1
|
Niehaves E, Karst U. Mimicking the reactivity of drug metabolites: Biomolecule conjugation of an electrochemically-generated, reactive oxidation product of the antibiotic minocycline. J Pharm Biomed Anal 2025; 257:116710. [PMID: 39879820 DOI: 10.1016/j.jpba.2025.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Minocycline is an antibiotic of the tetracycline family which is widely used to treat a range of medical conditions. Although it has been in use for more than 50 years, little information is available on its metabolism in the human body. In this study, we simulate the biotransformation of minocycline by means of electrochemistry coupled to mass spectrometry. This analytical technique has already been used successfully in several cases to imitate enzyme-catalyzed reactions. Using this approach, we could show the generation of multiple electrochemical oxidation products which were characterized by tandem mass spectrometry. A N-dealkylated product was found to correspond to a literature-known in vivo metabolite. Two further oxidation products were detected, one of which exhibiting a reactive quinone moiety formed through electrochemical oxidation. The reactivity of this transformation product was assessed by conjugation reactions with glutathione, human hemoglobin and human serum albumin as model biomolecules. For all three peptides, conjugation reactions took place within minutes, corresponding to the number of free cysteine residues in the respective molecule, which are particularly susceptible to electrophiles like quinones. For glutathione, serum albumin and α-hemoglobin, a single conjugation of the reactive transformation product took place, whereas a twofold conjugation was detected for β-hemoglobin. This project showcases the capability of the purely instrumental approach to simulate the metabolism of xenobiotics without an interfering matrix to screen for reactive transformation products and to assess the reactivity of these products with regard to biomolecules.
Collapse
Affiliation(s)
- Erik Niehaves
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany.
| |
Collapse
|
2
|
Ferreira de Araújo J, Rossmeisl J, Yin H, Wang X, Bagger A, Strasser P. Electrochemical CO 2 Valorization Pathways and Processes toward C 2 to C 6 Products: Acetylene, Propylene, Butadiene, and Benzene. ACS ENERGY LETTERS 2025; 10:2532-2542. [PMID: 40370948 PMCID: PMC12070457 DOI: 10.1021/acsenergylett.5c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025]
Abstract
CO2 electrolysis on Cu catalysts at near-ambient conditions yields a range of important C1 to C3 products. Despite recent advances, our mechanistic understanding of the CO2 electrolysis reaction network has remained incomplete, with C4 products, and in particular long sought-after aromatic C6 product molecules, still being elusive. Here, we use a real-time capillary DEMS technique to determine the kinetic onset potentials of a wide set of C1-3 CO2 reduction products. Included in our study are rarely reported products, such as propionaldehyde, propylene, and, first, acetylene, C2H2. We then focus on the formation of acetylene, C2H2, and also investigate its alkyne electro-reduction, the C2H2 reduction reaction (C2H2RR). Acetylene electrodimerizes to the C4 compound 1,3-butadiene in a 2e- reduction reaction. It also revealed a potential-dependent electroless Cu-catalyzed ambient-condition [2 + 2 + 2] cycloaddition reaction to C6 benzene. We discuss mechanisms and the significance of the potential-dependent valorizations of acetylene on Cu. We hypothesize a future process concept to valorize CO2 into sustainable C6 e-aromatics.
Collapse
Affiliation(s)
- Jorge Ferreira de Araújo
- Department
of Chemistry, Chemical Engineering Division, Technical University Berlin, Straße des 17. June 124, 10623 Berlin, Germany
| | - Jan Rossmeisl
- Department
of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Hanqing Yin
- Department
of Energy, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Xingli Wang
- Department
of Chemistry, Chemical Engineering Division, Technical University Berlin, Straße des 17. June 124, 10623 Berlin, Germany
| | - Alexander Bagger
- Department
of Physics, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Peter Strasser
- Department
of Chemistry, Chemical Engineering Division, Technical University Berlin, Straße des 17. June 124, 10623 Berlin, Germany
| |
Collapse
|
3
|
Prajapati A, Hahn C, Weidinger IM, Shi Y, Lee Y, Alexandrova AN, Thompson D, Bare SR, Chen S, Yan S, Kornienko N. Best practices for in-situ and operando techniques within electrocatalytic systems. Nat Commun 2025; 16:2593. [PMID: 40091111 PMCID: PMC11911412 DOI: 10.1038/s41467-025-57563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
In-situ and operando techniques in heterogeneous electrocatalysis are a powerful tool used to elucidate reaction mechanisms. Ultimately, they are key in determining concrete links between a catalyst's physical/electronic structure and its activity en route to designing next-generation systems. To this end, the exact execution and interpretation of these lines of experiments is critical as this determines the strength of conclusions that can be drawn and what uncertainties remain. Instead of focusing on how techniques were used to understand systems, as is the case with most reviews on the topic, this work instead initiates a nuanced discussion of 1) how to best carry out each technique and 2) initiate a nuanced analysis of which level of insights can be drawn from the set of in-situ or operando experiments/controls carried out. We focus on several commonly used techniques, including vibrational (IR, Raman) spectroscopy, X-ray absorption spectroscopy and electrochemical mass spectrometry. In addition to this, we include sections of reactor design and the link with theoretical modelling that are applicable across all techniques. While we focus on heterogeneous electrocatalysis, we make links when appropriate to the areas of photo- and thermo-catalytic systems. We highlight common pitfalls in the field, how to avoid them, and what sets of complementary experiments may be used to strengthen the analysis. We end with an overview of what gaps remain in in-situ and operando techniques and what innovations must be made to overcome them.
Collapse
Affiliation(s)
- Aditya Prajapati
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Christopher Hahn
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | - Inez M Weidinger
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
| | - Yanmei Shi
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, China.
| | - Yonghyuk Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - David Thompson
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
| | - Shuai Chen
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Shuai Yan
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Nikolay Kornienko
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany.
| |
Collapse
|
4
|
Wilder L, Balogun K, Klein WE, Chumble P, Young JL. Nitrogen Reduction Testing with Real-Time 15NH 3 Yield Quantification Using Orbital Multiturn Time-of-Flight Mass Spectrometry. ACS ENERGY LETTERS 2024; 9:5780-5786. [PMID: 39698341 PMCID: PMC11650762 DOI: 10.1021/acsenergylett.4c02961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Yield validation of dinitrogen reduction reaction (N2RR) catalysts with 15N isotope labeling experiments is frustrated by the high cost of 15N2 and the frequent occurrence of 15NH3 and 15NO x impurities in commercial 15N2 sources. Also, gas diffusion electrode (GDE) cell architectures are relevant to scaling N2RR but underexplored and limited by ex situ product analysis methods. To overcome these obstacles, we develop and demonstrate a protocol for N2RR catalyst testing using a scalable GDE cell architecture and specialized test station that facilitates in-line product analysis with multiturn time-of-flight mass spectrometry. This approach provides robust yield measurements through real-time monitoring of 15NH3 with ultrahigh mass resolution. The 15N-containing impurities are also monitored, allowing their influence to be mitigated. A minimum detectable yield of 6 pmol·cm-2·s-1 (at 2.00 sccm and utilizing a 5 cm2 electrode) for real-time 15NH3 yield rate measurements is achieved while using a cost-effective amount of 15N2 (<100 mL).
