1
|
Tracy M, Sosa Alfaro V, Campeciño J, Hird K, Hegg EL, Lehnert N, Elliott SJ. Electrocatalytic Nitrite Reduction by a Monomeric NrfA: Commonality in Ammonification Mechanisms. Biochemistry 2025; 64:1359-1369. [PMID: 40026019 PMCID: PMC11925055 DOI: 10.1021/acs.biochem.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/30/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Cytochrome c nitrite reductase (NrfA) is a pentaheme enzyme capable of the six-electron reduction of nitrite to ammonia, which is a key step in the nitrogen cycle. All NrfA enzymes appear to have a branched set of two heme-based pathways for electron transfer to a conserved active site, and until recently, NrfA enzymes from a variety of microorganisms were considered to possess a homodimeric structure; yet, recent efforts have shown that in solution, purified Geobacter lovleyi (Gl) NrfA is a monomer. Direct protein electrochemistry has been used in the past to characterize the dimeric NrfAs from Escherichia coli and Shewanella oneidensis, revealing features of maximal activity as a function of nitrite concentration, and redox poise, both of which were interpreted in terms of the dimeric structure providing multiple redox equivalents. Here, we examine Gl NrfA using protein film electrochemistry and find that all of the features that were associated with the dimeric enzymes are also found in the monomeric enzyme. Further, we probe the contribution of specific heme environments through investigation of two His to Met heme ligand mutants, each along a different branch of the electron transfer network, which demonstrates that each path is likely essential to support native-like catalysis.
Collapse
Affiliation(s)
- Matt Tracy
- Department
of Chemistry, Boston University, 24 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Victor Sosa Alfaro
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Julius Campeciño
- Department
of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Krystina Hird
- Department
of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Eric L. Hegg
- Department
of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Nicolai Lehnert
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sean J. Elliott
- Department
of Chemistry, Boston University, 24 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Malagnini M, Aldinio-Colbachini A, Opdam L, Di Giuliantonio A, Fasano A, Fourmond V, Léger C. Initial quality assessment and qualitative interpretation of protein film electrochemistry catalytic data. Bioelectrochemistry 2025; 165:108967. [PMID: 40117737 DOI: 10.1016/j.bioelechem.2025.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
When a redox enzyme is wired to an electrode under conditions of direct electron transfer (DET), its activity can be simply detected as a current. This approach has been reviewed extensively, but here we address a gap in the literature by discussing the initial qualitative interpretation and assessment of catalytic DET electrochemical data. Topics addressed here include electroactive coverage, turnover frequencies, mass transport limitations, film loss, redox-driven (in)activation, signal corrections, distinction between steady-state and transient responses, and identification of non-ideal behaviors. Based on our group's expertise, we provide explanations, general advice, and prescriptive guidance to help readers understand experimental issues.
Collapse
Affiliation(s)
| | | | - Laura Opdam
- Aix Marseille Univ, CNRS, BIP, Marseille, France
| | | | | | | | | |
Collapse
|
3
|
Fasano A, Fourmond V, Léger C. Outer-sphere effects on the O 2 sensitivity, catalytic bias and catalytic reversibility of hydrogenases. Chem Sci 2024; 15:5418-5433. [PMID: 38638217 PMCID: PMC11023054 DOI: 10.1039/d4sc00691g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The comparison of homologous metalloenzymes, in which the same inorganic active site is surrounded by a variable protein matrix, has demonstrated that residues that are remote from the active site may have a great influence on catalytic properties. In this review, we summarise recent findings on the diverse molecular mechanisms by which the protein matrix may define the oxygen tolerance, catalytic directionality and catalytic reversibility of hydrogenases, enzymes that catalyse the oxidation and evolution of H2. These mechanisms involve residues in the second coordination sphere of the active site metal ion, more distant residues affecting protein flexibility through their side chains, residues lining the gas channel and even accessory subunits. Such long-distance effects, which contribute to making enzymes efficient, robust and different from one another, are a source of wonder for biochemists and a challenge for synthetic bioinorganic chemists.
