1
|
Kimball JJ, Schurko RW. Acquisition of 1H-Detected 103Rh and 99Ru Solid-State Nuclear Magnetic Resonance Spectra in Stationary Samples. J Phys Chem Lett 2025:4596-4601. [PMID: 40310694 DOI: 10.1021/acs.jpclett.5c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The platinum group elements (PGEs) are among the most important in the periodic table due to their critical roles in a diverse array of applications. There is great interest in using solid-state nuclear magnetic resonance (SSNMR) for studying the structure and bonding in PGE complexes from the perspective of the metal nuclides, yet this has been limited to date. This is largely due to the inherently low Larmor frequencies of many of the PGE nuclides in addition to factors such as low natural abundances and/or large anisotropic interactions that reduce their receptivity to the NMR experiment. In this work, we demonstrate for the first time the ability to indirectly detect (with 1H, I = 1/2) wideline SSNMR powder patterns from stationary samples of compounds featuring 103Rh (S = 1/2) and 99Ru (S = 5/2) using the recently introduced progressive saturation of the proton reservoir (PROSPR) pulse sequence.
Collapse
Affiliation(s)
- James J Kimball
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
2
|
Ray S, Redrouthu VS, Equbal A, Jain SK. Optimal control-based nuclear spin cross-polarization in the presence of complicating anisotropic interactions. Phys Chem Chem Phys 2025; 27:7016-7027. [PMID: 40047693 DOI: 10.1039/d5cp00096c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cross-polarization is an indispensable part of solid state nuclear magnetic resonance spectroscopy to enhance sensitivity and extract structural information. However, the presence of certain anisotropic interactions, including chemical shift anisotropy and quadrupolar coupling, makes the inter-nuclear spin correlation experiments challenging. This impedes characterization of numerous materials and pharmaceutical compounds containing isotopes, such as 19F with large chemical shift anisotropy and 6/7Li, 23Na, 27Al, etc., with quadrupolar coupling. To address this problem, we introduce a new optimal control simulation-generated pulse sequence for Optimal Polarization Transfer In the presence of Anisotropic Nuclear Spin interactions (OPTIANS). Numerical simulations show high efficiency and robustness against experimental imperfections under a broad range of anisotropic interaction strengths for 19F-7Li, 19F-23Na, 19F-27Al, and 19F-13C polarization transfers. The polarization transfer curves show transient oscillations, which make the pulse sequence a quantitative method for dipolar coupling measurements. Experiments on a multi-metal fluoride system validate the predictions of the simulations by showing efficient PT in three spin pairs at varying experimental conditions. Remarkably, this method shows 50% better 19F-7Li PT efficiency at 14.1 T compared to the ramped cross-polarization experiment. The underlying polarization transfer mechanism is analyzed using the Fourier transform of the polarization transfer curves revealing that this optimal control method utilizes the chemical shift anisotropy and quadrupolar coupling to facilitate robust and efficient cross-polarization.
Collapse
Affiliation(s)
- Shovik Ray
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India.
| | - Venkata SubbaRao Redrouthu
- Department of Chemistry, New York University, Abu Dhabi 129188, United Arab Emirates
- Center for Quantum and Topological Systems, New York University, Abu Dhabi 129188, United Arab Emirates
| | - Asif Equbal
- Department of Chemistry, New York University, Abu Dhabi 129188, United Arab Emirates
- Center for Quantum and Topological Systems, New York University, Abu Dhabi 129188, United Arab Emirates
- Center for Smart Engineering Materials, New York University, Abu Dhabi 129188, United Arab Emirates
| | - Sheetal Kumar Jain
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
3
|
Agarwal V, Raran-Kurussi S, Nishiyama Y. Spin-dynamics and efficiency of single 14N- 1H cross-polarization at fast magic angle spinning in solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2025; 136:101992. [PMID: 39923295 DOI: 10.1016/j.ssnmr.2025.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
The naturally abundant 14N isotope (>99 %) is sparingly employed for characterization in solid-state nuclear magnetic resonance (NMR) despite the importance of nitrogen atoms in shaping molecular structures and properties. This inhibition can be attributed to large quadrupolar couplings (∼several MHz), resulting in more involved spin methodologies for 14N nuclei. Experimentally, spin-½ nuclei are utilized for excitation and detection through two-way (1H→14N→1H) polarization transfer between spin-½ nuclei and 14N. Herein, we show direct 14N spin excitation followed by 14N→1H cross-polarization (CP) is an efficient method for polarization transfer even for 14N spins with a large quadrupolar coupling constant (3-4 MHz). This contrasts previous studies, which indicate that 1H-14N spectra can only be observed with a pair of at least a rotor period-long symmetric 14N pulses (J. Chem. Phys. 151 (2019) 154202). The 14N→1H CP spin dynamics have been experimentally established and can be explained in analogy to spin-½ Hartmann-Hahn CP if visualized in the quadrupolar jolting frame. The 14N→1H CP is ∼1.9-2.7 times more efficient in polarization transfer than other 14N edited experiments. Considering shorter 14N T1 relaxation times compared to protons, 14N edited spectra were recorded using 14N→1H CP, resulting in enhanced sensitivity per unit of time.
Collapse
Affiliation(s)
- Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad, 500 046, India.
| | - Sreejith Raran-Kurussi
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad, 500 046, India
| | | |
Collapse
|
4
|
Ahmed KS, Harris KJ. Significant 13C NMR signal enhancements in amino acids via adiabatic demagnetization and remagnetization cross polarization. Chem Commun (Camb) 2024; 60:13207-13210. [PMID: 39441136 DOI: 10.1039/d4cc03604b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Herein, we report an improvement over Hartmann-Hahn cross polarization for NMR signal enhancement: adiabatic demagnetization/remagnetization transfers that provide up to a 9-fold experimental speedup for 13C NMR signals in amino acids over conventional means. The experiment proved insensitive to site type, and we also demonstrate a means for making it compatible with high-resolution spectroscopy.
