1
|
Novel application of sodium manganese oxide in removing acidic gases in ambient conditions. Sci Rep 2023; 13:2330. [PMID: 36759698 PMCID: PMC9911640 DOI: 10.1038/s41598-023-29274-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
In this study, we have demonstrated the application of sodium manganese oxide for the chemisorption of toxic acidic gases at room temperature. The fabricated alkali ceramic has Na0.4MnO2, Na2Mn3O7, and NaxMnO2 phases with a surface area of 2.6 m2 g-1. Na-Mn oxide was studied for oxidation of H2S, SO2, and NO2 gases in the concentration range of 100-500 ppm. The material exhibited a high uptake capacity of 7.13, 0.75, and 0.53 mmol g-1 for H2S, SO2, and NO2 in wet conditions, respectively. The material was reusable when regenerated simply by soaking the spent oxide in a NaOH-H2O2 solution. While the H2S chemisorption process was accompanied by sulfide, sulfur, and sulfate formation, the SO2 chemisorption process yielded only sulfate ions. The NO2 chemisorption process was accomplished by its conversion to nitrite and nitrate ions. Thus, the present work is one of the first reports on alkali ceramic utilization for room-temperature mineralization of acidic gases.
Collapse
|
2
|
Gupta N, Achary SN, Viltres H, Bae J, Kim KS. Fabrication of Na 0.4MnO 2 Microrods for Room-Temperature Oxidation of Sulfurous Gases. ACS OMEGA 2022; 7:37774-37781. [PMID: 36312367 PMCID: PMC9608406 DOI: 10.1021/acsomega.2c04773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Phase pure Na0.4MnO2 microrods crystallized in the orthorhombic symmetry were fabricated for the wet oxidation of H2S and SO2 gases at room temperature. The material was found highly effective for the mineralization of low concentrations of acidic gases. The material was fully regenerable after soaking in a basic H2O2 solution.
Collapse
Affiliation(s)
- Nishesh
Kumar Gupta
- Department
of Environmental Research, University of
Science and Technology (UST), Daejeon34113, Korea
- Department
of Environmental Research, Korea Institute
of Civil Engineering and Building Technology (KICT), Goyang10223, Korea
| | - Srungarpu N. Achary
- Chemistry
Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Herlys Viltres
- School
of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L8, Canada
| | - Jiyeol Bae
- Department
of Environmental Research, University of
Science and Technology (UST), Daejeon34113, Korea
- Department
of Environmental Research, Korea Institute
of Civil Engineering and Building Technology (KICT), Goyang10223, Korea
| | - Kwang Soo Kim
- Department
of Environmental Research, University of
Science and Technology (UST), Daejeon34113, Korea
- Department
of Environmental Research, Korea Institute
of Civil Engineering and Building Technology (KICT), Goyang10223, Korea
| |
Collapse
|
3
|
|
4
|
Chu S, Guo S, Zhou H. Advanced cobalt-free cathode materials for sodium-ion batteries. Chem Soc Rev 2021; 50:13189-13235. [PMID: 34719701 DOI: 10.1039/d1cs00442e] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attempts to utilize lithium-ion batteries (LIBs) in large-scale electrochemical energy storage systems have achieved initial success, and solid-state LIBs using metallic lithium as the anode have also been well developed. However, the sharply increased demands/costs and the limited reserves of the two most important metal elements (Li & Co) for LIBs have raised concerns about future development. Sodium-ion batteries (SIBs) equipped with advanced cobalt-free cathodes show great potential in solving both "lithium panic" and "cobalt panic", and have made remarkable progress in recent years. In this review, we comprehensively summarize the recent advances of high-performance cobalt-free cathode materials for advanced SIBs, systematically analyze the conflicts of structural/electrochemical stability with intrinsic insufficiencies of cobalt-free cathode materials, and extensively discuss the strategies of constructing stable cobalt-free cathode materials by making full use of non-cobalt transition-metal elements and suitable crystal structures, all of which aim to provide insights into the key factors (e.g., phase transformation, particle cracks, crystal defects, lattice distortion, lattice oxygen oxidation, morphology, transition-metal migration/dissolution, and the synergistic effects of composite structures) that can determine the stability of cobalt-free cathode materials, provide guidelines for future research, and stimulate more interest on constructing high-performance cobalt-free cathode materials.