Collapse
Affiliation(s)
- Logan
M. Wilder
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kabirat Balogun
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - W. Ellis Klein
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Prithviraj Chumble
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - James L. Young
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
5
|
Cui X, Chen J, Yi H, Wei Z. Mapping Reaction Pathways by In Situ Step Sweep Voltammetry Flow Electrochemical Mass Spectrometry. Anal Chem 2024; 96:17765-17772. [PMID: 39437319 DOI: 10.1021/acs.analchem.4c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A step sweep voltammetry (SSV) flow electrochemical (EC) mass spectrometry (MS) platform was developed for real-time and in situ mapping of EC reaction pathways. By integrating a flow EC cell into the pneumatic spray nozzle followed by atmospheric chemical ionization, this setup was capable of in situ MS monitoring of short-lived EC intermediates with enhanced sensitivity. This setup also realized precise measurement and control of the electrode potential during in situ EC-MS analysis, which can provide detailed information on the interplay of reaction pathways under different electrode potentials. Taking the EC reductive cross coupling of nitroarenes with arylboronic acids as an example, SSV-MS had identified 13 compounds among four reaction pathways. Among these, the electrode potential of active nitrene and cross coupling intermediates were measured for the first time and the structure of the nitroso coupling complex was also confirmed by MS. With the systematic measurement of electrode potential of the intermediates and products, SSV-MS had clearly mapped out the synergies and competitions between different reaction pathways, offering key insights for optimizing reaction conditions and investigating reaction mechanisms for EC research.
Collapse
Affiliation(s)
- Xi Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jianxiong Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Zhenwei Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Chen K, Wan Q, Wei S, Nie W, Zhou S, Chen S. Recent Advances in On-Line Mass Spectrometry Toolbox for Mechanistic Studies of Organic Electrochemical Reactions. Chemistry 2024; 30:e202402215. [PMID: 39083258 DOI: 10.1002/chem.202402215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Indexed: 09/25/2024]
Abstract
Electrochemical reactions are very complex and involve a variety of physicochemical processes. Accurate and systematic monitoring of intermediate process changes during the reaction is essential for understanding the mechanism of electrochemical reactions and is the basis for rational design of new electrochemical reactions. On-line electrochemical analysis based on mass spectrometry (MS) has become an important tool for studying electrochemical reactions. This technique is based on different ionization and sampling means and realizes on-line analysis of electrochemical reactions by establishing electrochemistry-MS (EC-MS) coupling devices. In particular, it provides key evidence for elucidating the reaction mechanism by capturing and identifying the reactive reaction intermediates. This review will categorize various EC-MS devices and the organic electrochemical reaction systems they study, highlighting the latest research progress in recent years. It will also analyze the properties of various devices and look forward to the future development of EC-MS.
Collapse
Affiliation(s)
- Kaixiang Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Qiongqiong Wan
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shiqi Wei
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Wenjin Nie
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shibo Zhou
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
7
|
Li Y, Zhu L, Wu X, Zhang Z, Pu R, Zheng Y, Zhang Z. Paper-in-Tip Bipolar Electrospray Mass Spectrometry for Real-Time Chemical Reaction Monitoring. Angew Chem Int Ed Engl 2024; 63:e202318169. [PMID: 38717236 DOI: 10.1002/anie.202318169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 06/19/2024]
Abstract
Capturing short-lived intermediates at the molecular level is key to understanding the mechanism and dynamics of chemical reactions. Here, we have developed a paper-in-tip bipolar electrolytic electrospray mass spectrometry platform, in which a piece of triangular conductive paper incorporated into a plastic pipette tip serves not only as an electrospray emitter but also as a bipolar electrode (BPE), thus triggering both electrospray and electrolysis simultaneously upon application of a high voltage. The bipolar electrolysis induces a pair of redox reactions on both sides of BPE, enabling both electro-oxidation and electro-reduction processes regardless of the positive or negative ion mode, thus facilitating access to complementary structural information for mechanism elucidation. Our method enables real-time monitoring of transient intermediates (such as N,N-dimethylaniline radical cation, dopamine o-quinone (DAQ) and sulfenic acid with half-lives ranging from microseconds to minutes) and transient processes (such as DAQ cyclization with a rate constant of 0.15 s-1). This platform also provides key insights into electrocatalytic reactions such as Fe (III)-catalyzed dopamine oxidation to quinone species at physiological pH for neuromelanin formation.
Collapse
Affiliation(s)
- Yun Li
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Lixuan Zhu
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Xiaomeng Wu
- School of Electronic Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Zhiming Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Ruijin Pu
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yajun Zheng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| |
Collapse
|
8
|
Zhao K, Jiang X, Wu X, Feng H, Wang X, Wan Y, Wang Z, Yan N. Recent development and applications of differential electrochemical mass spectrometry in emerging energy conversion and storage solutions. Chem Soc Rev 2024; 53:6917-6959. [PMID: 38836324 DOI: 10.1039/d3cs00840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Electrochemical energy conversion and storage are playing an increasingly important role in shaping the sustainable future. Differential electrochemical mass spectrometry (DEMS) offers an operando and cost-effective tool to monitor the evolution of gaseous/volatile intermediates and products during these processes. It can deliver potential-, time-, mass- and space-resolved signals which facilitate the understanding of reaction kinetics. In this review, we show the latest developments and applications of DEMS in various energy-related electrochemical reactions from three distinct perspectives. (I) What is DEMS addresses the working principles and key components of DEMS, highlighting the new and distinct instrumental configurations for different applications. (II) How to use DEMS tackles practical matters including the electrochemical test protocols, quantification of both potential and mass signals, and error analysis. (III) Where to apply DEMS is the focus of this review, dealing with concrete examples and unique values of DEMS studies in both energy conversion applications (CO2 reduction, water electrolysis, carbon corrosion, N-related catalysis, electrosynthesis, fuel cells, photo-electrocatalysis and beyond) and energy storage applications (Li-ion batteries and beyond, metal-air batteries, supercapacitors and flow batteries). The recent development of DEMS-hyphenated techniques and the outlook of the DEMS technique are discussed at the end. As DEMS celebrates its 40th anniversary in 2024, we hope this review can offer electrochemistry researchers a comprehensive understanding of the latest developments of DEMS and will inspire them to tackle emerging scientific questions using DEMS.