Collapse
Affiliation(s)
- Kazi S Ahmed
- Chemistry Program, Louisiana Tech University, Ruston, Louisiana 71272, USA.
| | | |
Collapse
|
5
|
Wolf T, Goobes Y, Frydman L. Sensitivity Enhancement of Ultra-Wideline NMR by Progressive Saturation of the Proton Reservoir Under Magic-Angle Spinning. Chemphyschem 2024; 25:e202400613. [PMID: 39101285 DOI: 10.1002/cphc.202400613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Solid-state NMR of low-γ nuclides is often characterized by low sensitivity and by significant spectral broadenings induced by the quadrupolar and the chemical-shift anisotropy interactions. Herein, we introduce an indirect acquisition method, termed PROgressive Saturation of the Proton Reservoir Under Spinning (PROSPRUS), which could facilitate the acquisition of ultra-wideline NMR spectra under magic-angle spinning (MAS), in systems with a sufficiently long dipolar relaxation time, T1D. PROSPRUS NMR relies on the generation of so-called second-order dipolar order among abundant protons undergoing MAS, and on the subsequent depletion of this dipolar order by a series of looped cross-polarization events, transferring the proton order into polarization of the low-γ I-nuclei as a function of the latter's offsets. While the spin dynamics of the ensuing experiment is complex, particularly when dealing with narrow I spectral lines, it is shown that PROSPRUS can lead to faithful lineshapes for ultra-wideline spin-1/2 and spin-1 species, providing high sensitivity with extremely low RF power requirements. It is also shown that the ensuing 1H-detected PROSPRUS experiments can efficiently characterize I-spin lineshapes in excess of 1 MHz without having to retune electronics, while providing improvements in sensitivity per unit time over current broadband direct-detection methods by up to a factor of four.
Collapse
Affiliation(s)
- Tamar Wolf
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yuval Goobes
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
6
|
Holmes ST, Schönzart J, Philips AB, Kimball JJ, Termos S, Altenhof AR, Xu Y, O'Keefe CA, Autschbach J, Schurko RW. Structure and bonding in rhodium coordination compounds: a 103Rh solid-state NMR and relativistic DFT study. Chem Sci 2024; 15:2181-2196. [PMID: 38332836 PMCID: PMC10848688 DOI: 10.1039/d3sc06026h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024] Open
Abstract
This study demonstrates the application of 103Rh solid-state NMR (SSNMR) spectroscopy to inorganic and organometallic coordination compounds, in combination with relativistic density functional theory (DFT) calculations of 103Rh chemical shift tensors and their analysis with natural bond orbital (NBO) and natural localized molecular orbital (NLMO) protocols, to develop correlations between 103Rh chemical shift tensors, molecular structure, and Rh-ligand bonding. 103Rh is one of the least receptive NMR nuclides, and consequently, there are very few reports in the literature. We introduce robust 103Rh SSNMR protocols for stationary samples, which use the broadband adiabatic inversion-cross polarization (BRAIN-CP) pulse sequence and wideband uniform-rate smooth-truncation (WURST) pulses for excitation, refocusing, and polarization transfer, and demonstrate the acquisition of 103Rh SSNMR spectra of unprecedented signal-to-noise and uniformity. The 103Rh chemical shift tensors determined from these spectra are complemented by NBO/NLMO analyses of contributions of individual orbitals to the 103Rh magnetic shielding tensors to understand their relationship to structure and bonding. Finally, we discuss the potential for these experimental and theoretical protocols for investigating a wide range of materials containing the platinum group elements.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Jasmin Schönzart
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Adam B Philips
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - James J Kimball
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Sara Termos
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Adam R Altenhof
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Yijue Xu
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Christopher A O'Keefe
- Department of Chemistry & Biochemistry, University of Windsor Windsor ON N9B 3P4 Canada
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| |
Collapse
|
7
|
Kimball JJ, Altenhof AR, Jaroszewicz MJ, Schurko RW. Broadband Cross-Polarization to Half-Integer Quadrupolar Nuclei: Wideline Static NMR Spectroscopy. J Phys Chem A 2023; 127:9621-9634. [PMID: 37922436 DOI: 10.1021/acs.jpca.3c05447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Cross-polarization (CP) is a technique commonly used for the signal enhancement of NMR spectra; however, applications to quadrupolar nuclei have heretofore been limited due to a number of problems, including poor spin-locking efficiency, inconvenient relaxation times, and reduced CP efficiencies over broad spectral bandwidths─this is unfortunate, since they constitute 73% of NMR-active nuclei in the periodic table. The Broadband Adiabatic Inversion CP (BRAIN-CP) pulse sequence has proven useful for the signal enhancement of wideline and ultra-wideline (i.e., 250 kHz to several MHz in breadth) powder patterns arising from stationary samples; however, a comprehensive investigation of its application to half-integer quadrupolar nuclei (HIQN) is currently lacking. Herein, we present theoretical and experimental considerations for applying BRAIN-CP to acquire central-transition (CT, +1/2 ↔ -1/2) powder patterns of HIQN. Consideration is given to parameters crucial to the success of the experiment, such as the Hartmann-Hahn (HH) matching conditions and the phase modulation of the contact pulse. Modifications to the BRAIN-CP sequence such as flip-back (FB) pulses and ramped contact pulses applied to the 1H spins are used for the reduction of experimental times and increased CP bandwidth capabilities, respectively. Spectra for a series of quadrupolar nuclei with broad CT powder patterns, including 35Cl (S = 3/2), 55Mn (S = 5/2), 59Co (S = 7/2), and 93Nb (S = 9/2), are acquired via direct excitation (CPMG and WCPMG) and indirect excitation (CP/CPMG and BRAIN-CP) methods. We demonstrate that proper implementation of the sequence can enable 1H-S broadband CP over a bandwidth of 1 MHz, which to the best of our knowledge is the largest CP bandwidth reported to date. Finally, we establish the basic principles necessary for simplified optimization and execution of the BRAIN-CP pulse sequence for a wide range of HIQNs.
