1
|
Wang Y, Wang S, Liu Y, Wang J. Peroxymonosulfate activation by nanocomposites towards the removal of sulfamethoxazole: Performance and mechanism. CHEMOSPHERE 2024; 353:141586. [PMID: 38452980 DOI: 10.1016/j.chemosphere.2024.141586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Heterogeneous activation of peroxomonosulfate (PMS) has been extensively studied for the degradation of antibiotics. The cobalt ferrite spinel exhibits good activity in the PMS activation, but suffers from the disadvantage of low PMS utilization efficiency. Herein, the nanocomposites including FeS, CoS2, CoFe2O4 and Fe2O3 were synthesized by hydrothermal method and used for the first time to activate PMS for the removal of sulfamethoxazole (SMX). The nanocomposites showed superior catalytic activity in which the SMX could be completely removed at 40 min, 0.1 g L-1 nanocomposites and 0.4 mM PMS with the first order kinetic constant of 0.2739 min-1. The PMS utilization efficiency was increased by 29.4% compared to CoFe2O4. Both radicals and non-radicals contributed to the SMX degradation in which high-valent metal oxo dominated. The mechanism analysis indicated that sulfur modification, on one hand, enhanced the adsorption of nanocomposites for PMS, and promoted the redox cycles of Fe2+/Fe3+ and Co2+/Co3+ on the other hand. This study provides new way to enhance the catalytic activity and PMS utilization efficiency of spinel cobalt ferrite.
Collapse
Affiliation(s)
- Yuexinxi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology (INET) Tsinghua University, Beijing 100084, PR China
| | - Shizong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology (INET) Tsinghua University, Beijing 100084, PR China.
| | - Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology (INET) Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory for Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
2
|
Zhou Y, Li Q, Han Q, Zhao L, Liu Y, Wang Y, Li Z, Dong C, Sun X, Yang J, Zhang X, Jiang F. Design of High-Capacity MoS 3 Decorated Nitrogen Doped Carbon Coated Cu 2 S Electrode Structures with Dual Heterogenous Interfaces for Outstanding Sodium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303742. [PMID: 37267931 DOI: 10.1002/smll.202303742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 06/04/2023]
Abstract
The hierarchical Cu2 S@NC@MoS3 heterostructures have been firstly constructed by the high-capacity MoS3 and high-conductive N-doped carbon to co-decorate the Cu2 S hollow nanospheres. During the heterostructure, the middle N-doped carbon layer as the linker facilitates the uniform deposition of MoS3 and enhances the structural stability and electronic conductivity. The popular hollow/porous structures largely restrain the big volume changes of active materials. Due to the cooperative effect of three components, the new Cu2 S@NC@MoS3 heterostructures with dual heterogenous interfaces and small voltage hysteresis for sodium ion storage display a high charge capacity (545 mAh g-1 for 200 cycles at 0.5 A g-1 ), excellent rate capability (424 mAh g-1 at 15 A g-1 ) and ultra-long cyclic life (491 mAh g-1 for 2000 cycles at 3 A g-1 ). Except for the performance test, the reaction mechanism, kinetics analysis, and theoretical calculation have been performed to explain the reason of excellent electrochemical performance of Cu2 S@NC@MoS3 . The rich active sites and rapid Na+ diffusion kinetics of this ternary heterostructure is beneficial to the high efficient sodium storage. The assembled full cell matched with Na3 V2 (PO4 )3 @rGO cathode likewise displays remarkable electrochemical properties. The outstanding sodium storage performances of Cu2 S@NC@MoS3 heterostructures indicate the potential applications in energy storage fields.