Collapse
Affiliation(s)
- Kai Zhao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyi Jiang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyu Wu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Haozhou Feng
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiude Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Yuyan Wan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Zhiping Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Ning Yan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| |
Collapse
|
9
|
Dushna O, Dubenska L, Gawor A, Karasińki J, Barabash O, Ostapiuk Y, Blazheyevskiy M, Bulska E. Structural Characterization and Electrochemical Studies of Selected Alkaloid N-Oxides. Molecules 2024; 29:2721. [PMID: 38930787 PMCID: PMC11205554 DOI: 10.3390/molecules29122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In this work, we synthesized and confirmed the structure of several alkaloid N-oxides using mass spectrometry and Fourier-transform infrared spectroscopy. We also investigated their reduction mechanisms using voltammetry. For the first time, we obtained alkaloid N-oxides using an oxidation reaction with potassium peroxymonosulfate as an oxidant. The structure was established based on the obtained fragmentation mass spectra recorded by LC-Q-ToF-MS. In the FT-IR spectra of the alkaloid N-oxides, characteristic signals of N-O group vibrations were recorded (bands in the range of 928 cm⁻1 to 971 cm⁻1), confirming the presence of this functional group. Electrochemical reduction studies demonstrated the reduction of alkaloid N-oxides at mercury-based electrodes back to the original form of the alkaloid. For the first time, the products of the electrochemical reduction of alkaloid N-oxides were detected by mass spectrometry. The findings provide insights into the structural characteristics and reduction behaviors of alkaloid N-oxides, offering implications for pharmacological and biochemical applications. This research contributes to a better understanding of alkaloid metabolism and degradation processes, with potential implications for drug development and environmental science.
Collapse
Affiliation(s)
- Olha Dushna
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland; (O.D.); (A.G.); (J.K.)
- Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79-005 Lviv, Ukraine; (L.D.); (O.B.); (Y.O.)
| | - Liliya Dubenska
- Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79-005 Lviv, Ukraine; (L.D.); (O.B.); (Y.O.)
| | - Andrzej Gawor
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland; (O.D.); (A.G.); (J.K.)
| | - Jakub Karasińki
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland; (O.D.); (A.G.); (J.K.)
| | - Oksana Barabash
- Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79-005 Lviv, Ukraine; (L.D.); (O.B.); (Y.O.)
| | - Yurii Ostapiuk
- Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79-005 Lviv, Ukraine; (L.D.); (O.B.); (Y.O.)
| | - Mykola Blazheyevskiy
- Department of General Chemistry, National University of Pharmacy, Valentynivska 4, 61-168 Kharkiv, Ukraine;
| | - Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland; (O.D.); (A.G.); (J.K.)
| |
Collapse
|
10
|
Gao Y, Asahina H, Matsuda S, Noguchi H, Uosaki K. Nature of Li 2O 2 and its relationship to the mechanisms of discharge/charge reactions of lithium-oxygen batteries. Phys Chem Chem Phys 2024; 26:13655-13666. [PMID: 38587036 DOI: 10.1039/d4cp00428k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lithium-air batteries (LABs) are considered one of the most promising energy storage devices because of their large theoretical energy density. However, low cyclability caused by battery degradation prevents its practical use. Thus, to realize practical LABs, it is essential to improve cyclability significantly by understanding how the degradation processes proceed. Here, we used online mass spectrometry for real-time monitoring of gaseous products generated during charging of lithium-oxygen batteries (LOBs), which was operated with pure oxygen not air, with 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) tetraethylene glycol dimethyl ether (TEGDME) electrolyte solution. Linear voltage sweep (LVS) and voltage step modes were employed for charge instead of constant current charge so that the energetics of the product formation during the charge process can be understood more quantitatively. The presence of two distinctly different types of Li2O2, one being decomposed in a wide range of relatively low cell voltages (2.8-4.16 V) (l-Li2O2) and the other being decomposed at higher cell voltages than ca. 4.16 V (h-Li2O2), was confirmed by both LVS and step experiments. H2O generation started when the O2 generation rate reached a first maximum and CO2 generation took place accompanied by the decomposition of h-Li2O2. Based on the above results and the effects of discharge time and the use of isotope oxygen during discharge on product distribution during charge, the generation mechanism of O2, H2O, and CO2 during charging is discussed in relation to the reactions during discharge.
Collapse
Affiliation(s)
- Yanan Gao
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan.
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Hitoshi Asahina
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan.
- SoftBank-NIMS Advanced Technologies Development Center, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Shoichi Matsuda
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan.
- SoftBank-NIMS Advanced Technologies Development Center, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hidenori Noguchi
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan.
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Kohei Uosaki
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan.
- SoftBank-NIMS Advanced Technologies Development Center, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
11
|
Niu Y, Chen Y, Zhou J, Sun W. Online electrochemistry coupling liquid chromatography-mass spectrometry for rapid investigation on the phase I and phase II simulated metabolic reactions of flavonoids. Anal Bioanal Chem 2024; 416:2541-2551. [PMID: 38451277 DOI: 10.1007/s00216-024-05227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
In this study, an online electrochemistry coupling high-performance liquid chromatography-mass spectrometry (EC-HPLC-MS) technology has been developed for simulating metabolic reactions and rapid analysis of metabolites of flavone, quercetin, and rutin, which are not only widely present compounds with pharmacological activity in nature, but also have structural similarity and variability. The simulated metabolic processes of the substrates (phase I and phase II metabolism) were implemented on the surface of glassy carbon electrode (GCE) by using different electrochemical methods. After online chromatographic separation, the products were transmitted to a mass spectrometer for detection, in order to speculate relevant reaction pathways and structural information of the reaction product. The main metabolites, including methylation, hydroxylation, hydrolysis, and conjugation reaction products, had been successfully identified through the designed in situ hyphenated technique. Furthermore, compared with metabolites produced by in vitro incubation of rat liver microsomes, it was found that the products of electrochemical simulated metabolism were more abundant with diverse metabolic pathways. The results indicated that the proposed method exhibited advantages in the sample pretreatment process and detection cycle without compromising the reliability and accuracy of the results.
Collapse
Affiliation(s)
- Yanyan Niu
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| | - Yuxue Chen
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Juan Zhou
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Wei Sun
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| |
Collapse
|
12
|
Zhang H, Wang H, Cao X, Chen M, Liu Y, Zhou Y, Huang M, Xia L, Wang Y, Li T, Zheng D, Luo Y, Sun S, Zhao X, Sun X. Unveiling Cutting-Edge Developments in Electrocatalytic Nitrate-to-Ammonia Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312746. [PMID: 38198832 DOI: 10.1002/adma.202312746] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Indexed: 01/12/2024]
Abstract
The excessive enrichment of nitrate in the environment can be converted into ammonia (NH3) through electrochemical processes, offering significant implications for modern agriculture and the potential to reduce the burden of the Haber-Bosch (HB) process while achieving environmentally friendly NH3 production. Emerging research on electrocatalytic nitrate reduction (eNitRR) to NH3 has gained considerable momentum in recent years for efficient NH3 synthesis. However, existing reviews on nitrate reduction have primarily focused on limited aspects, often lacking a comprehensive summary of catalysts, reaction systems, reaction mechanisms, and detection methods employed in nitrate reduction. This review aims to provide a timely and comprehensive analysis of the eNitRR field by integrating existing research progress and identifying current challenges. This review offers a comprehensive overview of the research progress achieved using various materials in electrochemical nitrate reduction, elucidates the underlying theoretical mechanism behind eNitRR, and discusses effective strategies based on numerous case studies to enhance the electrochemical reduction from NO3 - to NH3. Finally, this review discusses challenges and development prospects in the eNitRR field with an aim to guide design and development of large-scale sustainable nitrate reduction electrocatalysts.
