1
|
Tang F, Pang J, Yang J, Kuang X, Mao A. Two-dimensional functionalized MBene Mg 2B 3T (T = O, H, and F) monolayers as anode materials for high-performance K-ion batteries. Phys Chem Chem Phys 2024; 26:25623-25631. [PMID: 39344897 DOI: 10.1039/d4cp02402h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Two-dimensional metal borides have received attention as high performance battery anode materials. During the practical application, the 2D surface terminalization is an inevitable problem. This study employs first-principles calculations to investigate the termination of the Mg2B3 monolayer with O, H, F, and Cl groups. These structures' stabilities are examined through energetic, mechanical, kinetic and thermodynamic stability studies. Electronic property analysis shows that Mg2B3T (T = O, H, F, and Cl) monolayers are all metallic. Calculated results reveal that the Mg2B3O, Mg2B3H, and Mg2B3F monolayers exhibit high K ion storage capacities (up to 826 mA h g-1, 980 mA h g-1, and 804 mA h g-1, respectively), with diffusion barriers of 0.338 eV, 0.490 eV, and 0.507 eV, respectively. More importantly, the calculated in-plane lattice constants of the substrate materials exhibit a minimal variation and the observed volume expansion is almost negligible (less than 0.08%) during the entire potassization process, which is much lower than that of the pristine Mg2B3 monolayer. This structural stability is attributed to the presence of surface functional groups. These results provide helpful insights into designing and discovering other high-capacity anode materials for batteries.
Collapse
Affiliation(s)
- Fengzhang Tang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Jiafei Pang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Jinni Yang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Xiaoyu Kuang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Aijie Mao
- College of Physics, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
2
|
Bandpey M, Barz DPJ. Effects of interlayer space engineering and surface modification on the charge storage mechanisms of MXene nanomaterials: A review on recent developments. NANOSCALE 2024; 16:15078-15093. [PMID: 39072431 DOI: 10.1039/d4nr01317d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Two-dimensional MXenes were discovered in 2011 and, because of their outstanding properties, have attracted significant attention as electrode materials for supercapacitors, rechargeable batteries, and hybrid energy storage devices. Numerous studies were dedicated to identifying feasible charge storage mechanisms in MXenes and investigating the effects of structural and superficial properties on the corresponding mechanisms. The results clarify that interlayer distance and surface termination groups in MXenes significantly determine the deliverable energy and power density in respective energy storage devices. Additionally, due to van der Waals interactions, adjacent MXene sheets tend to aggregate and restack during electrode preparation or charge and discharge cycling, reducing the MXene interlayer distance and deteriorating its energy storage ability. In this review, we first summarize the different charge storage mechanisms applicable to MXenes in different energy storage devices and describe the effect of interlayer spacing and surface termination groups. Then, different interlayer space engineering methods are reviewed in terms of materials and procedures, and their impact on the electrochemical behavior and restacking tendency of MXene is described.
Collapse
Affiliation(s)
- Mohammad Bandpey
- Graphene Integrated Functional Technologies (GIFT) Research Cluster, Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - Dominik P J Barz
- Graphene Integrated Functional Technologies (GIFT) Research Cluster, Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
3
|
Fonseca N, Thummalapalli SV, Jambhulkar S, Ravichandran D, Zhu Y, Patil D, Thippanna V, Ramanathan A, Xu W, Guo S, Ko H, Fagade M, Kannan AM, Nian Q, Asadi A, Miquelard-Garnier G, Dmochowska A, Hassan MK, Al-Ejji M, El-Dessouky HM, Stan F, Song K. 3D Printing-Enabled Design and Manufacturing Strategies for Batteries: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302718. [PMID: 37501325 DOI: 10.1002/smll.202302718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Lithium-ion batteries (LIBs) have significantly impacted the daily lives, finding broad applications in various industries such as consumer electronics, electric vehicles, medical devices, aerospace, and power tools. However, they still face issues (i.e., safety due to dendrite propagation, manufacturing cost, random porosities, and basic & planar geometries) that hinder their widespread applications as the demand for LIBs rapidly increases in all sectors due to their high energy and power density values compared to other batteries. Additive manufacturing (AM) is a promising technique for creating precise and programmable structures in energy storage devices. This review first summarizes light, filament, powder, and jetting-based 3D printing methods with the status on current trends and limitations for each AM technology. The paper also delves into 3D printing-enabled electrodes (both anodes and cathodes) and solid-state electrolytes for LIBs, emphasizing the current state-of-the-art materials, manufacturing methods, and properties/performance. Additionally, the current challenges in the AM for electrochemical energy storage (EES) applications, including limited materials, low processing precision, codesign/comanufacturing concepts for complete battery printing, machine learning (ML)/artificial intelligence (AI) for processing optimization and data analysis, environmental risks, and the potential of 4D printing in advanced battery applications, are also presented.