Collapse
Affiliation(s)
- Yanli Zhou
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Qiming Li
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Qi Han
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Lanling Zhao
- School of Physics, Shandong University, Jinan, 250100, China
| | - Yan Liu
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Yifei Wang
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Zhiqi Li
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Caifu Dong
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Xueqin Sun
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| | - Jian Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiaoyu Zhang
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, Shandong, 265503, China
| | - Fuyi Jiang
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
3
|
Mu M, Li B, Yu J, Ding J, He H, Li X, Mou J, Yuan J, Liu J. Construction of Porous Carbon Nanosheet/Cu 2S Composites with Enhanced Potassium Storage. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2415. [PMID: 37686924 PMCID: PMC10489898 DOI: 10.3390/nano13172415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Porous C nanosheet/Cu2S composites were prepared using a simple self-template method and vulcanization process. The Cu2S nanoparticles with an average diameter of 140 nm are uniformly distributed on porous carbon nanosheets. When used as the anode of a potassium-ion battery, porous C nanosheet/Cu2S composites exhibit good rate performance and cycle performance (363 mAh g-1 at 0.1 A g-1 after 100 cycles; 120 mAh g-1 at 5 A g-1 after 1000 cycles). The excellent electrochemical performance of porous C nanosheet/Cu2S composites can be ascribed to their unique structure, which can restrain the volume change of Cu2S during the charge/discharge processes, increase the contact area between the electrode and the electrolyte, and improve the electron/ionic conductivity of the electrode material.
Collapse
Affiliation(s)
- Meiqi Mu
- College of Physics and Electronics, Gannan Normal University, Ganzhou 341000, China; (M.M.); (J.Y.); (J.D.); (X.L.); (J.M.)
| | - Bin Li
- Ganzhou Jirui New Energy Technology Co., Ltd., Ganzhou 341000, China;
| | - Jing Yu
- College of Physics and Electronics, Gannan Normal University, Ganzhou 341000, China; (M.M.); (J.Y.); (J.D.); (X.L.); (J.M.)
| | - Jie Ding
- College of Physics and Electronics, Gannan Normal University, Ganzhou 341000, China; (M.M.); (J.Y.); (J.D.); (X.L.); (J.M.)
| | - Haishan He
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China;
| | - Xiaokang Li
- College of Physics and Electronics, Gannan Normal University, Ganzhou 341000, China; (M.M.); (J.Y.); (J.D.); (X.L.); (J.M.)
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China;
| | - Jirong Mou
- College of Physics and Electronics, Gannan Normal University, Ganzhou 341000, China; (M.M.); (J.Y.); (J.D.); (X.L.); (J.M.)
| | - Jujun Yuan
- College of Physics and Electronics, Gannan Normal University, Ganzhou 341000, China; (M.M.); (J.Y.); (J.D.); (X.L.); (J.M.)
| | - Jun Liu
- College of Physics and Electronics, Gannan Normal University, Ganzhou 341000, China; (M.M.); (J.Y.); (J.D.); (X.L.); (J.M.)
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
4
|
Dong Z, Wu X, Cai DK, Mao Q, Huang KJ, Wang L, Xu J. Interlayer-expanded MoS2@C hollow nanorods for enhanced sodium storage. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Recent Advancements in Chalcogenides for Electrochemical Energy Storage Applications. ENERGIES 2022. [DOI: 10.3390/en15114052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy storage has become increasingly important as a study area in recent decades. A growing number of academics are focusing their attention on developing and researching innovative materials for use in energy storage systems to promote sustainable development goals. This is due to the finite supply of traditional energy sources, such as oil, coal, and natural gas, and escalating regional tensions. Because of these issues, sustainable renewable energy sources have been touted as an alternative to nonrenewable fuels. Deployment of renewable energy sources requires efficient and reliable energy storage devices due to their intermittent nature. High-performance electrochemical energy storage technologies with high power and energy densities are heralded to be the next-generation storage devices. Transition metal chalcogenides (TMCs) have sparked interest among electrode materials because of their intriguing electrochemical properties. Researchers have revealed a variety of modifications to improve their electrochemical performance in energy storage. However, a stronger link between the type of change and the resulting electrochemical performance is still desired. This review examines the synthesis of chalcogenides for electrochemical energy storage devices, their limitations, and the importance of the modification method, followed by a detailed discussion of several modification procedures and how they have helped to improve their electrochemical performance. We also discussed chalcogenides and their composites in batteries and supercapacitors applications. Furthermore, this review discusses the subject’s current challenges as well as potential future opportunities.