Collapse
Affiliation(s)
- Andrea Fasano
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281 Marseille France
| | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281 Marseille France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, UMR 7281 Marseille France
| |
Collapse
|
4
|
Vacek J, Zatloukalová M, Dorčák V, Cifra M, Futera Z, Ostatná V. Electrochemistry in sensing of molecular interactions of proteins and their behavior in an electric field. Mikrochim Acta 2023; 190:442. [PMID: 37847341 PMCID: PMC10582152 DOI: 10.1007/s00604-023-05999-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical methods can be used not only for the sensitive analysis of proteins but also for deeper research into their structure, transport functions (transfer of electrons and protons), and sensing their interactions with soft and solid surfaces. Last but not least, electrochemical tools are useful for investigating the effect of an electric field on protein structure, the direct application of electrochemical methods for controlling protein function, or the micromanipulation of supramolecular protein structures. There are many experimental arrangements (modalities), from the classic configuration that works with an electrochemical cell to miniaturized electrochemical sensors and microchip platforms. The support of computational chemistry methods which appropriately complement the interpretation framework of experimental results is also important. This text describes recent directions in electrochemical methods for the determination of proteins and briefly summarizes available methodologies for the selective labeling of proteins using redox-active probes. Attention is also paid to the theoretical aspects of electron transport and the effect of an external electric field on the structure of selected proteins. Instead of providing a comprehensive overview, we aim to highlight areas of interest that have not been summarized recently, but, at the same time, represent current trends in the field.
Collapse
Affiliation(s)
- Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic.
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic
| | - Vlastimil Dorčák
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77515, Olomouc, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, 18200, Prague, Czech Republic
| | - Zdeněk Futera
- Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Veronika Ostatná
- Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Kralovopolska 135, 61200, Brno, Czech Republic
| |
Collapse
|
5
|
Aldinio-Colbachini A, Fasano A, Guendon C, Jacq-Bailly A, Wozniak J, Baffert C, Kpebe A, Léger C, Brugna M, Fourmond V. Transport limited adsorption experiments give a new lower estimate of the turnover frequency of Escherichia coli hydrogenase 1. BBA ADVANCES 2023; 3:100090. [PMID: 37168047 PMCID: PMC10165420 DOI: 10.1016/j.bbadva.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023] Open
Abstract
Protein Film Electrochemistry is a technique in which a redox enzyme is directly wired to an electrode, which substitutes for the natural redox partner. In this technique, the electrical current flowing through the electrode is proportional to the catalytic activity of the enzyme. However, in most cases, the amount of enzyme molecules contributing to the current is unknown and the absolute turnover frequency cannot be determined. Here, we observe the formation of electrocatalytically active films of E. coli hydrogenase 1 by rotating an electrode in a sub-nanomolar solution of enzyme. This process is slow, and we show that it is mass-transport limited. Measuring the rate of the immobilization allows the determination of an estimation of the turnover rate of the enzyme, which appears to be much greater than that deduced from solution assays under the same conditions.