Collapse
Affiliation(s)
- Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Shenghan Guo
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Hyunwoong Ko
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Mofe Fagade
- Mechanical Engineering, School of Engineering for Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Arunchala M Kannan
- Fuel Cell Laboratory, The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Qiong Nian
- School of Engineering for Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85287, USA
| | - Amir Asadi
- Department of Engineering Technology and Industrial Distribution (ETID), Texas A&M University, College Station, TX, 77843, USA
| | - Guillaume Miquelard-Garnier
- Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, HESAM Universite, 151 Boulevard de l'Hopital, Paris, 75013, France
| | - Anna Dmochowska
- Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, HESAM Universite, 151 Boulevard de l'Hopital, Paris, 75013, France
| | - Mohammad K Hassan
- Center for Advanced Materials, Qatar University, P.O. BOX 2713, Doha, Qatar
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, P.O. BOX 2713, Doha, Qatar
| | - Hassan M El-Dessouky
- Physics Department, Faculty of Science, Galala University, Galala City, 43511, Egypt
- Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Felicia Stan
- Center of Excellence Polymer Processing & Faculty of Engineering, Dunarea de Jos University of Galati, 47 Domneasca Street, Galati, 800008, Romania
| | - Kenan Song
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
- Mechanical Engineering, University of Georgia, 302 E. Campus Rd, Athens, Georgia, 30602, United States
| |
Collapse
|
4
|
Xia C, Luo Y, Bin X, Gao B, Que W. Rational design of flower-like MnO 2/Ti 3C 2T xcomposite electrode for high performance supercapacitors. NANOTECHNOLOGY 2023; 34:255602. [PMID: 36962973 DOI: 10.1088/1361-6528/acc744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Combining the new two-dimensional conductive MXene with transition metal oxide to build composite structure is a promising path to improve the conductivity of metal oxide. However, a critical challenge still remains in how to achieve a good combination of MXene and metal oxide. Herein, we develop a facile hydrothermal route to synthesize the MnO2/Ti3C2Txcomposite electrode for supercapacitors by synergistically coupling MnO2nanowires with Ti3C2TxMXene nanoflakes. Compared with the pure MnO2electrode, the morphology of the MnO2/Ti3C2Txcomposite electrode changes from nanowires to nanoflowers. Moreover, the overall conductivity and electrochemical performance of the composite electrode are greatly improved due to an addition of Ti3C2TxMXene. The specific capacitance of the MnO2/Ti3C2Txcomposite electrode achieves 210.8 F·g-1at a scan rate of 2 mV·s-1, while that of the pure MnO2electrode is only 55.2 F·g-1. Furthermore, the specific capacitance of the MnO2/Ti3C2Txcomposite electrode still can remain at 97.2% even after 10 000 charge-discharge cycles, revealing an excellent cycle stability. The synthesis strategy of this work can pave the way for the research and practical application of the electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Chenji Xia
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Yijia Luo
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Xiaoqing Bin
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Bowen Gao
- School of Mechanical and Construction Engineering, Taishan University, Tai'an 271021, Shandong, People's Republic of China
| | - Wenxiu Que
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| |
Collapse
|
5
|
Ge C, Mao C, Zhao J, Li G, Yang L, Wu Q, Wang X, Hu Z. Enhancing cation storage performance of layered double hydroxides by increasing the interlayer distance. J Chem Phys 2023; 158:094703. [PMID: 36889975 DOI: 10.1063/5.0139389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Layered double hydroxides (LDH) can be transformed from alkaline supercapacitor material into metal-cation storage cathode working in neutral electrolytes through electrochemical activation. However, the rate performance for storing large cations is restricted by the small interlayer distance of LDH. Herein, the interlayer distance of NiCo-LDH is expanded by replacing the interlayer nitrate ions with 1,4-benzenedicarboxylic anions (BDC), leading to the enhanced rate performance for storing large cations (Na+, Mg2+, and Zn2+), whereas almost the unchanged one for storing small-radius Li+ ions. The improved rate performance of the BDC-pillared LDH (LDH-BDC) stems from the reduced charge-transfer and Warburg resistances during charge/discharge due to the increased interlayer distance, as revealed by in situ electrochemical impedance spectra. The asymmetric zinc-ion supercapacitor assembled with LDH-BDC and activated carbon presents high energy density and cycling stability. This study demonstrates an effective strategy to improve the large cation storage performance of LDH electrodes by increasing the interlayer distance.