Collapse
|
6
|
Dutta DP, Pathak DD, Abraham S, Ravuri BR. An insight into the sodium-ion and lithium-ion storage properties of CuS/graphitic carbon nitride nanocomposite. RSC Adv 2022; 12:12383-12395. [PMID: 35480375 PMCID: PMC9036675 DOI: 10.1039/d2ra02014a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Metal sulfides are gaining prominence as conversion anode materials for lithium/sodium ion batteries due to their higher specific capacities but suffers from low stability and reversibility issues. In this work, the electrochemical properties of CuS anode material has been successfully enhanced by its composite formation using graphitic carbon nitride (g-C3N4). The CuS nanoparticles are distributed evenly in the exfoliated g-C3N4 matrix rendering higher electronic conductivity and space for volume alterations during the repeated discharge/charge cycles. The 0.8CuS:0.2g-C3N4 composite when used as an anode for lithium ion coin cell exhibits a reversible capacity of 478.4 mA h g-1 at a current rate of 2.0 A g-1 after a run of 1000 cycles which is better than that reported for CuS composites with any other carbon-based matrix. The performance is equally impressive when 0.8CuS:0.2g-C3N4 composite is used as an anode in a sodium ion coin cell and a reversible capacity of 408 mA h g-1 is obtained at a current rate of 2.0 A g-1 after a run of 800 cycles. A sodium ion full cell with NVP cathode and 0.8CuS:0.2g-C3N4 composite anode has been fabricated and cycled for 100 runs at a current rate of 0.1 A g-1. It can be inferred that the g-C3N4 matrix improves the ion transfer properties, alleviates the volume alteration happening in the anode during the discharge/charge process and also helps in preventing the leaching of polysulfides generated during the electrochemical process.
Collapse
Affiliation(s)
- Dimple P Dutta
- Chemistry Division, Bhabha Atomic Research Centre Mumbai 400 085 India +91-25592308
- Homi Bhabha National Institute Mumbai 400094 India
| | - Dipa D Pathak
- Chemistry Division, Bhabha Atomic Research Centre Mumbai 400 085 India +91-25592308
| | - Sebin Abraham
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal 462066 India
| | - Balaji R Ravuri
- Department of Physics, School of Science, GITAM Deemed to be University Hyderabad 502329 India
| |
Collapse
|
7
|
Jiang Y, Gu Y, Liu J, Guo B, Zhao L. Copper nanowire-derived one-dimensional hollow copper sulfides as electrode materials for sodium-ion batteries. CrystEngComm 2022. [DOI: 10.1039/d2ce00245k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-dimensional (1D) hollow CuxS nanotubes were obtained via a sacrificial template diffusion process by immersing 1D copper nanowires in thiourea solution. This structure exhibited excellent cycling stability when used as an electrode material for sodium-ion battery.
Collapse
Affiliation(s)
- Yutao Jiang
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Yarong Gu
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Jinfeng Liu
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Bingkun Guo
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Lijuan Zhao
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
8
|
Senkale S, Cibin G, Chadwick AV, Bensch W. Synthetically Produced Isocubanite as an Anode Material for Sodium-Ion Batteries: Understanding the Reaction Mechanism During Sodium Uptake and Release. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58552-58565. [PMID: 34846121 DOI: 10.1021/acsami.1c16814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bulk isocubanite (CuFe2S3) was synthesized via a multistep high-temperature synthesis and was investigated as an anode material for sodium-ion batteries. CuFe2S3 exhibits an excellent electrochemical performance with a capacity retention of 422 mA h g-1 for more than 1000 cycles at a current rate of 0.5 A g-1 (0.85 C). The complex reaction mechanism of the first cycle was investigated via PXRD and X-ray absorption spectroscopy. At the early stages of Na uptake, CuFe2S3 is converted to form crystalline CuFeS2 and nanocrystalline NaFe1.5S2 simultaneously. By increasing the Na content, Cu+ is reduced to nanocrystalline Cu, followed by the reduction of Fe2+ to amorphous Fe0 while reflections of nanocrystalline Na2S appear. During charging up to -5 Na/f.u., the intermediate NaFe1.5S2 appears again, which transforms in the last step of charging to a new unknown phase. This unknown phase together with NaFe1.5S2 plays a key role in the mechanism for the following cycles, evidenced by the PXRD investigation of the second cycle. Even after 400 cycles, the occurrence of nanocrystalline phases made it possible to gain insights into the alteration of the mechanism, which shows that CuxS phases play an important role in the region of constant specific capacity.