Collapse
Affiliation(s)
- James J Kimball
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Adam R Altenhof
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Michael J Jaroszewicz
- Department of Chemical & Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
8
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
9
|
Bayzou R, Trébosc J, Hung I, Gan Z, Lafon O, Amoureux JP. Indirect NMR detection via proton of nuclei subject to large anisotropic interactions, such as 14N, 195Pt, and 35Cl, using the T-HMQC sequence. J Chem Phys 2022; 156:064202. [DOI: 10.1063/5.0082700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Racha Bayzou
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, 59000 Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638–IMEC–Fédération Chevreul, 59000 Lille, France
| | - Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, 59000 Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181–UCCS–Unité de Catalyse et Chimie du Solide, 59000 Lille, France
- Riken NMR Science and Development Division, Yokohama-shi 230-0045, Kanagawa, Japan
- Bruker Biospin, 34 rue de l’industrie, 67166 Wissembourg, France
| |
Collapse
|
10
|
Altenhof AR, Jaroszewicz MJ, Frydman L, Schurko R. 3D Relaxation-Assisted Separation of Wideline Solid-State NMR Patterns for Achieving Site Resolution. Phys Chem Chem Phys 2022; 24:22792-22805. [DOI: 10.1039/d2cp00910b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There are currently no methods for the acquisition of ultra-wideline (UW) solid-state NMR spectra under static conditions that enable reliable separation and resolution of overlapping powder patterns arising from magnetically...
Collapse
|
11
|
Holmes ST, Hook JM, Schurko RW. Nutraceuticals in Bulk and Dosage Forms: Analysis by 35Cl and 14N Solid-State NMR and DFT Calculations. Mol Pharm 2021; 19:440-455. [PMID: 34792373 DOI: 10.1021/acs.molpharmaceut.1c00708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study uses 35Cl and 14N solid-state NMR (SSNMR) spectroscopy and dispersion-corrected plane-wave density functional theory (DFT) calculations for the structural characterization of chloride salts of nutraceuticals in their bulk and dosage forms. For eight nutraceuticals, we measure the 35Cl EFG tensor parameters of the chloride ions and use plane-wave DFT calculations to elucidate relationships between NMR parameters and molecular-level structure, which provide rapid NMR crystallographic assessments of structural features. We employ both 35Cl direct excitation and 1H→35Cl cross-polarization methods to characterize a dosage form containing α-d-glucosamine HCl, observe possible impurity and/or adulterant phases, and quantify the weight percent of the active ingredient. To complement this, we also investigate 14N SSNMR spectroscopy and DFT calculations to characterize nitrogen atoms in the nutraceuticals. This includes a discussion of targeted acquisition experimental protocols (i.e., acquiring a select region of the overall pattern that features key discontinuities) that allow ultrawideline spectra to be acquired rapidly, even for unreceptive samples (i.e., those with long values of T1(14N), short values of T2eff(14N), or very broad patterns). It is hoped that these experimental and computational protocols will be useful for the characterization of various solid forms of nutraceuticals (i.e., salts, polymorphs, hydrates, solvates, cocrystals, amorphous solid dispersions, etc.), help detect impurity and counterfeit solid phases in dosage forms, and serve as a foundation for future NMR crystallographic studies of nutraceutical solid forms, including studies using ab initio crystal structure prediction algorithms.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia.,School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
12
|
Altenhof AR, Wi S, Schurko RW. Broadband adiabatic inversion cross-polarization to integer-spin nuclei with application to deuterium NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1009-1023. [PMID: 33634894 DOI: 10.1002/mrc.5145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Solid-state NMR (SSNMR) spectroscopy of integer-spin quadrupolar nuclei is important for the molecular-level characterization of a variety of materials and biological solids; of the integer spins, 2 H (S = 1) is by far the most widely studied, due to its usefulness in probing dynamical motions. SSNMR spectra of integer-spin nuclei often feature very broad powder patterns that arise largely from the effects of the first-order quadrupolar interaction; as such, the acquisition of high-quality spectra continues to remain a challenge. The broadband adiabatic inversion cross-polarization (BRAIN-CP) pulse sequence, which is capable of cross-polarization (CP) enhancement over large bandwidths, has found success for the acquisition of SSNMR spectra of integer-spin nuclei, including 14 N (S = 1), especially when coupled with Carr-Purcell/Meiboom-Gill pulse sequences featuring frequency-swept WURST pulses (WURST-CPMG) for T2 -based signal enhancement. However, to date, there has not been a systematic investigation of the spin dynamics underlying BRAIN-CP, nor any concrete theoretical models to aid in its parameterization for applications to integer-spin nuclei. In addition, the BRAIN-CP/WURST-CPMG scheme has not been demonstrated for generalized application to wideline or ultra-wideline (UW) 2 H SSNMR. Herein, we provide a theoretical description of the BRAIN-CP pulse sequence for spin-1/2 → spin-1 CP under static conditions, featuring a set of analytical equations describing Hartmann-Hahn matching conditions and numerical simulations that elucidate a CP mechanism involving polarization transfer, coherence exchange, and adiabatic inversion. Several experimental examples are presented for comparison with theoretical models and previously developed integer-spin CP methods, demonstrating rapid acquisition of 2 H NMR spectra from efficient broadband CP.
Collapse
Affiliation(s)
- Adam R Altenhof
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA
| | - Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA
| |
Collapse
|
13
|
Altenhof AR, Jaroszewicz MJ, Harris KJ, Schurko RW. Broadband adiabatic inversion experiments for the measurement of longitudinal relaxation time constants. J Chem Phys 2021; 154:034202. [PMID: 33499635 DOI: 10.1063/5.0039017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Accurate measurements of longitudinal relaxation time constants (T1) in solid-state nuclear magnetic resonance (SSNMR) experiments are important for the study of molecular-level structure and dynamics. Such measurements are often made under magic-angle spinning conditions; however, there are numerous instances where they must be made on stationary samples, which often give rise to broad powder patterns arising from large anisotropic NMR interactions. In this work, we explore the use of wideband uniform-rate smooth-truncation pulses for the measurement of T1 constants. Two experiments are introduced: (i) BRAIN-CPT1, a modification of the BRAIN-CP (BRoadband Adiabatic-INversion-Cross Polarization) sequence, for broadband CP-based T1 measurements and (ii) WCPMG-IR, a modification of the WURST-CPMG sequence, for direct-excitation (DE) inversion-recovery experiments. A series of T1 constants are measured for spin-1/2 and quadrupolar nuclei with broad powder patterns, such as 119Sn (I = 1/2), 35Cl (I = 3/2), 2H (I = 1), and 195Pt (I = 1/2). High signal-to-noise spectra with uniform patterns can be obtained due to signal enhancements from T2 eff-weighted echo trains, and in favorable cases, BRAIN-CPT1 allows for the rapid measurement of T1 in comparison to DE experiments. Protocols for spectral acquisition, processing, and analysis of relaxation data are discussed. In most cases, relaxation behavior can be modeled with either monoexponential or biexponential functions based upon measurements of integrated powder pattern intensity; however, it is also demonstrated that one must interpret such T1 values with caution, as demonstrated by measurements of T1 anisotropy in 119Sn, 2H, and 195Pt NMR spectra.