Collapse
Affiliation(s)
- Chengxuan Ge
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chenghui Mao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Zhao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guochang Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Riaz A, Tahir MB, ur Rehman J, Sagir M, Yousef ES, Alrobei H, Alzaid M. Tailoring 2D carbides and nitrides based photo-catalytic nanomaterials for energy production and storage: a review. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
2D carbides and nitrides-based nanomaterials because of their unusual physical and chemical properties and a vast range of energy-storage applications have attracted tremendous attention. However, 2D carbides and nitrides-based nanomaterials and their corresponding composites have many intrinsic constraints in terms of energy-storage applications. The nano-engineering of these 2D materials is widely investigated, to improve their performance for practical application. In this Review article, the current progress and research on 2D carbides and nitrides-based nanostructures are presented and debated, concentrating on their methods of preparation, and energy conservation applications for example Lithium-ion-battery, supercapacitors, and Sodium-ion-battery. In conclusion, the problems, and recommendations essential to be discussed for the progress of these 2D nanomaterials for energy-storage applications based on carbides and nitrides are displayed.
Collapse
Affiliation(s)
- Asma Riaz
- Institute of Physics, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
| | - Muhammad Bilal Tahir
- Institute of Physics, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
- Center for Innovative Material Research , Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
| | - Jalil ur Rehman
- Institute of Physics, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
| | - Muhammad Sagir
- Institute of Chemical Engineering, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
| | - El Sayed Yousef
- Research Center for Advanced Materials Science (RCAMS) , King Khalid University , Abha 61413, P. O. Box 9004 , Saudi Arabia
- Physics Dep., Faculty of Science , King Khalid University , P. O. Box 9004 , Abha , Saudi Arabia
| | - Hussein Alrobei
- Department of Mechanical Engineering, College of Engineering , Prince Sattam Bin Abdulaziz University , Al Kharj , Saudi Arabia
| | - Meshal Alzaid
- Physics Department, College of Science , Jouf University , P.O. Box: 2014 , Sakaka , Saudi Arabia
| |
Collapse
|
7
|
Xu T, Wang Y, Xiong Z, Wang Y, Zhou Y, Li X. A Rising 2D Star: Novel MBenes with Excellent Performance in Energy Conversion and Storage. NANO-MICRO LETTERS 2022; 15:6. [PMID: 36472760 PMCID: PMC9727130 DOI: 10.1007/s40820-022-00976-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
As a flourishing member of the two-dimensional (2D) nanomaterial family, MXenes have shown great potential in various research areas. In recent years, the continued growth of interest in MXene derivatives, 2D transition metal borides (MBenes), has contributed to the emergence of this 2D material as a latecomer. Due to the excellent electrical conductivity, mechanical properties and electrical properties, thus MBenes attract more researchers' interest. Extensive experimental and theoretical studies have shown that they have exciting energy conversion and electrochemical storage potential. However, a comprehensive and systematic review of MBenes applications has not been available so far. For this reason, we present a comprehensive summary of recent advances in MBenes research. We started by summarizing the latest fabrication routes and excellent properties of MBenes. The focus will then turn to their exciting potential for energy storage and conversion. Finally, a brief summary of the challenges and opportunities for MBenes in future practical applications is presented.
Collapse
Affiliation(s)
- Tianjie Xu
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yitong Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yujin Zhou
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
- Center for International Cooperation On Designer Low-Carbon and Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
8
|
Wu M, Zheng W, Hu X, Zhan F, He Q, Wang H, Zhang Q, Chen L. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal-Ion Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205101. [PMID: 36285775 DOI: 10.1002/smll.202205101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The design and development of advanced energy storage devices with good energy/power densities and remarkable cycle life has long been a research hotspot. Metal-ion hybrid capacitors (MHCs) are considered as emerging and highly prospective candidates deriving from the integrated merits of metal-ion batteries with high energy density and supercapacitors with excellent power output and cycling stability. The realization of high-performance MHCs needs to conquer the inevitable imbalance in reaction kinetics between anode and cathode with different energy storage mechanisms. Featured by large specific surface area, short ion diffusion distance, ameliorated in-plane charge transport kinetics, and tunable surface and/or interlayer structures, 2D nanomaterials provide a promising platform for manufacturing battery-type electrodes with improved rate capability and capacitor-type electrodes with high capacity. In this article, the fundamental science of 2D nanomaterials and MHCs is first presented in detail, and then the performance optimization strategies from electrodes and electrolytes of MHCs are summarized. Next, the most recent progress in the application of 2D nanomaterials in monovalent and multivalent MHCs is dealt with. Furthermore, the energy storage mechanism of 2D electrode materials is deeply explored by advanced characterization techniques. Finally, the opportunities and challenges of 2D nanomaterials-based MHCs are prospected.