Collapse
Affiliation(s)
- Svenja Senkale
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany
| | - Giannantonio Cibin
- Diamond Light Source (DLS), Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Alan V Chadwick
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury CT2 7NH, U.K
| | - Wolfgang Bensch
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Str. 2, 24118 Kiel, Germany
| |
Collapse
|
9
|
Tian G, Huang C, Luo X, Zhao Z, Peng Y, Gao Y, Tang N, Dsoke S. Study of the Lithium Storage Mechanism of N-Doped Carbon-Modified Cu 2 S Electrodes for Lithium-Ion Batteries. Chemistry 2021; 27:13774-13782. [PMID: 34318954 PMCID: PMC9400886 DOI: 10.1002/chem.202101818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/03/2022]
Abstract
Owing to their high specific capacity and abundant reserve, CuxS compounds are promising electrode materials for lithium‐ion batteries (LIBs). Carbon compositing could stabilize the CuxS structure and repress capacity fading during the electrochemical cycling, but the corresponding Li+ storage mechanism and stabilization effect should be further clarified. In this study, nanoscale Cu2S was synthesized by CuS co‐precipitation and thermal reduction with polyelectrolytes. High‐temperature synchrotron radiation diffraction was used to monitor the thermal reduction process. During the first cycle, the conversion mechanism upon lithium storage in the Cu2S/carbon was elucidated by operando synchrotron radiation diffraction and in situ X‐ray absorption spectroscopy. The N‐doped carbon‐composited Cu2S (Cu2S/C) exhibits an initial discharge capacity of 425 mAh g−1 at 0.1 A g−1, with a higher, long‐term capacity of 523 mAh g−1 at 0.1 A g−1 after 200 cycles; in contrast, the bare CuS electrode exhibits 123 mAh g−1 after 200 cycles. Multiple‐scan cyclic voltammetry proves that extra Li+ storage can mainly be ascribed to the contribution of the capacitive storage.
Collapse
Affiliation(s)
- Guiying Tian
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China.,Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Chuanfeng Huang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Xianlin Luo
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zijian Zhao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Yong Peng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Yuqin Gao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Na Tang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 13th-Avenue 29, TEDA, 300457, Tianjin, P. R. China
| | - Sonia Dsoke
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany
| |
Collapse
|
10
|
Bereketova A, Nallal M, Yusuf M, Jang S, Selvam K, Park KH. A Co-MOF-derived flower-like CoS@S,N-doped carbon matrix for highly efficient overall water splitting. RSC Adv 2021; 11:16823-16833. [PMID: 35479180 PMCID: PMC9032129 DOI: 10.1039/d1ra01883c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
In this study, we constructed a highly effective, low-cost, non-noble-metal-based electrocatalyst to replace Pt catalysts, with a CoS@SNC catalyst being successfully synthesized. The obtained nanocatalyst was characterized via scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, powder X-ray diffraction studies, and X-ray photoelectron spectroscopy. Herein, an initially prepared N-containing Co MOF formed flower-like particles, which were obtained via a solvothermal method; further it was used for a sulfuration process as a template to achieve an S,N (heteroatom)-doped carbon electrocatalyst with embedded CoS (CoS@SNC). The synthesized flower-like CoS@SNC electrocatalyst derived from a novel MOF showed a uniform distribution of Co, S, N, and C at the molecular level in the MOF and it was rich in active sites, facilitating enhanced electrocatalytic performance. During the HER and OER in 0.1 M KOH solution, to reach a current density of 10 mA cm−2, lower overpotentials of −65 mV and 265 mV, respectively, were required and Tafel slopes of 47 mV dec−1 and 59.8 mV dec−1, respectively, were seen. In addition, due to a synergistic effect between CoS and the S,N-doped carbon matrix, long-term durability and stability were obtained. This facile synthetic strategy, which is also environmentally favorable, produces a promising bifunctional electrocatalyst. In this study, we constructed a highly effective, low-cost, non-noble-metal-based electrocatalyst to replace Pt catalysts, with a CoS@SNC catalyst being successfully synthesized.![]()
Collapse
Affiliation(s)
- Akerke Bereketova
- Department of Chemistry, Pusan National University Busan 46241 Republic of Korea
| | - Muthuchamy Nallal
