobilized on an ITO electrode displays unprecedented H2O2 reduction activity. Although MtrC showed lower peroxidase activity in solution compared to horseradish peroxidase, the ten heme cofactors enable excellent electronic communication and a superior activity on the electrode surface. A hierarchical ITO electrode enabled optimal immobilization of MtrC and a high current density of 1 mA cm-2 at 0.4 V vs SHE could be obtained at pH 6.5 (Eonset = 0.72 V). UV-visible and Resonance Raman spectroelectrochemical studies suggest the formation of a high valent iron-oxo species as the catalytic intermediate. Our findings demonstrate the potential of multiheme cytochromes to catalyze technologically relevant reactions and establish MtrC as a new benchmark in biotechnological H2O2 reduction with scope for applications in fuel cells and biosensors.
Collapse
Affiliation(s)
- Bertrand Reuillard
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Khoa H. Ly
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Peter Hildebrandt
- Institut
für Chemie, Technische Universität
Berlin, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Lars J. C. Jeuken
- School
of Biomedical Sciences and the Astbury Centre, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Julea N. Butt
- School
of
Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Erwin Reisner
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
50
|
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Faculty of Science and Engineering Meijo University, SENTAN, Japan, Science and Technology Agency (JST) Nagoya, Aichi 468-8502 Japan
| | - Jieun Jung
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| |
Collapse
|