Collapse
Affiliation(s)
- Mengcheng Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Wanying Zheng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Xi Hu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R., 999077, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
9
|
Subramanyan K, Chen S, Li N, Ma T, Liu Y, Chandrasekaran S, Aravindan V. Multi-layered MXene V4C3T as New Low-Voltage Insertion Anode for Na-ion Battery Applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Zhao S, Wang X, Kurra N, Gogotsi Y, Gao Y. Effect of pinholes in Nb4C3 MXene sheets on its electrochemical behavior in aqueous electrolytes. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
11
|
MXenes in aqueous electrochemical energy systems. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Baig MM, Gul IH, Baig SM, Shahzad F. 2D MXenes: Synthesis, properties, and electrochemical energy storage for supercapacitors – A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115920] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Ren S, Xu JL, Cheng L, Gao X, Wang SD. Amine-Assisted Delaminated 2D Ti 3C 2T x MXenes for High Specific Capacitance in Neutral Aqueous Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35878-35888. [PMID: 34297521 DOI: 10.1021/acsami.1c06161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical capacitors using neutral aqueous electrolytes are safer and cheaper and allow diverse current collectors compared with the counterparts using organic or acidic/alkaline electrolytes. Two-dimensional (2D) MXenes have been demonstrated as the high-capacitive materials with high rate performance. However, MXene electrodes often exhibit a limited capacitance in neutral electrolytes, where the reversible electrochemical reactions rely greatly on the structural and surface properties of MXenes depending on their synthesis methods. Herein, a simple and highly efficient strategy, which combines HF etching of Ti3AlC2 powder and subsequent amine-assisted delamination at a low temperature, is developed to synthesize 2D Ti3C2Tx MXenes. The comprehensive results demonstrate that the enlarged interlayer spacing and the presence of more -O-containing functional groups synergistically contribute to the improvement of capacitive performance in neutral electrolytes. The 2D Ti3C2Tx MXenes show excellent electrochemical performance in various neutral electrolytes, and a high specific gravimetric capacitance of 149.8 F/g is achieved in 1.0 M Li2SO4. Furthermore, the flexible solid-state supercapacitors (SCs) with a neutral PVA/LiCl gel electrolyte possess a superior areal capacitance (163.1 mF/cm2) and high energy density (17.6 μWh/cm2 at 0.07 mW/cm2), together with high user safety. This work provides a promising guideline of synthesis strategy for high-capacitive MXenes used in neutral electrolytes, which may promote the development of safe and flexible power sources with a high energy density.
Collapse
Affiliation(s)
- Shan Ren
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jian-Long Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xu Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Sui-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa, Macau SAR 999078, P. R. China
| |
Collapse
|
14
|
Ma P, Fang D, Liu Y, Shang Y, Shi Y, Yang HY. MXene-Based Materials for Electrochemical Sodium-Ion Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003185. [PMID: 34105289 PMCID: PMC8188191 DOI: 10.1002/advs.202003185] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Indexed: 05/05/2023]
Abstract
Advanced architecture and rational design of electrode materials for electrochemical sodium-ion storage are well developed by researchers worldwide. MXene-based materials are considered as one of the most potential electrode materials for sodium-ion-based devices, such as sodium-ion batteries (SIBs), sodium-sulfur batteries (SSBs), and sodium-ion capacitors (SICs), because of the excellent physicochemical characteristics of MXenes. Here, in this review, the recent research work and progress, both theoretical and experimental, on MXene-based materials including pure MXenes and MXene-based composites in application of SIBs, SSBs, and SICs are comprehensively summarized. The sodium storage mechanisms and the effective methods to enhance the electrochemical performance are also discussed. Finally, the current critical challenges and future research directions on the development of these MXene-based materials for electrochemical sodium-ion storage are presented.