- Department of Chemistry, Pusan National University Busan 46241 Republic of Korea .,College of Physics and Optoelectronic Engineering, Shenzhen University 1066 Xueyuan Avenue, Nanshan District Shenzhen 518060 China
| | - Mohammad Yusuf
- Department of Chemistry, Pusan National University Busan 46241 Republic of Korea
| | - Sanha Jang
- Department of Chemistry, Pusan National University Busan 46241 Republic of Korea
| | - Karthick Selvam
- Nano & Computational Materials Lab, Department of Industrial Chemistry, Alagappa University Karaikudi 630003 Tamilnadu India
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University Busan 46241 Republic of Korea
| |
Collapse
|
11
|
Wang J, Okabe J, Urita K, Moriguchi I, Wei M. Cu2S hollow spheres as an anode for high-rate sodium storage performance. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Shi N, Xi B, Huang M, Ma X, Li H, Feng J, Xiong S. Hierarchical Octahedra Constructed by Cu 2 S/MoS 2 ⊂Carbon Framework with Enhanced Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000952. [PMID: 32378328 DOI: 10.1002/smll.202000952] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Metal sulfides have aroused considerable attention for efficient sodium storage because of their high capacity and decent redox reversibility. However, the poor rate capability and fast capacity decay greatly hinder their practical application in sodium-ion batteries. Herein, a self-template-based strategy is designed to controllably synthesize hierarchical microoctahedra assembled with Cu2 S/MoS2 heterojunction nanosheets in the porous carbon framework (Cu2 S/MoS2 ⊂PCF) via a facile coprecipitation method coupled with vulcanization treatment. The Cu2 S/MoS2 ⊂PCF microoctahedra with 2D hybrid nanosubunits reasonably integrate several merits including facilitating the diffusion of electrons and Na+ ions, enhancing the electric conductivity, accelerating the ion and charge transfer, and buffering the volume variation. Therefore, the Cu2 S/MoS2 ⊂PCF composite manifests efficient sodium storage performance with high capacity, long cycling life, and excellent rate capability.
Collapse
Affiliation(s)
- Nianxiang Shi
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Baojuan Xi
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Man Huang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xiaojian Ma
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Haibo Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Jinkui Feng
- Key Laboratory for Liquid-solid Structural Evolution & Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, P. R. China
| | - Shenglin Xiong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
13
|
In-situ embedding cobalt-doped copper sulfide within ultrathin carbon nanosheets for superior lithium storage performance. J Colloid Interface Sci 2020; 566:1-10. [DOI: 10.1016/j.jcis.2020.01.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/30/2023]
|
14
|
Fang Y, Luan D, Chen Y, Gao S, Lou XW(D. Rationally Designed Three‐Layered Cu
2
S@Carbon@MoS
2
Hierarchical Nanoboxes for Efficient Sodium Storage. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915917] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yongjin Fang
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Deyan Luan
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Ye Chen
- School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China
| | - Shuyan Gao
- School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
15
|
Fang Y, Luan D, Chen Y, Gao S, Lou XWD. Rationally Designed Three-Layered Cu 2 S@Carbon@MoS 2 Hierarchical Nanoboxes for Efficient Sodium Storage. Angew Chem Int Ed Engl 2020; 59:7178-7183. [PMID: 32091648 DOI: 10.1002/anie.201915917] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 01/19/2023]
Abstract
Hybrid materials, integrating the merits of individual components, are ideal structures for efficient sodium storage. However, the construction of hybrid structures with decent physical/electrochemical properties is still challenging. Now, the elaborate design and synthesis of hierarchical nanoboxes composed of three-layered Cu2 S@carbon@MoS2 as anode materials for sodium-ion batteries is reported. Through a facile multistep template-engaged strategy, ultrathin MoS2 nanosheets are grown on nitrogen-doped carbon-coated Cu2 S nanoboxes to realize the Cu2 S@carbon@MoS2 configuration. The design shortens the diffusion path of electrons/Na+ ions, accommodates the volume change of electrodes during cycling, enhances the electric conductivity of the hybrids, and offers abundant active sites for sodium uptake. By virtue of these advantages, these three-layered Cu2 S@carbon@MoS2 hierarchical nanoboxes show excellent electrochemical properties in terms of decent rate capability and stable cycle life.