Collapse
Affiliation(s)
- Adam R Altenhof
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Michael J Jaroszewicz
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Kristopher J Harris
- Department of Chemistry, Louisiana Tech University, Ruston, Louisiana 71272, USA
| | - Robert W Schurko
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| |
Collapse
|
14
|
Holmes ST, Vojvodin CS, Schurko RW. Dispersion-Corrected DFT Methods for Applications in Nuclear Magnetic Resonance Crystallography. J Phys Chem A 2020; 124:10312-10323. [DOI: 10.1021/acs.jpca.0c06372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean T. Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Cameron S. Vojvodin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Robert W. Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
15
|
Wijesekara AV, Venkatesh A, Lampkin BJ, VanVeller B, Lubach JW, Nagapudi K, Hung I, Gor'kov PL, Gan Z, Rossini AJ. Fast Acquisition of Proton-Detected HETCOR Solid-State NMR Spectra of Quadrupolar Nuclei and Rapid Measurement of NH Bond Lengths by Frequency Selective HMQC and RESPDOR Pulse Sequences. Chemistry 2020; 26:7881-7888. [PMID: 32315472 DOI: 10.1002/chem.202000390] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/20/2020] [Indexed: 12/14/2022]
Abstract
Fast magic-angle spinning (MAS), frequency selective (FS) heteronuclear multiple quantum coherence (HMQC) experiments which function in an analogous manner to solution SOFAST HMQC NMR experiments, are demonstrated. Fast MAS enables efficient FS excitation of 1 H solid-state NMR signals. Selective excitation and observation preserves 1 H magnetization, leading to a significant shortening of the optimal inter-scan delay. Dipolar and scalar 1 H{14 N} FS HMQC solid-state NMR experiments routinely provide 4- to 9-fold reductions in experiment times as compared to conventional 1 H{14 N} HMQC solid-state NMR experiments. 1 H{14 N} FS resonance-echo saturation-pulse double-resonance (RESPDOR) allowed dipolar dephasing curves to be obtained in minutes, enabling the rapid determination of NH dipolar coupling constants and internuclear distances. 1 H{14 N} FS RESPDOR was used to assign multicomponent active pharmaceutical ingredients (APIs) as salts or cocrystals. FS HMQC also provided enhanced sensitivity for 1 H{17 O} and 1 H{35 Cl} HMQC experiments on 17 O-labeled Fmoc-alanine and histidine hydrochloride monohydrate, respectively. FS HMQC and FS RESPDOR experiments will provide access to valuable structural constraints from materials that are challenging to study due to unfavorable relaxation times or dilution of the nuclei of interest.
Collapse
Affiliation(s)
- Anuradha V Wijesekara
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.,US DOE Ames Laboratory, Ames, IA, 50011, USA
| | - Amrit Venkatesh
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.,US DOE Ames Laboratory, Ames, IA, 50011, USA
| | - Bryan J Lampkin
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | | | | | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL, 32310, USA
| | - Peter L Gor'kov
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL, 32310, USA
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL, 32310, USA
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.,US DOE Ames Laboratory, Ames, IA, 50011, USA
| |
Collapse
|
16
|
Hung I, Gor'kov P, Gan Z. Efficient and sideband-free 1H-detected 14N magic-angle spinning NMR. J Chem Phys 2019; 151:154202. [PMID: 31640368 DOI: 10.1063/1.5126599] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Indirect detection via sensitive spin-1/2 nuclei like protons under magic-angle spinning (MAS) has been developed to overcome the low spectral sensitivity and resolution of 14N NMR. The 14N quadrupolar couplings cause inefficient encoding of the 14N frequency due to large frequency offsets and make the rotor-synchronization of the evolution time necessary. It is shown that 14N rf pulses longer than the rotor period can efficiently encode 14N frequencies and generate spinning sideband free spectra along the indirect dimension. Average Hamiltonian and Floquet theories in the quadrupolar jolting frame (QJF) are used to treat the spin dynamics of the spin-1 quadrupolar nucleus under long 14N rf pulses and MAS. The results show that the rf action can be described by a scaled and phase-shifted effective rf field. The large quadrupolar frequency offset becomes absent in the QJF and therefore leads to sideband-free spectra along the indirect dimension. More importantly, when a pair of long 14N rf pulses are used, the distribution of the phase shift of the effective rf field does not affect the 14N encoding for powder samples; thus, high efficiencies can be obtained. The efficient and sideband-free features are demonstrated for three 1H/14N indirectly detected experiments using long 14N pulses under fast MAS.
Collapse
Affiliation(s)
- Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Peter Gor'kov
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| |
Collapse
|
17
|
Rankin AGM, Trébosc J, Paluch P, Lafon O, Amoureux JP. Evaluation of excitation schemes for indirect detection of 14N via solid-state HMQC NMR experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 303:28-41. [PMID: 30999136 DOI: 10.1016/j.jmr.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
It has previously been shown that 14N NMR spectra can be reliably obtained through indirect detection via HMQC experiments. This method exploits the transfer of coherence between single-(SQ) or double-quantum (DQ) 14N coherences, and SQ coherences of a suitable spin-1/2 'spy' nucleus, e.g., 1H. It must be noted that SQ-SQ methods require a carefully optimized setup to minimize the broadening related to the first-order quadrupole interaction (i.e., an extremely well-adjusted magic angle and a highly stable spinning speed), whereas DQ-SQ ones do not. In this work, the efficiencies of four 14N excitation schemes (DANTE, XiX, Hard Pulse (HP), and Selective Long Pulse (SLP)) are compared using J-HMQC based numerical simulations and either SQ-SQ or DQ-SQ 1H-{14N} D-HMQC experiments on l-histidine HCl and N-acetyl-l-valine at 18.8 T and 62.5 kHz MAS. The results demonstrate that both DANTE and SLP provide a more efficient 14N excitation profile than XiX and HP. Furthermore, it is shown that the SLP scheme: (i) is efficient over a large range of quadrupole interaction, (ii) is highly robust to offset and rf-pulse length and amplitude, and (iii) is very simple to set up. These factors make SLP ideally suited to widespread, non-specialist use in solid-state NMR analyses of nitrogen-containing materials.