Collapse
Affiliation(s)
- Pin Ma
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
- Pillar of Engineering Product DevelopmentSingapore University of Technology and Design8 Somapah RoadSingapore487372Singapore
| | - Daliang Fang
- Pillar of Engineering Product DevelopmentSingapore University of Technology and Design8 Somapah RoadSingapore487372Singapore
| | - Yilin Liu
- Pillar of Engineering Product DevelopmentSingapore University of Technology and Design8 Somapah RoadSingapore487372Singapore
| | - Yang Shang
- Pillar of Engineering Product DevelopmentSingapore University of Technology and Design8 Somapah RoadSingapore487372Singapore
| | - Yumeng Shi
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
- Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Hui Ying Yang
- Pillar of Engineering Product DevelopmentSingapore University of Technology and Design8 Somapah RoadSingapore487372Singapore
| |
Collapse
|
15
|
Xiang J, Zhang P, Lv S, Ma Y, Zhao Q, Sui Y, Ye Y, Qin C. Spinel LiMn 2O 4 nanoparticles fabricated by the flexible soft template/Pichini method as cathode materials for aqueous lithium-ion capacitors with high energy and power density. RSC Adv 2021; 11:14891-14898. [PMID: 35424028 PMCID: PMC8698631 DOI: 10.1039/d0ra07823a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Spinel LiMn2O4 (LMO) with a three-dimensional structure has become one of the cathode materials that has gained the most interest due to its safety, low price and abundant resources. However, the lithium ion transmission is limited by large particle size and particle agglomeration of LMO. Thus, reducing the particle size and agglomeration of LMO can effectively improve its lithium ion transmission. Here, we synthesized a LMO cathode material with a nanoscale crystal size using the flexible expanded graphite (EG) soft template and Pichini method. EG-controlled particle size and particle agglomeration of LMO is conducive to charge transfer and diffusion of lithium ions between LMO and the electrolyte, meanwhile, there are more redox sites on the nanosized LMO particles, which makes the redox reaction of LMO more thorough during the charge and discharge process, resulting in high capacitance performance. In order to obtain the considerably required lithium-ion capacitors (LICs) with high energy density and power density, we assembled aqueous LMO//activated carbon (AC) LICs with 5 M LiNO3 as the aqueous electrolytes, which are environmentally friendly, safe, low cost and have higher electrical conductivity than organic electrolytes. The optimal LIC has an energy density of 32.63 W h kg-1 at a power density of 500 W kg-1 and an energy density of 8.06 W h kg-1 at a power density of 10 000 W kg-1, which is higher than most of the LMO-based LICs in previous reports. After 2000 cycles, the specific capacitance retention rate was 75.9% at a current density of 3 A g-1. Therefore, our aqueous LMO//AC LICs synthesized by the soft template/Pichini method have wide prospects and are suitable for low-cost, high-safety and high-power applications.
Collapse
Affiliation(s)
- Junyu Xiang
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Pengxue Zhang
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Shixian Lv
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Yongjun Ma
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Qi Zhao
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Yan Sui
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Yuncheng Ye
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Chuanli Qin
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| |
Collapse
|
16
|
Kumar S, Kang D, Hong H, Rehman MA, Lee YJ, Lee N, Seo Y. Effect of Ti 3C 2T x MXenes etched at elevated temperatures using concentrated acid on binder-free supercapacitors. RSC Adv 2020; 10:41837-41845. [PMID: 35516536 PMCID: PMC9057861 DOI: 10.1039/d0ra05376g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/27/2020] [Indexed: 01/03/2023] Open
Abstract
The effect of Ti3C2T x MXene etched at different temperatures (25 °C, 50 °C, and 80 °C) on the capacitance of supercapacitors without the use of conducting carbon-black or a binder was studied. The MXene etched using concentrated HCl acid (12 M)/LiF was used as an active electrode and Ni-foil as a current collector. It was observed that the elevated etching temperature facilitates the etching of the MAX phase and the exfoliation of MXene layers. However, this led to the formation of additional functional groups at the MXene surface as the temperature was increased to 80 °C. The specific capacitance of Ti3C2T x -based supercapacitors increased from 581 F g-1 for MXene etched at 25 °C to 657 F g-1 for those etched at 50 °C at the scan rate of 2 mV s-1. However, the specific capacitance reduced to 421 F g-1 as the etching temperature was increased to 80 °C at the same scan rate. The supercapacitors based on MXenes etched at the intermediate temperature (50 °C) exhibited higher specific capacitance in a wide range of scan rate, symmetry in charge/discharge curves, high cyclic stability at a scan rate of 1000 mV s-1 for up to 3000 cycles. The electrochemical impedance spectroscopy studies indicated low series resistance, reduced charge-transfer resistance, and decreased Warburg impedance for the supercapacitor based on the MXene etched at the intermediate temperature.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 South Korea
- HMC, Sejong University Seoul 05006 South Korea
| | - Dongwoon Kang
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 South Korea
| | - Hyeryeon Hong
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 South Korea
| | - Malik Abdul Rehman
- Department of Materials Science and Engineering, Yonsei University Seoul 03722 South Korea
| | - Yeon-Jae Lee
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 South Korea
| | - Naesung Lee
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 South Korea
- HMC, Sejong University Seoul 05006 South Korea
| | - Yongho Seo
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 South Korea
- HMC, Sejong University Seoul 05006 South Korea
| |
Collapse
|
17
|
Yuan J, Hu X, Liu Y, Zhong G, Yu B, Wen Z. Recent progress in sodium/potassium hybrid capacitors. Chem Commun (Camb) 2020; 56:13933-13949. [PMID: 33111735 DOI: 10.1039/d0cc05476c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal ion hybrid capacitors (MIHCs) have been recognized as one of the most promising power sources owing to their combined merits of high energy density in batteries and high power output in supercapacitors. The kinetics mismatch between the capacitor-type cathode and battery-type anode yet must be well addressed before implementing their practical feasibility. Here, we overview the recent progress in sodium and potassium ion hybrid capacitors (SIHCs and PIHCs) and discuss the major challenges and give an outlook on the future directions in this field. The fundamental knowledge and the history will be firstly introduced, and special emphasis is then laid on the development of a variety of electrode materials in recent years. The prospects of future research of MIHCs are finally proposed towards their practical applications. We wish that this feature article can not only educate newcomers starting their reasearch in this field, but also inspire experieced researchers to contribute to the development of high-performance MIHC devices.