Collapse
Affiliation(s)
- Yongjin Fang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Deyan Luan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Ye Chen
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Shuyan Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
16
|
Li Y, Zhang Y, Wang Y, Li X, Zhang Q, Yan H, Huang X, Liu H, Zhang Y. Effect of ether-based electrolyte composition on the lithium storage performance of copper sulfide. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Fang Y, Luan D, Chen Y, Gao S, Lou XW(D. Synthesis of Copper‐Substituted CoS
2
@Cu
x
S Double‐Shelled Nanoboxes by Sequential Ion Exchange for Efficient Sodium Storage. Angew Chem Int Ed Engl 2020; 59:2644-2648. [DOI: 10.1002/anie.201912924] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Yongjin Fang
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Deyan Luan
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Ye Chen
- School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China
| | - Shuyan Gao
- School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
18
|
Fang Y, Luan D, Chen Y, Gao S, Lou XW(D. Synthesis of Copper‐Substituted CoS
2
@Cu
x
S Double‐Shelled Nanoboxes by Sequential Ion Exchange for Efficient Sodium Storage. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912924] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yongjin Fang
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Deyan Luan
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Ye Chen
- School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China
| | - Shuyan Gao
- School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
19
|
Gu Y, Li T, Guo B, Jiang Y, Wen W, Wu J, Zhao L. Copper sulfide nanostructures and their sodium storage properties. CrystEngComm 2020. [DOI: 10.1039/d0ce01059f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hexagonal CuS nanosheets and microspheres composed of numerous flakes were successfully prepared by sonochemical and solvothermal methods, respectively.
Collapse
Affiliation(s)
- Yarong Gu
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Tingting Li
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Bingkun Guo
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Yutao Jiang
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Weijia Wen
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Jinbo Wu
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Lijuan Zhao
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- P. R. China
| |
Collapse
|
20
|
Wang G, Xu Y, Yue H, Jin R, Gao S. NiMoS 4 nanocrystals anchored on N-doped carbon nanosheets as anode for high performance lithium ion batteries. J Colloid Interface Sci 2019; 561:854-860. [PMID: 31771868 DOI: 10.1016/j.jcis.2019.11.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/31/2022]
Abstract
Owing to the excellent electrical conductivity and high theoretical capacity, binary transition metal sulfides have attracted extensive attention as promising anodes for lithium ion batteries (LIBs). However, the relatively poor electrical conductivity and serious capacity fading originated from large volume change still hinder their practical applications. Herein, binary NiMoS4 nanoparticles are deposited on N doped carbon nanosheets (NC@NiMoS4) through a facile hydrothermal method. The N doped carbon nanosheets and the strong chemical bonding between NC and NiMoS4 can accommodate the volume change, keep the structural integrity and promote the ion/electron transfer during electrochemical reaction. The extra voids between NiMoS4 nanoparticles enlarge the contact area and reduce the lithium migration barriers. As anode for LIBs, the NC@NiMoS4 exhibits the excellent cycle stability with 834 mAh g-1 after 100 cycles at the current density of 100 mA g-1. Even at high rate of 2000 mA g-1, the specific capacity of 544 mAh g-1 can be achieved after 500 cycles.
Collapse
Affiliation(s)
- Guangming Wang
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, PR China
| | - Yakun Xu
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, PR China
| | - Hailong Yue
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, PR China
| | - Rencheng Jin
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, PR China.