Collapse
Affiliation(s)
- Andrew G M Rankin
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France.
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Univ. Lille, CNRS-FR2638, Fédération Chevreul, F-59000 Lille, France
| | - Piotr Paluch
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90363 Lodz, Poland
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Institut Universitaire de France, 1 rue Descartes, F-75231 Paris Cedex 05, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Bruker Biospin, 34 rue de l'industrie, F-67166 Wissembourg, France.
| |
Collapse
|
18
|
Jarvis JA, Concistre M, Haies IM, Bounds RW, Kuprov I, Carravetta M, Williamson PTF. Quantitative analysis of 14N quadrupolar coupling using 1H detected 14N solid-state NMR. Phys Chem Chem Phys 2019; 21:5941-5949. [PMID: 30809601 DOI: 10.1039/c8cp06276e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magic-angle spinning solid-state NMR is increasingly utilized to study the naturally abundant, spin-1 nucleus 14N, providing insights into the structure and dynamics of biological and organic molecules. In particular, the characterisation of 14N sites using indirect detection has proven useful for complex molecules, where the 'spy' nucleus provides enhanced sensitivity and resolution. Here we exploit the sensitivity of proton detection, to indirectly characterise 14N sites using a moderate rf field to generate coherence between the 1H and 14N at moderate and fast-magic-angle spinning frequencies. Efficient numerical simulations have been developed that have allowed us to quantitatively analyse the resulting 14N lineshapes to determine both the size and asymmetry of the quadrupolar interaction. Exploiting only naturally occurring abundant isotopes will aid the analysis of materials with the need to resort to isotope labelling, whilst providing additional insights into the structure and dynamics that the characterisation of the quadrupolar interaction affords.
Collapse
Affiliation(s)
- James A Jarvis
- Centre for Biological Sciences, University of Southampton, SO17 1BJ, Southampton, UK.
| | | | | | | | | | | | | |
Collapse
|
19
|
Wi S, Schurko RW, Frydman L. Broadband adiabatic inversion cross-polarization phenomena in the NMR of rotating solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 94:31-53. [PMID: 30125798 DOI: 10.1016/j.ssnmr.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
We explore the use of cross-polarization magic-angle spinning (CPMAS) methods incorporating an adiabatic frequency sweep in a standard Hartman-Hahn CPMAS pulse scheme, to achieve signal enhancements in solid-state NMR spectra of rare spins under fast MAS spinning rates, including spin-1/2, integer spin, and half-integer spin nuclides. These experiments, dubbed Broadband Adiabatic INversion Cross-Polarization Magic-Angle Spinning (BRAIN-CPMAS) experiments, involve an adiabatic inversion pulse on the S-channel of a rare spin nuclide while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). The signal enhancement imparted by this CP scheme on the S-spin is broadbanded, while employing low RF field strengths on both I- and S-channels. A feature demanded by these BRAIN-CPMAS methods is to impose a selective adiabatic frequency sweep over a single MAS spinning centerband or sideband, to avoid interference between the MAS modulation and sweeps over multiple sidebands. Upon implementing this swept-CP method, a number of MAS-driven processes happen, including broadband zero- and double-quantum CP transfers, and MAS-driven rotary-resonance phenomena. When this CP method is applied to integer and half-integer quadrupolar nuclei at very fast MAS spinning rates, a favorable double-quantum CP condition is found that can be easily achieved, and avoids the level-crossings among various ms energy levels that complicate quadrupolar CPMAS NMR experiments along lines first shown by Alex Vega. An additional CP mechanism was found in the 1H-2H case, involving static-like zero-quantum CP modes driven by a quadrupole-modulated RF-dipolar zero-order recoupling under MAS. All these phenomena were examined using average Hamiltonian theory, numerical simulations, and experiments on model compounds. Sensitivity-enhanced, distortion-free CP over wide bandwidths were predicted and observed for S = 1/2 and for S = 1 (2H) under fast MAS rates. BRAIN-CPMAS also delivered undistorted central transition NMR spectra of half-integer quadrupolar nuclei, while utilizing low RF field strengths that avoid complex level-crossing effects under high MAS rates.
Collapse
Affiliation(s)
- Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, FL, 32304, USA.
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, NPB 3P4, Canada
| | - Lucio Frydman
- National High Magnetic Field Laboratory, Tallahassee, FL, 32304, USA; Department of Chemical and Biological Physics, Weizmann Institute of Sciences, Rehovot, 76100, Israel.
| |
Collapse
|
20
|
Li Y, Trébosc J, Hu B, Shen M, Amoureux JP, Lafon O. Indirect detection of broad spectra in solid-state NMR using interleaved DANTE trains. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 294:101-114. [PMID: 30032034 DOI: 10.1016/j.jmr.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
We analyze the performances and the optimization of 1H-{I} HMQC experiments using basic and interleaved DANTE schemes for the indirect detection of nuclei I = 1/2 or 1 exhibiting wide lines dominated by chemical shift anisotropy (CSA) or quadrupole interaction, respectively. These sequences are first described using average Hamiltonian theory. Then, we analyze using numerical simulations (i) the optimal lengths of the DANTE train and the individual pulses, (ii) the robustness of these experiments to offset, and (iii) the optimal choice of the defocusing and refocusing times for both 1H-{I} J- and D-HMQC sequences for 195Pt (I = 1/2) and 14N (I = 1) nuclei subject to large CSA and quadrupole interaction, respectively. These simulations are compared to 1H-{14N} D-HMQC experiments on γ-glycine and L-histidine.HCl at B0 = 18.8 T and MAS frequency of 62.5 kHz. The present study shows that (i) the optimal defocusing and refocusing times do not depend on the chosen DANTE scheme, (ii) the DANTE trains must be applied with the highest rf-field compatible with the probe specifications and the stability of the sample, (iii) the excitation bandwidth along the indirect dimension of HMQC sequence using DANTE trains is inversely proportional to their length, (iv) interleaved DANTE trains increase the excitation bandwidth of these sequences, and (v) dephasing under residual 1H-1H and 1H-I dipolar couplings, as well as 14N second-order quadrupole interaction, during the length of the DANTE scheme attenuate the transfer efficiency.