Collapse
Affiliation(s)
- Haoran Zhang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Haijian Wang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Xiqian Cao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Mengshan Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Yuelong Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xue Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
13
|
Bairagi A, Pereverzev AY, Tinnemans P, Pidko EA, Roithová J. Electrocatalytic CO 2 Reduction: Monitoring of Catalytically Active, Downgraded, and Upgraded Cobalt Complexes. J Am Chem Soc 2024; 146:5480-5492. [PMID: 38353430 PMCID: PMC10910500 DOI: 10.1021/jacs.3c13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
The premise of most studies on the homogeneous electrocatalytic CO2 reduction reaction (CO2RR) is a good understanding of the reaction mechanisms. Yet, analyzing the reaction intermediates formed at the working electrode is challenging and not always attainable. Here, we present a new, general approach to studying the reaction intermediates applied for CO2RR catalyzed by a series of cobalt complexes. The cobalt complexes were based on the TPA-ligands (TPA = tris(2-pyridylmethyl)amine) modified by amino groups in the secondary coordination sphere. By combining the electrochemical experiments, electrochemistry-coupled electrospray ionization mass spectrometry, with density functional theory (DFT) calculations, we identify and spectroscopically characterize the key reaction intermediates in the CO2RR and the competing hydrogen-evolution reaction (HER). Additionally, the experiments revealed the rarely reported in situ changes in the secondary coordination sphere of the cobalt complexes by the CO2-initiated transformation of the amino substituents to carbamates. This launched an even faster alternative HER pathway. The interplay of three catalytic cycles, as derived from the experiments and supported by the DFT calculations, explains the trends that cobalt complexes exhibit during the CO2RR and HER. Additionally, this study demonstrates the need for a molecular perspective in the electrocatalytic activation of small molecules efficiently obtained by the EC-ESI-MS technique.
Collapse
Affiliation(s)
- Abhinav Bairagi
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Aleksandr Y. Pereverzev
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Paul Tinnemans
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Delft 2629 HZ, The Netherlands
| | - Jana Roithová
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
14
|
Göldner V, Karst U. Benfluorex metabolism complemented by electrochemistry-mass spectrometry. J Pharm Biomed Anal 2023; 235:115626. [PMID: 37542830 DOI: 10.1016/j.jpba.2023.115626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
The hypolipidemic and hypoglycemic drug benfluorex was widely applied to treat type 2 diabetes mellitus and metabolic syndrome in overweight patients since 1976. However, benfluorex was connected to multiple cases of valvular heart disease and pulmonary arterial hypertension later on. Similar adverse drug reactions were previously found to be associated to the structurally related drug fenfluramine, which was attributed to the formation of its N-deethylated metabolite norfenfluramine. Even though norfenfluramine was known to be a common metabolite of fenfluramine and benfluorex, only fenfluramine was withdrawn from European and United States markets in 1997 while benfluorex remained available until 2009. In this work, the metabolism of benfluorex is simulated by an online hyphenation of electrochemistry and mass spectrometry and the observed transformation products are further characterized using liquid chromatography and high-resolution tandem mass spectrometry. Using this approach, norfenfluramine is found to be the main electrochemical transformation product of benfluorex. Considering the knowledge about norfenfluramine toxicity, rapid metabolite screening using electrochemistry hyphenated to mass spectrometry could have been used to predict the potential of benfluorex for adverse drug reactions early on, showcasing the value of electrochemical metabolism mimicry for rapid drug safety evaluation.
Collapse
Affiliation(s)
- Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany.
| |
Collapse
|
15
|
Wan Q, Chen K, Dong X, Ruan X, Yi H, Chen S. Elucidating the Underlying Reactivities of Alternating Current Electrosynthesis by Time-Resolved Mapping of Short-Lived Reactive Intermediates. Angew Chem Int Ed Engl 2023; 62:e202306460. [PMID: 37593930 DOI: 10.1002/anie.202306460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
Alternating current (AC) electrolysis is an emerging field in synthetic chemistry, however its mechanistic studies are challenged by the effective characterization of the elusive intermediate processes. Herein, we develop an operando electrochemical mass spectrometry platform that allows time-resolved mapping of stepwise electrosynthetic reactive intermediates in both direct current and alternating current modes. By dissecting the key intermediate processes of electrochemical functionalization of arylamines, the unique reactivities of AC electrosynthesis, including minimizing the over-oxidation/reduction through the inverse process, and enabling effective reaction of short-lived intermediates generated by oxidation and reduction in paired electrolysis, were evidenced and verified. Notably, the controlled kinetics of reactive N-centered radical intermediates in multistep sequential AC electrosynthesis to minimize the competing reactions was discovered. Overall, this work provides direct evidence for the mechanism of AC electrolysis, and clarifies the underlying reasons for its high efficiency, which will benefit the rational design of AC electrosynthetic reactions.
Collapse
Affiliation(s)
- Qiongqiong Wan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Kaixiang Chen
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xin Dong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xianqin Ruan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Suming Chen
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
16
|
Göldner V, Ulke J, Kirchner B, Skalka D, Schmalz M, Heuckeroth S, Karst U. Electrochemistry-mass spectrometry bridging the gap between suspect and target screening of valsartan transformation products in wastewater treatment plant effluent. WATER RESEARCH 2023; 244:120525. [PMID: 37669607 DOI: 10.1016/j.watres.2023.120525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Degradation of xenobiotics in wastewater treatment plants may lead to the formation of transformation products with higher persistence or increased (eco-)toxic potential compared to the parent compounds. Accordingly, the identification of transformation products from wastewater treatment plant effluents has gained increasing attention. Here, we show the potential of electrochemistry hyphenated to liquid chromatography and mass spectrometry for the prediction of oxidative degradation in wastewater treatment plants using the antihypertensive drug valsartan as a model compound. This approach identifies seven electrochemical transformation products of valsartan, which are used to conduct a suspect screening in effluent of the main wastewater treatment plant in the city of Münster in Germany. Apart from the parent compound valsartan, an electrochemically predicted transformation product, the N-dealkylated ETP336, is detected in wastewater treatment plant effluent. Subsequently, a targeted liquid chromatographytandem mass spectrometry method for the detection of valsartan and its electrochemical transformation products is set up. Here, electrochemical oxidation is used to generate reference materials of the transformation products in situ by hyphenating electrochemistry online to a triple quadrupole mass spectrometer. Using this setup, multiple reaction monitoring transitions are set up without the need for laborious and costly synthesis and isolation of reference materials for the transformation products. The targeted method is then applied to extracts from wastewater treatment plant effluent and the presence of ETP336 and valsartan in the samples is verified. The presented workflow can be used to set up targeted analysis methods for previously unknown transformation products even without the need for expensive high-resolution mass spectrometers.