Collapse
Affiliation(s)
- Jun Yuan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | | | | | | | | | | |
Collapse
|
18
|
Transition Metal Carbides (TMCs) Catalysts for Gas Phase CO2 Upgrading Reactions: A Comprehensive Overview. Catalysts 2020. [DOI: 10.3390/catal10090955] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Increasing demand for CO2 utilization reactions and the stable character of CO2 have motivated interest in developing highly active, selective and stable catalysts. Precious metal catalysts have been studied extensively due to their high activities, but their implementation for industrial applications is hindered due to their elevated cost. Among the materials which have comparatively low prices, transition metal carbides (TMCs) are deemed to display catalytic properties similar to Pt-group metals (Ru, Rh, Pd, Ir, Pt) in several reactions such as hydrogenation and dehydrogenation processes. In addition, they are excellent substrates to disperse metallic particles. Hence, the unique properties of TMCs make them ideal substitutes for precious metals resulting in promising catalysts for CO2 utilization reactions. This work aims to provide a comprehensive overview of recent advances on TMCs catalysts towards gas phase CO2 utilization processes, such as CO2 methanation, reverse water gas shift (rWGS) and dry reforming of methane (DRM). We have carefully analyzed synthesis procedures, performances and limitations of different TMCs catalysts. Insights on material characteristics such as crystal structure and surface chemistry and their connection with the catalytic activity are also critically reviewed.
Collapse
|
19
|
Aslam MK, Xu M. A Mini-Review: MXene composites for sodium/potassium-ion batteries. NANOSCALE 2020; 12:15993-16007. [PMID: 32700717 DOI: 10.1039/d0nr04111d] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
MXenes, as a new type of two-dimensional layered structure material, have attracted much attention. MXenes have high electronic conductivity, a large specific area, excellent mechanical properties and a unique layered structure and have been extensively used in energy storage, adsorption, catalysis and other fields. In recent years, Mxenes and their composite materials have been widely used in the field of secondary batteries. Although oxides, sulfides and other materials have high capacity, there are problems such as low conductivity, volume expansion in the reaction process, poor cycling stability, etc. Therefore, building composite materials with MXenes can not only improve the capacity but also enhance the electronic conductivity of the materials, effectively alleviate volume expansion in the reaction process, and achieve better electrochemical performance. This article reviews the latest research status of MXenes, the synthesis methods, properties and application of MXenes and their composite materials in sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs), briefly introduces the research background of SIBs, PIBs and MXenes, and focuses on the application research of MXene composite materials in SIBs and PIBs, including classification according to sulfide, oxide and carbon materials. Finally, the development and application prospects of MXenes and their composite materials are summarized.
Collapse
Affiliation(s)
- Muhammad Kashif Aslam
- Institute for Clean energy and Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China and Key Laboratory for Advance Materials and Technologies of Clean Energies, Chongqing 400715, PR China.
| | - Maowen Xu
- Institute for Clean energy and Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China and Key Laboratory for Advance Materials and Technologies of Clean Energies, Chongqing 400715, PR China.
| |
Collapse
|
20
|
Shi W, Gao X, Mao J, Qian X, Liu W, Wu F, Li H, Zeng Z, Shen J, Cao X. Exploration of Energy Storage Materials for Water Desalination via Next-Generation Capacitive Deionization. Front Chem 2020; 8:415. [PMID: 32500060 PMCID: PMC7242748 DOI: 10.3389/fchem.2020.00415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/21/2020] [Indexed: 11/13/2022] Open
Abstract
Clean energy and environmental protection are critical to the sustainable development of human society. The numerous emerged electrode materials for energy storage devices offer opportunities for the development of capacitive deionization (CDI), which is considered as a promising water treatment technology with advantages of low cost, high energy efficiency, and wide application. Conventional CDI based on porous carbon electrode has low salt removal capacity which limits its application in high salinity brine. Recently, the faradaic electrode materials inspired by the researches of sodium-batteries appear to be attractive candidates for next-generation CDI which capture ions by the intercalation or redox reactions in the bulk of electrode. In this mini review, we summarize the recent advances in the development of various faradaic materials as CDI electrodes with the discussion of possible strategies to address the problems present.