Collapse
Affiliation(s)
- Yixuan Li
- Univ. Lille, CNRS, UMR 8181-UCCS, Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France; Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - Julien Trébosc
- Univ. Lille, CNRS, UMR 8181-UCCS, Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - Ming Shen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, UMR 8181-UCCS, Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France; Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China; Bruker France, 34 rue de l'Industrie, F-67166 Wissembourg, France.
| | - Olivier Lafon
- Univ. Lille, CNRS, UMR 8181-UCCS, Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France; Institut Universitaire de France, 1, rue Descartes, 75231 Paris, France.
| |
Collapse
|
21
|
Sanders KJ, Pell AJ, Wegner S, Grey CP, Pintacuda G. Broadband MAS NMR spectroscopy in the low-power limit. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Veinberg SL, Lindquist AW, Jaroszewicz MJ, Schurko RW. Practical considerations for the acquisition of ultra-wideline 14N NMR spectra. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:45-58. [PMID: 28130009 DOI: 10.1016/j.ssnmr.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Several considerations for the acquisition, processing, and analysis of high quality ultra-wideline (UW) 14N solid-state NMR (SSNMR) powder patterns under static conditions are discussed. It is shown that the 14N quadrupolar parameters may be determined accurately using the frequencies of only two discontinuities in 14N NMR powder patterns that are dominated by the first-order quadrupolar interaction, thereby eliminating the need for the acquisition of the entire pattern and concomitantly reducing experimental time. A framework for utilizing the WURST-CPMG pulse sequence to improve the efficiency of UW 14N SSNMR experiments is explored in two parts: (i) a systematic investigation of the design and parameterization of the WURST pulse is presented, and (ii) the development of the practical aspects of CPMG refocusing for the acquisition of UW 14N SSNMR powder patterns is discussed, with a focus on maximizing both signal-to-noise and resolution, and minimizing spectral distortions. Finally, a strategy is demonstrated that allows for the measurement of the 14N quadrupolar parameters for any nitrogen moiety whose quadrupolar coupling constant falls within the range 0.8≤|CQ|≤1.5MHz, by acquiring only two 14N NMR sub-spectra at strategically located transmitter frequencies; these results are compared to full powder patterns which are acquired using frequency-stepped methods. The methodologies and practical considerations outlined herein are not only useful for the rapid acquisition of UW 14N NMR spectra, but may also be modified and applied for UW NMR of a plethora of quadrupolar and spin-1/2 nuclides.
Collapse
Affiliation(s)
- Stanislav L Veinberg
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Austin W Lindquist
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Michael J Jaroszewicz
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4.
| |
Collapse
|
23
|
Wi S, Kim C, Schurko R, Frydman L. Adiabatic sweep cross-polarization magic-angle-spinning NMR of half-integer quadrupolar spins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 277:131-142. [PMID: 28285143 DOI: 10.1016/j.jmr.2017.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
The use of frequency-swept radiofrequency (rf) pulses for enhancing signals in the magic-angle spinning (MAS) spectra of half-integer quadrupolar nuclides was explored. The broadband adiabatic inversion cross-polarization magic-angle spinning (BRAIN-CPMAS) method, involving an adiabatic inversion pulse on the S-channel and a simultaneous rectangular spin-lock pulse on the I-channel (1H), was applied to I(1/2)→S(3/2) systems. Optimal BRAIN-CPMAS matching conditions were found to involve low rf pulse strengths for both the I- and S-spin channels. At these low and easily attainable rf field strengths, level-crossing events among the energy levels |3/2〉,|1/2〉,|-1/2〉,|-3/2〉 that are known to complicate the CPMAS of quadrupolar nuclei, are mostly avoided. Zero- and double-quantum polarization transfer modes, akin to those we have observed for I(1/2)→S(1/2) polarization transfers, were evidenced by these analyses even in the presence of the quadrupolar interaction. 1H-23Na and 1H-11B BRAIN-CPMAS conditions were experimentally explored on model compounds by optimizing the width of the adiabatic sweep, as well as the rf pulse powers of the 1H and 23Na/11B channels, for different MAS rates. The experimental data obtained on model compounds containing spin-3/2 nuclides, matched well predictions from numerical simulations and from an average Hamiltonian theory model. Extensions to half-integer spin nuclides with higher spins and potential applications of this BRAIN-CPMAS approach are discussed.
Collapse
Affiliation(s)
- Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA.
| | - Chul Kim
- Department of Chemistry, Hannam University, Taejeon, 305811, South Korea
| | - Robert Schurko
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor N9B 3P4, Ontario, Canada
| | - Lucio Frydman
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA; Department of Chemical Physics, Weizmann Institute of Sciences, Rehovot 76100, Israel
| |
Collapse
|
24
|
Wi S, Schurko R, Frydman L. 1H–2H cross-polarization NMR in fast spinning solids by adiabatic sweeps. J Chem Phys 2017; 146:104201. [DOI: 10.1063/1.4976980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA
| | - Robert Schurko
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor N9B 3P4, Ontario, Canada
| | - Lucio Frydman
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA
- Department of Chemical Physics, Weizmann Institute of Sciences, Rehovot 76100, Israel
| |
Collapse
|
25
|
Jarvis JA, Haies I, Lelli M, Rossini AJ, Kuprov I, Carravetta M, Williamson PTF. Measurement of 14N quadrupole couplings in biomolecular solids using indirect-detection 14N solid-state NMR with DNP. Chem Commun (Camb) 2017; 53:12116-12119. [DOI: 10.1039/c7cc03462h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Insights into protein structure through the determination of 14N quadrupolar interactions using magic-angle spinning dynamic nuclear polarization NMR.