Collapse
Affiliation(s)
- Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Jessica Ulke
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Benedict Kirchner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Dominik Skalka
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Marie Schmalz
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Steffen Heuckeroth
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149, Münster, Germany.
| |
Collapse
|
17
|
Xiao P, Yun X, Chen Y, Guo X, Gao P, Zhou G, Zheng C. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem Soc Rev 2023; 52:5255-5316. [PMID: 37462967 DOI: 10.1039/d3cs00151b] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Lithium-based rechargeable batteries have dominated the energy storage field and attracted considerable research interest due to their excellent electrochemical performance. As indispensable and ubiquitous components, electrolytes play a pivotal role in not only transporting lithium ions, but also expanding the electrochemical stable potential window, suppressing the side reactions, and manipulating the redox mechanism, all of which are closely associated with the behavior of solvation chemistry in electrolytes. Thus, comprehensively understanding the solvation chemistry in electrolytes is of significant importance. Here we critically reviewed the development of electrolytes in various lithium-based rechargeable batteries including lithium-metal batteries (LMBs), nonaqueous lithium-ion batteries (LIBs), lithium-sulfur batteries (LSBs), lithium-oxygen batteries (LOBs), and aqueous lithium-ion batteries (ALIBs), and emphasized the effects of interactions between cations, anions, and solvents on solvation chemistry, and functions of solvation chemistry in different types of electrolytes (strong solvating electrolytes, moderate solvating electrolytes, and weak solvating electrolytes) on the electrochemical performance and redox mechanism in the abovementioned rechargeable batteries. Specifically, the significant effects of solvation chemistry on the stability of electrode-electrolyte interphases, suppression of lithium dendrites in LMBs, inhibition of the co-intercalation of solvents in LIBs, improvement of anodic stability at high cut-off voltages in LMBs, LIBs and ALIBs, regulation of redox pathways in LSBs and LOBs, and inhibition of hydrogen/oxygen evolution reactions in LOBs are thoroughly summarized. Finally, the review concludes with a prospective outlook, where practical issues of electrolytes, advanced in situ/operando techniques to illustrate the mechanism of solvation chemistry, and advanced theoretical calculation and simulation techniques such as "material knowledge informed machine learning" and "artificial intelligence (AI) + big data" driven strategies for high-performance electrolytes have been proposed.
Collapse
Affiliation(s)
- Peitao Xiao
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China.
| | - Xiaoru Yun
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China.
| | - Yufang Chen
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China.
| | - Xiaowei Guo
- College of Computer, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Peng Gao
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University Changsha, Changsha, Hunan, 410082, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Chunman Zheng
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, China.
| |
Collapse
|
18
|
Göldner V, Speitling M, Karst U. Elucidation of the environmental reductive metabolism of the herbicide tritosulfuron assisted by electrochemistry and mass spectrometry. CHEMOSPHERE 2023; 330:138687. [PMID: 37076082 DOI: 10.1016/j.chemosphere.2023.138687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
The environmental impact of pesticides and other pollutants is, to a great extent, determined by degradation and accumulation processes. Consequently, degradation pathways of pesticides have to be elucidated before approval by the authorities. In this study, the environmental metabolism of the sulfonylurea-herbicide tritosulfuron was investigated using aerobic soil degradation studies, during which a previously unidentified metabolite was observed using high performance liquid chromatography and mass spectrometry. The new metabolite was formed by reductive hydrogenation of tritosulfuron but the isolated amount and purity of the substance were insufficient to fully elucidate its structure. Therefore, electrochemistry coupled to mass spectrometry was successfully applied to mimic the reductive hydrogenation of tritosulfuron. After demonstrating the general feasibility of electrochemical reduction, the electrochemical conversion was scaled up to the semi-preparative scale and 1.0 mg of the hydrogenated product was synthesized. Similar retention times and mass spectrometric fragmentation patterns proved that the same hydrogenated product was formed electrochemically and in soil studies. Using the electrochemically generated standard, the structure of the metabolite was elucidated by means of NMR spectroscopy, which shows the potential of electrochemistry and mass spectrometry in environmental fate studies.
Collapse
Affiliation(s)
- Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149, Münster, Germany
| | | | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149, Münster, Germany.
| |
Collapse
|
19
|
Xu J, Yu Z, Liu N, Li T, Chingin K, Wang S, Li H, Song L. Online Sequential Determination of Organic/Inorganic Lead Speciation in PM2.5 Using Electrochemical Mass Spectrometry. Anal Chem 2023; 95:4728-4734. [PMID: 36802376 DOI: 10.1021/acs.analchem.2c05430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The information regarding the occurrence and abundance of lead (Pb) in PM2.5 is useful for the evaluation of air pollution status and tracing the pollution source. Herein, electrochemical mass spectrometry (EC-MS) for sequential determination of Pb species in PM2.5 samples without sample pretreatment has been developed using the combination of online sequential extraction with mass spectrometry (MS) detection. Four kinds of Pb species including water-soluble Pb compounds, fat-soluble Pb compounds, water/fat-insoluble Pb compounds, and a water/fat-insoluble Pb element were sequentially extracted from PM2.5 samples, in which water-soluble Pb compounds, fat-soluble Pb compounds, and water/fat-insoluble Pb compounds were extracted sequentially by elution using H2O, CH3OH, and EDTA-2Na as the eluent respectively, while the water/fat-insoluble Pb element was extracted by electrolysis using EDTA-2Na as the electrolyte. The extracted water-soluble Pb compounds, water/fat-insoluble Pb compounds, and water/fat-insoluble Pb element were transformed into EDTA-Pb in real time for online electrospray ionization mass spectrometry analysis, while the extracted fat-soluble Pb compounds were directly detected by electrospray ionization mass spectrometry. The advantages of the reported method include the obviation of sample pretreatment, high speed of analysis (<60 min/sample), low detection limit (0.16 pg), low sample consumption (30 μg), and high accuracy (>90%), which indicates the potential of this method for the rapid quantitative species detection of metals in environmental particulate matter samples.