Collapse
Affiliation(s)
- Shiyong Chu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China. .,Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
5
|
Li Q, Zheng Y, Xiao D, Or T, Gao R, Li Z, Feng M, Shui L, Zhou G, Wang X, Chen Z. Faradaic Electrodes Open a New Era for Capacitive Deionization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002213. [PMID: 33240769 PMCID: PMC7675053 DOI: 10.1002/advs.202002213] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Indexed: 05/02/2023]
Abstract
Capacitive deionization (CDI) is an emerging desalination technology for effective removal of ionic species from aqueous solutions. Compared to conventional CDI, which is based on carbon electrodes and struggles with high salinity streams due to a limited salt removal capacity by ion electrosorption and excessive co-ion expulsion, the emerging Faradaic electrodes provide unique opportunities to upgrade the CDI performance, i.e., achieving much higher salt removal capacities and energy-efficient desalination for high salinity streams, due to the Faradaic reaction for ion capture. This article presents a comprehensive overview on the current developments of Faradaic electrode materials for CDI. Here, the fundamentals of Faradaic electrode-based CDI are first introduced in detail, including novel CDI cell architectures, key CDI performance metrics, ion capture mechanisms, and the design principles of Faradaic electrode materials. Three main categories of Faradaic electrode materials are summarized and discussed regarding their crystal structure, physicochemical characteristics, and desalination performance. In particular, the ion capture mechanisms in Faradaic electrode materials are highlighted to obtain a better understanding of the CDI process. Moreover, novel tailored applications, including selective ion removal and contaminant removal, are specifically introduced. Finally, the remaining challenges and research directions are also outlined to provide guidelines for future research.
Collapse
Affiliation(s)
- Qian Li
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityGuangdong510631P. R. China
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Yun Zheng
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Dengji Xiao
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Tyler Or
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Rui Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversityChangchun130103P. R. China
| | - Zhaoqiang Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversityChangchun130103P. R. China
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversityChangchun130103P. R. China
| | - Lingling Shui
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityGuangdong510631P. R. China
| | - Guofu Zhou
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityGuangdong510631P. R. China
| | - Xin Wang
- South China Academy of Advanced Optoelectronics and International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityGuangdong510631P. R. China
| | - Zhongwei Chen
- Department of Chemical EngineeringWaterloo Institute of NanotechnologyUniversity of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| |
Collapse
|
6
|
Zheng P, Su J, Wang Y, Zhou W, Song J, Su Q, Reeves-McLaren N, Guo S. A High-Performance Primary Nanosheet Heterojunction Cathode Composed of Na 0.44 MnO 2 Tunnels and Layered Na 2 Mn 3 O 7 for Na-Ion Batteries. CHEMSUSCHEM 2020; 13:1793-1799. [PMID: 31994308 DOI: 10.1002/cssc.201903543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Owing to its large capacity and high average potential, the structure and reversible O-redox compensation mechanism of Na2 Mn3 O7 have recently been analyzed. However, capacity fade and low coulombic efficiency over multiple cycles have also been found to be a problem, which result from oxygen evolution at high charge voltages. Herein, a Na0.44 MnO2 ⋅Na2 Mn3 O7 heterojunction of primary nanosheets was prepared by a sol-gel-assisted high-temperature sintering method. In the nanodomain regions, the close contact of Na0.44 MnO2 not only supplies multidimensional channels to improve the rate performance of the composite, but also plays the role of pillars for enhancing the cycling stability and coulombic efficiency; this is accomplished by suppressing oxygen evolution, which is confirmed by high-resolution (HR)TEM, cyclic voltammetry, and charge/discharge curves. As the cathode of a Na-ion battery, at 200 mA g-1 after 100 cycles, the Na0.44 MnO2 ⋅Na2 Mn3 O7 heterojunction retains an 88 % capacity and the coulombic efficiency approaches 100 % during the cycles. At 1000 mA g-1 , the Na0.44 MnO2 ⋅Na2 Mn3 O7 heterojunction has a discharge capacity of 72 mAh g-1 . In addition, the average potential is as high as 2.7 V in the range 1.5-4.6 V. The above good performances indicate that heterojunctions are an effective strategy for addressing oxygen evolution by disturbing the long-range order distribution of manganese vacancies in the Mn-O layer.
Collapse
Affiliation(s)
- Peng Zheng
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, Shaanxi, P. R. China
| | - Jiaxin Su
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, Shaanxi, P. R. China
| | - Yibing Wang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, Shaanxi, P. R. China
| | - Wei Zhou
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, Shaanxi, P. R. China
| | - Jiajia Song
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, Shaanxi, P. R. China
| | - Qinmei Su
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, Shaanxi, P. R. China
| | - Nik Reeves-McLaren
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - Shouwu Guo
- Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
Wang D, Chen H, Zheng X, Qiu L, Qu J, Wu Z, Zhong Y, Xiang W, Zhong B, Guo X. Simultaneous Component Ratio and Particle Size Optimization for High‐Performance and High Tap Density P2/P3 Composite Cathode of Sodium‐Ion Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201901211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dong Wang
- School of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Hui Chen
- School of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Xiaomei Zheng
- Magnetism Key LabChina Jiliang University, Zhejiang Province Hangzhou 310018 China
| | - Lang Qiu
- School of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Jie Qu
- School of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Zhenguo Wu
- School of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Yanjun Zhong
- School of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Wei Xiang
- College of Materials and Chemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 P. R. China
| | - Benhe Zhong
- School of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
| | - Xiaodong Guo
- School of Chemical EngineeringSichuan University Chengdu 610065 P. R. China
- Institute for Superconducting and Electronic MaterialsUniversity of Wollongong Wollongong, NSW 2522 Australia
| |
Collapse
|