Collapse
Affiliation(s)
- J. A. Jarvis
- Biological Sciences
- University of Southampton
- Southampton
- UK
| | - I. Haies
- Chemistry Department
- University of Southampton
- Southampton
- UK
| | - M. Lelli
- Centre de RMN à Tres Hauts Champs
- Institut de Sciences Analytiques
- Université de Lyon (CNRS/ENS Lyon/UCB Lyon1)
- 69100 Villeurbanne
- France
| | - A. J. Rossini
- Centre de RMN à Tres Hauts Champs
- Institut de Sciences Analytiques
- Université de Lyon (CNRS/ENS Lyon/UCB Lyon1)
- 69100 Villeurbanne
- France
| | - I. Kuprov
- Chemistry Department
- University of Southampton
- Southampton
- UK
| | - M. Carravetta
- Chemistry Department
- University of Southampton
- Southampton
- UK
| | | |
Collapse
|
26
|
Jaroszewicz MJ, Frydman L, Schurko RW. Relaxation-Assisted Separation of Overlapping Patterns in Ultra-Wideline NMR Spectra. J Phys Chem A 2016; 121:51-65. [DOI: 10.1021/acs.jpca.6b10007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael J. Jaroszewicz
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada N9B 3P4
| | - Lucio Frydman
- Department
of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Robert W. Schurko
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada N9B 3P4
| |
Collapse
|
27
|
Veinberg SL, Friedl ZW, Lindquist AW, Kispal B, Harris KJ, O'Dell LA, Schurko RW. 14N Solid-State NMR Spectroscopy of Amino Acids. Chemphyschem 2016; 17:4011-4027. [DOI: 10.1002/cphc.201600873] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Stanislav L. Veinberg
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Zachary W. Friedl
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Austin W. Lindquist
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Brianna Kispal
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Kristopher J. Harris
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| | - Luke A. O'Dell
- Institute for Frontier Materials; Deakin University; Waurn Ponds Campus Geelong Victoria 3220 Australia
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry; University of Windsor; 401 Sunset Avenue Windsor Ontario N9B 3P4 Canada
| |
Collapse
|
28
|
Laurencin D, Ribot F, Gervais C, Wright AJ, Baker AR, Campayo L, Hanna JV, Iuga D, Smith ME, Nedelec JM, Renaudin G, Bonhomme C. 87Sr,119Sn,127I Single and {1H/19F}-Double Resonance Solid-State NMR Experiments: Application to Inorganic Materials and Nanobuilding Blocks. ChemistrySelect 2016. [DOI: 10.1002/slct.201600805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR 5253, CNRS-UM-ENSCM; Université de Montpellier; Montpellier France
| | - François Ribot
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574; Chimie de la Matière Condensée de Paris 75005 Paris France
| | - Christel Gervais
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574; Chimie de la Matière Condensée de Paris 75005 Paris France
| | - Adrian J. Wright
- School of Chemistry; University of Birmingham, Edgbaston; Birmingham B15 2TT UK
| | - Annabelle R. Baker
- Diamond Light Source; Harwell Science and Innovation Campus; Didcot OX11 0DE UK
| | - Lionel Campayo
- CEA, DEN, DTCD, SECM; Laboratoire d'Etude et de Développement de Matrices de Conditionnement, Centre de Marcoule; 30207 Bagnols sur Cèze France
| | - John V. Hanna
- Department of Physics; University of Warwick; Coventry CV4 7AL UK
| | - Dinu Iuga
- Department of Physics; University of Warwick; Coventry CV4 7AL UK
| | - Mark E. Smith
- Department of Physics; University of Warwick; Coventry CV4 7AL UK
- Vice-Chancellor's Office, University House; Lancaster University; Lancaster LA1 4YW UK
| | - Jean-Marie Nedelec
- ICCF, CNRS UMR 6295, SIGMA Clermont; Université Clermont Auvergne, Campus des Céseaux; CS 20265 Aubière France
| | - Guillaume Renaudin
- ICCF, CNRS UMR 6295, SIGMA Clermont; Université Clermont Auvergne, Campus des Céseaux; CS 20265 Aubière France
| | - Christian Bonhomme
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574; Chimie de la Matière Condensée de Paris 75005 Paris France
| |
Collapse
|
29
|
Haies IM, Jarvis JA, Bentley H, Heinmaa I, Kuprov I, Williamson PTF, Carravetta M. (14)N overtone NMR under MAS: signal enhancement using symmetry-based sequences and novel simulation strategies. Phys Chem Chem Phys 2016; 17:6577-87. [PMID: 25662410 PMCID: PMC4673505 DOI: 10.1039/c4cp03994g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overtone 14N NMR spectroscopy is a promising route for the direct detection of 14N signals with good spectral resolution.
Overtone 14N NMR spectroscopy is a promising route for the direct detection of 14N signals with good spectral resolution. Its application is currently limited, however, by the absence of efficient polarization techniques for overtone signal enhancement and the lack of efficient numerical simulation techniques to aid in both the development of new methods and the analysis and interpretation of experimental data. In this paper we report a novel method for the transfer of polarization from 1H to the 14N overtone using symmetry-based R-sequences that overcome many of the limitations of adiabatic approaches that have worked successfully on static samples. Refinement of these sequences and the analysis of the resulting spectra have been facilitated through the development of an efficient simulation strategy for 14N overtone NMR spectroscopy of spinning samples, using effective Hamiltonians on top of Floquet and Fokker–Planck equations.
Collapse
Affiliation(s)
- Ibraheem M Haies
- School of Chemistry, University of Southampton, SO17 1BJ, Southampton, UK.
| | | | | | | | | | | | | |
Collapse
|
30
|
Veinberg SL, Johnston KE, Jaroszewicz MJ, Kispal BM, Mireault CR, Kobayashi T, Pruski M, Schurko RW. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs. Phys Chem Chem Phys 2016; 18:17713-30. [DOI: 10.1039/c6cp02855a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
14N and 15N solid-state NMR at natural abundance are used in tandem for the investigation of pharmaceuticals and their polymorphs.