Collapse
Affiliation(s)
- Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Zhendong Yu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Nian Liu
- Experimental Testing Team of Jiangxi Geological Bureau, Nanchang 330002, People's Republic of China
| | - Ting Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People's Republic of China.,School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Shuanglong Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Hui Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Lili Song
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, People's Republic of China
| |
Collapse
|
20
|
Martinez-Rojas F, Espinosa-Bustos C, Ramirez G, Armijo F. Electrochemical oxidation of chlorpromazine, characterisation of products by mass spectroscopy and determination in pharmaceutical samples. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Ramya M, Senthil Kumar P, Rangasamy G, Uma Shankar V, Rajesh G, Nirmala K, Saravanan A, Krishnapandi A. A recent advancement on the applications of nanomaterials in electrochemical sensors and biosensors. CHEMOSPHERE 2022; 308:136416. [PMID: 36099991 DOI: 10.1016/j.chemosphere.2022.136416] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Industrialization and globalization, both on an international and local scale, have caused large quantities of toxic chemicals to be released into the environment. Thus, developing an environmental pollutant sensor platform that is sensitive, reliable, and cost-effective is extremely important. In current years, considerable progress has been made in the expansion of electrochemical sensors and biosensors to monitor the environment using nanomaterials. A large number of emerging biomarkers are currently in existence in the biological fluids, clinical, pharmaceutical and bionanomaterial-based electrochemical biosensor platforms have drawn much attention. Electrochemical systems have been used to detect biomarkers rapidly, sensitively, and selectively using biomaterials such as biopolymers, nucleic acids, proteins etc. In this current review, several recent trends have been identified in the growth of electrochemical sensor platforms using nanotechnology such as carbon nanomaterials, metal oxide nanomaterials, metal nanoparticles, biomaterials and polymers. The integration strategies, applications, specific properties and future projections of nanostructured materials for emerging progressive sensor platforms are also observed. The objective of this review is to provide a comprehensive overview of nanoparticles in the field of electrochemical sensors and biosensors.
Collapse
Affiliation(s)
- M Ramya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - V Uma Shankar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - G Rajesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - K Nirmala
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | | |
Collapse
|
22
|
Knoche L, Lisec J, Koch M. Analysis of electrochemical and liver microsomal transformation products of lasalocid by LC/HRMS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9349. [PMID: 35781351 DOI: 10.1002/rcm.9349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Lasalocid (LAS), an ionophore, is used in cattle and poultry farming as feed additive for its antibiotic and growth-promoting properties. Literature on transformation products (TP) resulting from LAS degradation is limited. So far, only hydroxylation is found to occur as the metabolic reaction during the LAS degradation. To investigate potential TPs of LAS, we used electrochemistry (EC) and liver microsome (LM) assays to synthesize TPs, which were identified using liquid chromatography high-resolution mass spectrometry (LC/HRMS). METHODS Electrochemically produced TPs were analyzed online by direct coupling of the electrochemical cell to the electrospray ionization (ESI) source of a Sciex Triple-TOF high resolution mass spectrometer. Then, EC-treated LAS solution was collected and analyzed offline using LC/HRMS to confirm stable TPs and improve their annotation with a chemical structure due to informative MS/MS spectra. In a complementary approach, TPs formed by rat and human microsomal incubation were investigated using LC/HRMS. The resulting data were used to investigate LAS modification reactions and elucidate the chemical structure of obtained TPs. RESULTS The online measurements identified a broad variety of TPs, resulting from modification reactions like (de-)hydrogenation, hydration, methylation, oxidation as well as adduct formation with methanol. We consistently observed different ion complexations of LAS and LAS-TPs (Na+ ; 2Na+ K+ ; NaNH4 + ; KNH4 + ). Two stable methylated EC-TPs were found, structurally annotated, and assigned to a likely modification reaction. Using LM incubation, seven TPs were formed, mostly by oxidation/hydroxylation. After the identification of LM-TPs as Na+ -complexes, we identified LM-TPs as K+ -complexes. CONCLUSION We identified and characterized TPs of LAS using EC- and LM-based methods. Moreover, we found different ion complexes of LAS-based TPs. This knowledge, especially the different ion complexes, may help elucidate the metabolic and environmental degradation pathways of LAS.
Collapse
Affiliation(s)
- Lisa Knoche
- Department of Analytical Chemistry and Reference Materials, Organic Trace Analysis and Food Analysis, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Jan Lisec
- Department of Analytical Chemistry and Reference Materials, Organic Trace Analysis and Food Analysis, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - Matthias Koch
- Department of Analytical Chemistry and Reference Materials, Organic Trace Analysis and Food Analysis, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| |
Collapse
|
23
|
Investigation of the electrochemical behavior of cysteine by hyphenation of electrochemistry and mass spectrometry. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractThe identification of the reaction product species stands out as one of the main limitations of the classical electrochemical techniques. This can be overcome by the combination of electrochemistry (EC) to mass spectrometry (MS). Moreover, the method can be further enhanced by implementing a separation technique between EC and MS. In the present work, the oxidation behavior of cysteine with coupling EC directly to MS (real-time EC–MS) or by implementing capillary electrophoresis (CE), to separate the analytes before the injection into the mass spectrometer, is investigated. Electrochemical measurements and pre-treatment were applied on screen-printed electrodes (SPEs) based on carbon. Direct EC–MS measurements were carried out with a modified flow cell, while online EC–CE–MS studies of cysteine oxidation were conducted with a custom-made setup. An electrochemical conversion yield for cysteine of up to 69% was found. Cystine, cysteic acid, and cysteine sulfinic acid were found as oxidation products. The identification of these product species was carried out according to their migration behavior in CE, and mass-to-charge ratios in addition to their isotopic patterns shown in the MS spectra.
Graphical abstract
Collapse
|
24
|
Ma Y, Cui L, Li M, Cao J, Zheng L, Wei Z. Product Identification and Mechanism Exploration of Organic Electrosynthesis Using on-line Electrochemistry-Mass Spectrometry. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Alvarado JIM, Meinhardt JM, Lin S. Working at the interfaces of data science and synthetic electrochemistry. TETRAHEDRON CHEM 2022; 1. [PMID: 35441154 PMCID: PMC9014485 DOI: 10.1016/j.tchem.2022.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemistry is quickly entering the mainstream of synthetic organic chemistry. The diversity of new transformations enabled by electrochemistry is to a large extent a consequence of the unique features and reaction parameters in electrochemical systems including redox mediators, applied potential, electrode material, and cell construction. While offering chemists new means to control reactivity and selectivity, these additional features also increase the dimensionalities of a reaction system and complicate its optimization. This challenge, however, has spawned increasing adoption of data science tools to aid reaction discovery as well as development of high-throughput screening platforms that facilitate the generation of high quality datasets. In this Perspective, we provide an overview of recent advances in data-science driven electrochemistry with an emphasis on the opportunities and challenges facing this growing subdiscipline.