Collapse
Affiliation(s)
- Anna Aldinio-Colbachini
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Andrea Fasano
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Chloé Guendon
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Aurore Jacq-Bailly
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Jérémy Wozniak
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Carole Baffert
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Arlette Kpebe
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Christophe Léger
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Myriam Brugna
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| | - Vincent Fourmond
- CNRS, Aix Marseille Université, BIP, IMM, IM2B 31 Chemin J. Aiguier, 13009 Marseille, France
| |
Collapse
|
6
|
Cordas CM, Valério GN, Stepnov A, Kommedal E, Kjendseth ÅR, Forsberg Z, Eijsink VGH, Moura JJG. Electrochemical characterization of a family AA10 LPMO and the impact of residues shaping the copper site on reactivity. J Inorg Biochem 2023; 238:112056. [PMID: 36332410 DOI: 10.1016/j.jinorgbio.2022.112056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Research on enzymes for lignocellulose biomass degradation has progressively increased in recent years due to the interest in taking advantage of this natural resource. Among these enzymes are the lytic polysaccharide monooxygenases (LPMOs) that oxidatively depolymerize crystalline cellulose using a reactive oxygen species generated in a reduced mono‑copper active site. The copper site comprises of a highly conserved histidine-brace, providing three equatorial nitrogen ligands, whereas less conserved residues close to the copper contribute to shaping and confining the site. The catalytic copper site is exposed to the solvent and to the crystalline substrates, and as so, the influence of the copper environment on LPMO properties, including the redox potential, is of great interest. In the current work, a direct electrochemical study of an LPMO (ScLPMO10C) was conducted allowing to retrieve kinetic and thermodynamic data associated with the redox transition in the catalytic centre. Moreover, two residues that do not bind to the copper but shape the copper sites were mutated, and the properties of the mutants were compared with those of the wild-type enzyme. The direct electrochemical studies, using cyclic voltammetry, yielded redox potentials in the +200 mV range, well in line with LPMO redox potentials determined by other methods. Interestingly, while the mutations hardly affected the formal redox potential of the enzyme, they drastically affected the reactivity of the copper site and enzyme functionality.
Collapse
Affiliation(s)
- Cristina M Cordas
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Gabriel N Valério
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Anton Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Eirik Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Åsmund R Kjendseth
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway.
| | - José J G Moura
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
7
|
Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Chem Rev 2022; 123:5421-5458. [PMID: 36573907 PMCID: PMC10176485 DOI: 10.1021/acs.chemrev.2c00397] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein film electrochemistry (PFE) has given unrivalled insight into the properties of redox proteins and many electron-transferring enzymes, allowing investigations of otherwise ill-defined or intractable topics such as unstable Fe-S centers and the catalytic bias of enzymes. Many enzymes have been established to be reversible electrocatalysts when attached to an electrode, and further investigations have revealed how unusual dependences of catalytic rates on electrode potential have stark similarities with electronics. A special case, the reversible electrochemistry of a photosynthetic enzyme, ferredoxin-NADP+ reductase (FNR), loaded at very high concentrations in the 3D nanopores of a conducting metal oxide layer, is leading to a new technology that brings PFE to myriad enzymes of other classes, the activities of which become controlled by the primary electron exchange. This extension is possible because FNR-based recycling of NADP(H) can be coupled to a dehydrogenase, and thence to other enzymes linked in tandem by the tight channelling of cofactors and intermediates within the nanopores of the material. The earlier interpretations of catalytic wave-shapes and various analogies with electronics are thus extended to initiate a field perhaps aptly named "cascade-tronics", in which the flow of reactions along an enzyme cascade is monitored and controlled through an electrochemical analyzer. Unlike in photosynthesis where FNR transduces electron transfer and hydride transfer through the unidirectional recycling of NADPH, the "electrochemical leaf" (e-Leaf) can be used to drive reactions in both oxidizing and reducing directions. The e-Leaf offers a natural way to study how enzymes are affected by nanoconfinement and crowding, mimicking the physical conditions under which enzyme cascades operate in living cells. The reactions of the trapped enzymes, often at very high local concentration, are thus studied electrochemically, exploiting the potential domain to control rates and direction and the current-rate analogy to derive kinetic data. Localized NADP(H) recycling is very efficient, resulting in very high cofactor turnover numbers and new opportunities for controlling and exploiting biocatalysis.