Collapse
Affiliation(s)
| | | | | | - Brianna M. Kispal
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | | | | | - Marek Pruski
- U.S. DOE Ames Laboratory
- Iowa State University
- Ames
- USA
- Department of Chemistry
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| |
Collapse
|
31
|
Shen M, Trébosc J, Lafon O, Gan Z, Pourpoint F, Hu B, Chen Q, Amoureux JP. Solid-state NMR indirect detection of nuclei experiencing large anisotropic interactions using spinning sideband-selective pulses. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 72:104-117. [PMID: 26411981 DOI: 10.1016/j.ssnmr.2015.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
Under Magic-Angle Spinning (MAS), a long radio-frequency (rf) pulse applied on resonance achieves the selective excitation of the center-band of a wide NMR spectrum. We show herein that these rf pulses can be applied on the indirect channel of Hetero-nuclear Multiple-Quantum Correlation (HMQC) sequences, which facilitate the indirect detection via spin-1/2 isotopes of nuclei exhibiting wide spectra. Numerical simulations show that this indirect excitation method is applicable to spin-1/2 nuclei experiencing a large chemical shift anisotropy, as well as to spin-1 isotopes subject to a large quadrupole interaction, such as (14)N. The performances of the long pulses are analyzed by the numerical simulations of scalar-mediated HMQC (J-HMQC) experiments indirectly detecting spin-1/2 or spin-1 nuclei, as well as by dipolar-mediated HMQC (D-HMQC) experiments achieving indirect detection of (14)N nuclei via (1)H in crystalline γ-glycine and N-acetyl-valine samples at a MAS frequency of 60kHz. We show on these solids that for the acquisition of D-HMQC spectra between (1)H and (14)N nuclei, the efficiency of selective moderate excitation with long-pulses at the (14)N Larmor frequency, ν0((14)N), is comparable to those with strong excitation pulses at ν0((14)N) or 2ν0((14)N) frequencies, given the rf field delivered by common solid-state NMR probes. Furthermore, the D-HMQC experiments also demonstrate that the use of long pulses does not produce significant spectral distortions along the (14)N dimension. In summary, the use of center-band selective weak pulses is advantageous for HMQC experiments achieving the indirect detection of wide spectra since it (i) requires a moderate rf field, (ii) can be easily optimized, (iii) displays a high robustness to CSAs, offsets, rf-field inhomogeneities, and fluctuations in MAS frequency, and (iv) is little dependent on the quadrupolar coupling constant.
Collapse
Affiliation(s)
- Ming Shen
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Julien Trébosc
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France
| | - Olivier Lafon
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France.
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance, NHMFL, Tallahassee, FL 32310, USA
| | | | - Bingwen Hu
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Qun Chen
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Jean-Paul Amoureux
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
32
|
Xu J, Lucier BEG, Sinelnikov R, Terskikh VV, Staroverov VN, Huang Y. Monitoring and Understanding the Paraelectric-Ferroelectric Phase Transition in the Metal-Organic Framework [NH4][M(HCOO)3] by Solid-State NMR Spectroscopy. Chemistry 2015; 21:14348-61. [DOI: 10.1002/chem.201501954] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 11/08/2022]
|
33
|
Wi S, Gan Z, Schurko R, Frydman L. Cross-polarization phenomena in the NMR of fast spinning solids subject to adiabatic sweeps. J Chem Phys 2015; 142:064201. [DOI: 10.1063/1.4907206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sungsool Wi
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA
| | - Robert Schurko
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor N9B 3P4, Ontario, Canada
| | - Lucio Frydman
- National High Magnetic Field Laboratory, Tallahassee, Florida 32304, USA
- Department of Chemical Physics, Weizmann Institute of Sciences, 76100 Rehovot, Israel
| |
Collapse
|
34
|
Veinberg SL, Friedl ZW, Harris KJ, O'Dell LA, Schurko RW. Ultra-wideline 14N solid-state NMR as a method for differentiating polymorphs: glycine as a case study. CrystEngComm 2015. [DOI: 10.1039/c5ce00060b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
14N solid-state NMR is useful for differentiating polymorphs and chemically distinct nitrogen-containing compounds. A case study of glycine is presented.
Collapse
Affiliation(s)
| | - Zachary W. Friedl
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada
| | | | - Luke A. O'Dell
- Institute for Frontier Materials
- Deakin University
- Waurn Ponds Campus
- Geelong, Australia
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada
| |
Collapse
|
35
|
Perras FA, Kobayashi T, Pruski M. PRESTO polarization transfer to quadrupolar nuclei: implications for dynamic nuclear polarization. Phys Chem Chem Phys 2015; 17:22616-22. [DOI: 10.1039/c5cp04145g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show both experimentally and numerically that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under MAS, the PRESTO technique consistently outperforms the traditionally used CP method, affording more quantitative intensities, improved lineshapes, better sensitivity, and easier optimization.
Collapse
Affiliation(s)
| | | | - Marek Pruski
- U.S. DOE Ames Laboratory
- Ames
- USA
- Department of Chemistry
- Iowa State University
| |
Collapse
|
36
|
Lucier BEG, Johnston KE, Xu W, Hanson JC, Senanayake SD, Yao S, Bourassa MW, Srebro M, Autschbach J, Schurko RW. Unravelling the Structure of Magnus’ Pink Salt. J Am Chem Soc 2014; 136:1333-51. [DOI: 10.1021/ja4076277] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bryan E. G. Lucier
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Karen E. Johnston
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Wenqian Xu
- Department
of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jonathan C. Hanson
- Department
of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sanjaya D. Senanayake
- Department
of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Siyu Yao
- Center for Computational Science & Engineering, and PKU Green Chemistry Centre, Peking University, Beijing 100871, China
| | - Megan W. Bourassa
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Monika Srebro
- Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
- Department
of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-060 Krakow, Poland
| | - Jochen Autschbach
- Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Robert W. Schurko
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| |
Collapse
|