Collapse
|
26
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
27
|
LC-HRMS-Based Identification of Transformation Products of the Drug Salinomycin Generated by Electrochemistry and Liver Microsome. Antibiotics (Basel) 2022; 11:antibiotics11020155. [PMID: 35203758 PMCID: PMC8868298 DOI: 10.3390/antibiotics11020155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
The drug salinomycin (SAL) is a polyether antibiotic and used in veterinary medicine as coccidiostat and growth promoter. Recently, SAL was suggested as a potential anticancer drug. However, transformation products (TPs) resulting from metabolic and environmental degradation of SAL are incompletely known and structural information is missing. In this study, we therefore systematically investigated the formation and identification of SAL derived TPs using electrochemistry (EC) in an electrochemical reactor and rat and human liver microsome incubation (RLM and HLM) as TP generating methods. Liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS) was applied to determine accurate masses in a suspected target analysis to identify TPs and to deduce occurring modification reactions of derived TPs. A total of 14 new, structurally different TPs were found (two EC-TPs, five RLM-TPs, and 11 HLM-TPs). The main modification reactions are decarbonylation for EC-TPs and oxidation (hydroxylation) for RLM/HLM-TPs. Of particular interest are potassium-based TPs identified after liver microsome incubation because these might have been overlooked or declared as oxidated sodium adducts in previous, non-HRMS-based studies due to the small mass difference between K and O + Na of 21 mDa. The MS fragmentation pattern of TPs was used to predict the position of identified modifications in the SAL molecule. The obtained knowledge regarding transformation reactions and novel TPs of SAL will contribute to elucidate SAL-metabolites with regards to structural prediction.
Collapse
|
28
|
McKenzie ECR, Hosseini S, Petro AGC, Rudman KK, Gerroll BHR, Mubarak MS, Baker LA, Little RD. Versatile Tools for Understanding Electrosynthetic Mechanisms. Chem Rev 2021; 122:3292-3335. [PMID: 34919393 DOI: 10.1021/acs.chemrev.1c00471] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrosynthesis is a popular, green alternative to traditional organic methods. Understanding the mechanisms is not trivial yet is necessary to optimize reaction processes. To this end, a multitude of analytical tools is available to identify and quantitate reaction products and intermediates. The first portion of this review serves as a guide that underscores electrosynthesis fundamentals, including instrumentation, electrode selection, impacts of electrolyte and solvent, cell configuration, and methods of electrosynthesis. Next, the broad base of analytical techniques that aid in mechanism elucidation are covered in detail. These methods are divided into electrochemical, spectroscopic, chromatographic, microscopic, and computational. Technique selection is dependent on predicted reaction pathways and electrogenerated intermediates. Often, a combination of techniques must be utilized to ensure accuracy of the proposed model. To conclude, future prospects that aim to enhance the field are discussed.
Collapse
Affiliation(s)
- Eric C R McKenzie
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Seyyedamirhossein Hosseini
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ana G Couto Petro
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kelly K Rudman
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Benjamin H R Gerroll
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | | - Lane A Baker
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - R Daniel Little
- Department of Chemistry, University of California Santa Barbara, Building 232, Santa Barbara, California 93106, United States
| |
Collapse
|
29
|
Chen Z, Wang X, Mills JP, Du C, Kim J, Wen J, Wu YA. Two-dimensional materials for electrochemical CO 2 reduction: materials, in situ/ operando characterizations, and perspective. NANOSCALE 2021; 13:19712-19739. [PMID: 34817491 DOI: 10.1039/d1nr06196h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical CO2 reduction (CO2 ECR) is an efficient approach to achieving eco-friendly energy generation and environmental sustainability. This approach is capable of lowering the CO2 greenhouse gas concentration in the atmosphere while producing various valuable fuels and products. For catalytic CO2 ECR, two-dimensional (2D) materials stand as promising catalyst candidates due to their superior electrical conductivity, abundant dangling bonds, and tremendous amounts of surface active sites. On the other hand, the investigations on fundamental reaction mechanisms in CO2 ECR are highly demanded but usually require advanced in situ and operando multimodal characterizations. This review summarizes recent advances in the development, engineering, and structure-activity relationships of 2D materials for CO2 ECR. Furthermore, we overview state-of-the-art in situ and operando characterization techniques, which are used to investigate the catalytic reaction mechanisms with the spatial resolution from the micron-scale to the atomic scale, and with the temporal resolution from femtoseconds to seconds. Finally, we conclude this review by outlining challenges and opportunities for future development in this field.
Collapse
Affiliation(s)
- Zuolong Chen
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Joel P Mills
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Cheng Du
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Jintae Kim
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - John Wen
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
30
|
Pietrzak M, Jopa S, Mames A, Urbańczyk M, Woźny M, Ratajczyk T. Recent Progress in Liquid State Electrochemistry Coupled with NMR Spectroscopy. ChemElectroChem 2021. [DOI: 10.1002/celc.202100724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mariusz Pietrzak
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Sylwia Jopa
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Adam Mames
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Mateusz Urbańczyk
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Centre of New Technologies University of Warsaw Banacha 2 C 02-097 Warsaw Poland
| | - Mateusz Woźny
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
31
|
Göldner V, Fangmeyer J, Karst U. Development of an electrochemical flow-through cell for the fast and easy generation of isotopically labeled metabolite standards. Drug Test Anal 2021; 14:262-268. [PMID: 34634186 DOI: 10.1002/dta.3175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
In drug development, metabolite standards of new chemical entities are required for a comprehensive safety evaluation. Stable isotope-labeled internal metabolite standards at the milligram scale, which are difficult and expensive to synthesize in common bottom-up approaches, are necessary for metabolite quantification using liquid chromatography/mass spectrometry. A preparative electrochemical flow-through cell is presented here as a powerful tool for the cheap and straightforward synthesis of milligram amounts of isotopically labeled metabolite standards. The developed cell scales up established, so-called "coulometric" electrochemical cells. Problems like electrode fouling and cross contamination between syntheses are addressed by the use of exchangeable working electrodes. The applicability of the developed cell for the synthesis of metabolite standards is demonstrated using isotopically labeled acetaminophen as a model system for the generation of a biologically relevant phase II metabolite.
Collapse
Affiliation(s)
- Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany.,International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Münster, Germany
| | - Jens Fangmeyer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany.,International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Münster, Germany
| |
Collapse
|
32
|
Pishgar S, Gulati S, Strain JM, Liang Y, Mulvehill MC, Spurgeon JM. In Situ Analytical Techniques for the Investigation of Material Stability and Interface Dynamics in Electrocatalytic and Photoelectrochemical Applications. SMALL METHODS 2021; 5:e2100322. [PMID: 34927994 DOI: 10.1002/smtd.202100322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Indexed: 06/14/2023]
Abstract
Electrocatalysis and photoelectrochemistry are critical to technologies like fuel cells, electrolysis, and solar fuels. Material stability and interfacial phenomena are central to the performance and long-term viability of these technologies. Researchers need tools to uncover the fundamental processes occurring at the electrode/electrolyte interface. Numerous analytical instruments are well-developed for material characterization, but many are ex situ techniques often performed under vacuum and without applied bias. Such measurements miss dynamic phenomena in the electrolyte under operational conditions. However, innovative advancements have allowed modification of these techniques for in situ characterization in liquid environments at electrochemically relevant conditions. This review explains some of the main in situ electrochemical characterization techniques, briefly explaining the principle of operation and highlighting key work in applying the method to investigate material stability and interfacial properties for electrocatalysts and photoelectrodes. Covered methods include spectroscopy (in situ UV-vis, ambient pressure X-ray photoelectron spectroscopy (APXPS), and in situ Raman), mass spectrometry (on-line inductively coupled plasma mass spectrometry (ICP-MS) and differential electrochemical mass spectrometry (DEMS)), and microscopy (in situ transmission electron microscopy (TEM), electrochemical atomic force microscopy (EC-AFM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical microscopy (SECM)). Each technique's capabilities and advantages/disadvantages are discussed and summarized for comparison.