Collapse
Affiliation(s)
- Wenhui Shi
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Xinlong Gao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jing Mao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xin Qian
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Wenxian Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Fangfang Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Haibo Li
- Ningxia Key Lab Photovolta Material, Ningxia University, Yinchuan, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jiangnan Shen
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Xiehong Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Zhang H, Hu M, Lv Q, Huang ZH, Kang F, Lv R. Advanced Materials for Sodium-Ion Capacitors with Superior Energy-Power Properties: Progress and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902843. [PMID: 31550082 DOI: 10.1002/smll.201902843] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/11/2019] [Indexed: 06/10/2023]
Abstract
Developing electrochemical energy storage devices with high energy-power densities, long cycling life, as well as low cost is of great significance. Sodium-ion capacitors (NICs), with Na+ as carriers, are composed of a high capacity battery-type electrode and a high rate capacitive electrode. However, unlike their lithium-ion analogues, the research on NICs is still in its infancy. Rational material designs still need to be developed to meet the increasing requirements for NICs with superior energy-power performance and low cost. In the past few years, various materials have been explored to develop NICs with the merits of superior electrochemical performance, low cost, good stability, and environmental friendliness. Here, the material design strategies for sodium-ion capacitors are summarized, with focus on cathode materials, anode materials, and electrolytes. The challenges and opportunities ahead for the future research on materials for NICs are also proposed.
Collapse
Affiliation(s)
- Hongwei Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingxiang Hu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Qian Lv
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Zheng-Hong Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Feiyu Kang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Ruitao Lv
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
22
|
Nitrogen Doped Intercalation TiO 2/TiN/Ti 3C 2T x Nanocomposite Electrodes with Enhanced Pseudocapacitance. NANOMATERIALS 2020; 10:nano10020345. [PMID: 32085408 PMCID: PMC7075139 DOI: 10.3390/nano10020345] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 11/17/2022]
Abstract
Layered two-dimensional titanium carbide (Ti3C2Tx), as an outstanding MXene member, has captured increasing attention in supercapacitor applications due to its excellent chemical and physical properties. However, the low gravimetric capacitance of Ti3C2Tx restricts its rapid development in such applications. Herein, this work demonstrates an effective and facile hydrothermal approach to synthesize nitrogen doped intercalation TiO2/TiN/Ti3C2Tx with greatly improved gravimetric capacitance and excellent cycling stability. The hexamethylenetetramine (C6H12N4) in hydrothermal environment acted as the nitrogen source and intercalants, while the Ti3C2Tx itself was the titanium source of TiO2 and TiN. We tested the optimized nitrogen doped intercalation TiO2/TiN/Ti3C2Tx electrodes in H2SO4, Li2SO4, Na2SO4, LiOH and KOH electrolytes, respectively. The electrode in H2SO4 electrolyte delivered the best electrochemical performance with high gravimetric capacitance of 361 F g−1 at 1 A g−1 and excellent cycling stability of 85.8% after 10,000 charge/discharge cycles. A systematic study of material characterization combined with the electrochemical performances disclosed that TiO2/TiN nanoparticles, the introduction of nitrogen and the NH4+ intercalation efficaciously increased the specific surface areas, which is beneficial for facilitating electrolyte ions transportation. Given the excellent performance, nitrogen doped intercalation TiO2/TiN/Ti3C2Tx bodes well as a promising pseudocapacitor electrode for energy storage applications.
Collapse
|
23
|
Liu R, Zhang A, Tang J, Tian J, Huang W, Cai J, Barrow C, Yang W, Liu J. Fabrication of Cobaltosic Oxide Nanoparticle-Doped 3 D MXene/Graphene Hybrid Porous Aerogels for All-Solid-State Supercapacitors. Chemistry 2019; 25:5547-5554. [PMID: 30737984 DOI: 10.1002/chem.201806342] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/07/2019] [Indexed: 11/10/2022]
Abstract
MXenes are a new family of 2 D transition metal carbides and nitrides, which have attracted enormous attention in electrochemical energy storage, sensing technology, and catalysis owing to their good conductivity, high specific surface area, and excellent electrochemical properties. In this work, a series of Co3 O4 -doped 3 D MXene/RGO hybrid porous aerogels is designed and prepared through a facile in situ reduction and thermal annealing process, in which the reduced graphene oxide (RGO) conductive network can electrically link the separated Co3 O4 -MXene composite nanosheets, leading to enhanced electronic conductivity. It is found that upon using the Co3 O4 -MXene/RGO hybrid porous aerogel prepared with a mass ratio of Co3 O4 -MXene/RGO of 3:1 (CMR31) as an electrode for a supercapacitor, a superior specific capacitance of 345 F g-1 at the current density of 1 A g-1 is achieved, which is significantly higher than those of Ti3 C2 Tx MXene, RGO, and MXene/RGO electrodes. In addition, a high capacitance retention (85 % of the initial capacitance after 10 000 cycles at a high current density of 3 A g-1 ) and a low internal resistance Rs (0.44 Ω) can be achieved. An all-solid-state asymmetric supercapacitor (ASC) device is assembled using CMR31, and it has the ability to light up a blue LED indicator for 5 min if four ASCs are connected in series. Therefore, these novel Co3 O4 -MXene/RGO hybrid porous aerogels have potential practical applications in high-energy storage devices.