Collapse
Affiliation(s)
- Fraser A. Armstrong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Beichen Cheng
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ryan A. Herold
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Clare F. Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
8
|
Distinction between film loss and enzyme inactivation in protein-film voltammetry: a theoretical study in cyclic staircase voltammetry. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Gulaboski R. Electrochemistry of Lipophilic Redox Enzymes Associated with a Reversible Follow‐up Chemical Reaction‐Theoretical Consideration in Cyclic Staircase Voltammetry. ELECTROANAL 2022. [DOI: 10.1002/elan.202200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rubin Gulaboski
- Institute of Chemistry MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF
| |
Collapse
|
10
|
Optimizing the mass transport of wall-tube electrodes for protein film electrochemistry. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Meneghello M, Léger C, Fourmond V. Electrochemical Studies of CO 2 -Reducing Metalloenzymes. Chemistry 2021; 27:17542-17553. [PMID: 34506631 DOI: 10.1002/chem.202102702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 11/07/2022]
Abstract
Only two enzymes are capable of directly reducing CO2 : CO dehydrogenase, which produces CO at a [NiFe4 S4 ] active site, and formate dehydrogenase, which produces formate at a mononuclear W or Mo active site. Both metalloenzymes are very rapid, energy-efficient and specific in terms of product. They have been connected to electrodes with two different objectives. A series of studies used protein film electrochemistry to learn about different aspects of the mechanism of these enzymes (reactivity with substrates, inhibitors…). Another series focused on taking advantage of the catalytic performance of these enzymes to build biotechnological devices, from CO2 -reducing electrodes to full photochemical devices performing artificial photosynthesis. Here, we review all these works.
Collapse
Affiliation(s)
- Marta Meneghello
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| | - Christophe Léger
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| | - Vincent Fourmond
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, and, Institut Microbiologie, Bioénergies et Biotechnologie, 31 chemin J. Aiguier, 13402, Marseille Cedex 20, France
| |
Collapse
|
12
|
Felbek C, Arrigoni F, de Sancho D, Jacq-Bailly A, Best RB, Fourmond V, Bertini L, Léger C. Mechanism of Hydrogen Sulfide-Dependent Inhibition of FeFe Hydrogenase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christina Felbek
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU & Donostia International Physics Center (DIPC), PK 1072, 20080 Donostia-San Sebastián, Spain
| | - Aurore Jacq-Bailly
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland 20892-0520, United States
| | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| |
Collapse
|
13
|
Abstract
We describe as 'reversible' a bidirectional catalyst that allows a reaction to proceed at a significant rate in response to even a small departure from equilibrium, resulting in fast and energy-efficient chemical transformation. Examining the relation between reaction rate and thermodynamic driving force is the basis of electrochemical investigations of redox reactions, which can be catalysed by metallic surfaces and biological or synthetic molecular catalysts. This relation has also been discussed in the context of biological energy transduction, regarding the function of biological molecular machines that harness chemical reactions to do mechanical work. This Perspective describes mean-field kinetic modelling of these three types of systems - surface catalysts, molecular catalysts of redox reactions and molecular machines - with the goal of unifying concepts in these different fields. We emphasize that reversibility should be distinguished from other figures of merit, such as rate or directionality, before its design principles can be identified and used to engineer synthetic catalysts.
Collapse
|
14
|
Abstract
[FeFe]-hydrogenases are efficient H2-catalysts, yet upon contact with dioxygen their catalytic cofactor (H-cluster) is irreversibly inactivated. Here, we combine X-ray crystallography, rational protein design, direct electrochemistry, and Fourier-transform infrared spectroscopy to describe a protein morphing mechanism that controls the reversible transition between the catalytic Hox-state and the inactive but oxygen-resistant Hinact-state in [FeFe]-hydrogenase CbA5H of Clostridium beijerinckii. The X-ray structure of air-exposed CbA5H reveals that a conserved cysteine residue in the local environment of the active site (H-cluster) directly coordinates the substrate-binding site, providing a safety cap that prevents O2-binding and consequently, cofactor degradation. This protection mechanism depends on three non-conserved amino acids situated approximately 13 Å away from the H-cluster, demonstrating that the 1st coordination sphere chemistry of the H-cluster can be remote-controlled by distant residues.
Collapse
|
15
|
Gulaboski R, Mirceski V. Simple voltammetric approach for characterization of two-step surface electrode mechanism in protein-film voltammetry. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Gulaboski R, Kokoskarova P, Risafova S. Analysis of enzyme-substrate interactions from square-wave protein-film voltammetry of complex electrochemical-catalytic mechanism associated with reversible regenerative reaction. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|