| | - Shanmin Gao
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
21
|
Zhong W, Lv X, Chen Q, Ren M, Liu W, Li G, Yu J, Li M, Dai Y, Wang L. Metal-Organic Framework/Polythiophene Derivative: Neuronlike S-Doped Carbon 3D Structure with Outstanding Sodium Storage Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37850-37858. [PMID: 31552729 DOI: 10.1021/acsami.9b14366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, a metal-organic framework (MOF)/polythiophene (PTh)-derived S-doped carbon is successfully designed and prepared employing zeolitic imidazolate frameworks (ZIF-8/ZIF-67) and thiophene (Th) as precursors. The S-doped carbon presents a neuronlike three-dimensional network structure (3DSC). The 3DSC delivers extra-high capacities (225 mAh/g at 5000 mA/g after 3000 cycles) and excellent endurance ability of current changes when applied in Na-ion batteries (SIBs). Moreover, when the 3DSC-700 anode is coupled with a sodium vanadium phosphate cathode to construct a Na-ion full cell, after 50 cycles, a high capacity of ∼229.64 mAh/g is obtained at 100 mA/g. Electrochemical impedance spectroscopy analysis, density functional theory calculations, and pseudocapacitance contributions are adopted to investigate the excellent sodium storage mechanism of the 3DSC electrode. A new idea has been provided in this work to open up the possibility of MOF materials and carbon-based materials applications in SIBs in the future.
Collapse
Affiliation(s)
- Wen Zhong
- School of Materials Science and Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Xingshuai Lv
- School of Physics, State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , P. R. China
| | - Qianwu Chen
- School of Materials Science and Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Manman Ren
- School of Materials Science and Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Weiliang Liu
- School of Materials Science and Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Guangda Li
- School of Materials Science and Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Jiaoxian Yu
- School of Materials Science and Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Mei Li
- School of Materials Science and Engineering , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , P. R. China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , P. R. China
| | - Lianzhou Wang
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , QLD 4072 , Australia
| |
Collapse
|
22
|
Fang Y, Yu XY, Lou XWD. Bullet-like Cu 9 S 5 Hollow Particles Coated with Nitrogen-Doped Carbon for Sodium-Ion Batteries. Angew Chem Int Ed Engl 2019; 58:7744-7748. [PMID: 30957396 DOI: 10.1002/anie.201902988] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Indexed: 11/06/2022]
Abstract
Metal sulfides with excellent redox reversibility and high capacity are very promising electrode materials for sodium-ion batteries. However, their practical application is still hindered by the poor rate capability and limited cycle life. Herein, a template-based strategy is developed to synthesize nitrogen-doped carbon-coated Cu9 S5 bullet-like hollow particles starting from bullet-like ZnO particles. With the structural and compositional advantages, these unique nitrogen-doped carbon-coated Cu9 S5 bullet-like hollow particles manifest excellent sodium storage properties with superior rate capability and ultra-stable cycling performance.
Collapse
Affiliation(s)
- Yongjin Fang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Xin-Yao Yu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
23
|
Fang Y, Yu X, Lou XW(D. Bullet‐like Cu
9
S
5
Hollow Particles Coated with Nitrogen‐Doped Carbon for Sodium‐Ion Batteries. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902988] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yongjin Fang
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Xin‐Yao Yu
- Institutes of Physical Science and Information TechnologyAnhui University Hefei 230601 China
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
24
|
Huang L, Zhang Y, Shang C, Wang X, Zhou G, Ou JZ, Wang Y. ZnS Nanotubes/Carbon Cloth as a Reversible and High-Capacity Anode Material for Lithium-Ion Batteries. ChemElectroChem 2018. [DOI: 10.1002/celc.201801289] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lanyan Huang
- International Academy of Optoelectronics at Zhaoqing; South China Normal University; Guangdong China
| | - Yongguang Zhang
- International Academy of Optoelectronics at Zhaoqing; South China Normal University; Guangdong China
- Synergy Innovation Institute; Guangdong University of Technology; Heyuan China
| | - Chaoqun Shang
- International Academy of Optoelectronics at Zhaoqing; South China Normal University; Guangdong China
| | - Xin Wang
- International Academy of Optoelectronics at Zhaoqing; South China Normal University; Guangdong China
| | - Guofu Zhou
- International Academy of Optoelectronics at Zhaoqing; South China Normal University; Guangdong China
| | - Jian Zhen Ou
- School of Engineering; RMIT University; Melbourne Vic 3001 Australia
| | - Yichao Wang
- School of Life and Environmental Sciences; Deakin University; Geelong Vic 3216 Australia
| |
Collapse
|