Collapse
Affiliation(s)
- Rui Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, Shandong, P.R. China
| | - Aitang Zhang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, Shandong, P.R. China
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research, for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China
| | - Jinmi Tian
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, Shandong, P.R. China
| | - Weiguo Huang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, Shandong, P.R. China
| | - Jintao Cai
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, Shandong, P.R. China
| | - Colin Barrow
- Biodeakin, School of Life and Environmental Sciences, Deakin University, Victoria-, 3217, Australia
| | - Wenrong Yang
- Biodeakin, School of Life and Environmental Sciences, Deakin University, Victoria-, 3217, Australia
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, Shandong, P.R. China
| |
Collapse
|
24
|
Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu Z, Rummeli MH. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 2019; 48:72-133. [DOI: 10.1039/c8cs00324f] [Citation(s) in RCA: 978] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article provides a comprehensive review of MXene materials and their energy-related applications.
Collapse
Affiliation(s)
- Jinbo Pang
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Institute for Advanced Interdisciplinary Research (iAIR)
- University of Jinan
| | - Rafael G. Mendes
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
| | - Alicja Bachmatiuk
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
| | - Liang Zhao
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
- School of Energy
- Soochow University
- Suzhou
| | - Huy Q. Ta
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
- School of Energy
- Soochow University
- Suzhou
| | - Thomas Gemming
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR)
- University of Jinan
- Jinan 250022
- China
- State Key Laboratory of Crystal Materials
| | - Zhongfan Liu
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
- School of Energy
- Soochow University
- Suzhou
| | - Mark H. Rummeli
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
| |
Collapse
|
25
|
Cao X, Wang L, Chen J, Zheng J. Low-Cost Aqueous Magnesium-Ion Battery Capacitor with Commercial Mn3
O4
and Activated Carbon. ChemElectroChem 2018. [DOI: 10.1002/celc.201800804] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xi Cao
- College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Lulu Wang
- College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Jitao Chen
- College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| |
Collapse
|
26
|
Xiong D, Li X, Bai Z, Lu S. Recent Advances in Layered Ti 3 C 2 T x MXene for Electrochemical Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703419. [PMID: 29399994 DOI: 10.1002/smll.201703419] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/17/2017] [Indexed: 05/20/2023]
Abstract
Ti3 C2 Tx , a typical representative among the emerging family of 2D layered transition metal carbides and/or nitrides referred to as MXenes, has exhibited multiple advantages including metallic conductivity, a plastic layer structure, small band gaps, and the hydrophilic nature of its functionalized surface. As a result, this 2D material is intensively investigated for application in the energy storage field. The composition, morphology and texture, surface chemistry, and structural configuration of Ti3 C2 Tx directly influence its electrochemical performance, e.g., the use of a well-designed 2D Ti3 C2 Tx as a rechargeable battery anode has significantly enhanced battery performance by providing more chemically active interfaces, shortened ion-diffusion lengths, and improved in-plane carrier/charge-transport kinetics. Some recent progresses of Ti3 C2 Tx MXene are achieved in energy storage. This Review summarizes recent advances in the synthesis and electrochemical energy storage applications of Ti3 C2 Tx MXene including supercapacitors, lithium-ion batteries, sodium-ion batteries, and lithium-sulfur batteries. The current opportunities and future challenges of Ti3 C2 Tx MXene are addressed for energy-storage devices. This Review seeks to provide a rational and in-depth understanding of the relation between the electrochemical performance and the nanostructural/chemical composition of Ti3 C2 Tx , which will promote the further development of 2D MXenes in energy-storage applications.
Collapse
Affiliation(s)
- Dongbin Xiong
- Institute of Advanced Electrochemical Energy, Xi'an University of Technology, Xi'an, 710048, China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy, Xi'an University of Technology, Xi'an, 710048, China
- Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, China
| | - Zhimin Bai
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Shigang Lu
- R&D Center for Vehicle Battery and Energy Storage, General Research Institute for Nonferrous Metals, Beijing, 100088, China
| |
Collapse
|