Collapse
Affiliation(s)
- Sahar Pishgar
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292, USA
| | - Saumya Gulati
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292, USA
| | - Jacob M Strain
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292, USA
| | - Ying Liang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Matthew C Mulvehill
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292, USA
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
33
|
Freitas D, Chen X, Cheng H, Davis A, Fallon B, Yan X. Recent Advances of In-Source Electrochemical Mass Spectrometry. Chempluschem 2021; 86:434-445. [PMID: 33689239 DOI: 10.1002/cplu.202100030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Hyphenation of electrochemistry (EC) and mass spectrometry has become a powerful tool to study redox processes. Approaches that can achieve this hyphenation include integrating chromatography/electrophoresis between electroinduced redox reactions and detection of products, coupling an EC flow cell to a mass spectrometer, and performing electrochemical reactions inside the ion source of a mass spectrometer. The first two approaches have been well reviewed elsewhere. This Minireview highlights the inherent electrochemical properties of many mass spectrometry ion sources and their roles in the coupling of electrochemistry and mass spectrometric analysis. Development of modified ion sources that allow the compatibility of electrochemistry with ionization processes is also surveyed. Applications of different in-source electrochemical devices are provided including intermediate capturing, bioanalytical studies, nanoparticle formation, electrosynthesis, and electrode imaging.
Collapse
Affiliation(s)
- Dallas Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Austin Davis
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Blake Fallon
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX 77843, USA
| |
Collapse
|
34
|
Daviddi E, Shkirskiy V, Kirkman PM, Robin MP, Bentley CL, Unwin PR. Nanoscale electrochemistry in a copper/aqueous/oil three-phase system: surface structure-activity-corrosion potential relationships. Chem Sci 2020; 12:3055-3069. [PMID: 34164075 PMCID: PMC8179364 DOI: 10.1039/d0sc06516a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Practically important metal electrodes are usually polycrystalline, comprising surface grains of many different crystallographic orientations, as well as grain boundaries. In this study, scanning electrochemical cell microscopy (SECCM) is applied in tandem with co-located electron backscattered diffraction (EBSD) to give a holistic view of the relationship between the surface structure and the electrochemical activity and corrosion susceptibility of polycrystalline Cu. An unusual aqueous nanodroplet/oil (dodecane)/metal three-phase configuration is employed, which opens up new prospects for fundamental studies of multiphase electrochemical systems, and mimics the environment of corrosion in certain industrial and automotive applications. In this configuration, the nanodroplet formed at the end of the SECCM probe (nanopipette) is surrounded by dodecane, which acts as a reservoir for oil-soluble species (e.g., O2) and can give rise to enhanced flux(es) across the immiscible liquid–liquid interface, as shown by finite element method (FEM) simulations. This unique three-phase configuration is used to fingerprint nanoscale corrosion in a nanodroplet cell, and to analyse the interrelationship between the Cu oxidation, Cu2+ deposition and oxygen reduction reaction (ORR) processes, together with nanoscale open circuit (corrosion) potential, in a grain-by-grain manner. Complex patterns of surface reactivity highlight the important role of grains of high-index orientation and microscopic surface defects (e.g., microscratches) in modulating the corrosion-properties of polycrystalline Cu. This work provides a roadmap for in-depth surface structure–function studies in (electro)materials science and highlights how small variations in surface structure (e.g., crystallographic orientation) can give rise to large differences in nanoscale reactivity. Probing Cu corrosion in an aqueous nanodroplet/oil/metal three-phase environment revealed unique patterns of surface reactivity. The electrochemistry of high-index facets cannot be predicted simply from the low-index {001}, {011} and {111} responses.![]()
Collapse
Affiliation(s)
- Enrico Daviddi
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | | | | | - Cameron L Bentley
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK .,School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
35
|
Fangmeyer J, Behrens A, Gleede B, Waldvogel SR, Karst U. Mass-Spectrometric Imaging of Electrode Surfaces-a View on Electrochemical Side Reactions. Angew Chem Int Ed Engl 2020; 59:20428-20433. [PMID: 33448566 PMCID: PMC7693111 DOI: 10.1002/anie.202010134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 12/18/2022]
Abstract
Electrochemical side reactions, often referred to as "electrode fouling", are known to be a major challenge in electro-organic synthesis and the functionality of modern batteries. Often, polymerization of one or more components is observed. When reaching their limit of solubility, those polymers tend to adsorb on the surface of the electrode, resulting in a passivation of the respective electrode area, which may impact electrochemical performance. Here, matrix-assisted laser-desorption/ionization mass spectrometry (MALDI-MS) is presented as valuable imaging technique to visualize polymer deposition on electrode surfaces. Oligomer size distribution and its dependency on the contact time were imaged on a boron-doped diamond (BDD) anode of an electrochemical flow-through cell. The approach allows to detect weak spots, where electrode fouling may take place and provides insight into the identity of side-product pathways.
Collapse
Affiliation(s)
- Jens Fangmeyer
- Institute of Inorganic and Analytical ChemistryUniversity of MünsterCorrensstrasse 3048149MünsterGermany
| | - Arne Behrens
- Institute of Inorganic and Analytical ChemistryUniversity of MünsterCorrensstrasse 3048149MünsterGermany
| | - Barbara Gleede
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Uwe Karst
- Institute of Inorganic and Analytical ChemistryUniversity of MünsterCorrensstrasse 3048149MünsterGermany
| |
Collapse
|
36
|
Fangmeyer J, Behrens A, Gleede B, Waldvogel SR, Karst U. Mass‐Spectrometric Imaging of Electrode Surfaces—a View on Electrochemical Side Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jens Fangmeyer
- Institute of Inorganic and Analytical Chemistry University of Münster Corrensstrasse 30 48149 Münster Germany
| | - Arne Behrens
- Institute of Inorganic and Analytical Chemistry University of Münster Corrensstrasse 30 48149 Münster Germany
| | - Barbara Gleede
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry University of Münster Corrensstrasse 30 48149 Münster Germany
| |
Collapse
|