1
|
Hyziuk P, Flaibani M, Posocco P, Sashuk V. Creating a suprazyme: integrating a molecular enzyme mimic with a nanozyme for enhanced catalysis. Chem Sci 2024:d4sc04577g. [PMID: 39371455 PMCID: PMC11450938 DOI: 10.1039/d4sc04577g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Enzyme mimics, due to their limited complexity, traditionally display low catalytic efficiency. Herein we present a strategy that enables the transformation of a slow-acting catalyst into a highly active one by creating a non-covalent suprastructure, termed "suprazyme". We show that cucurbit[7]uril macrocycles, rudimentary molecular enzyme mimics, embedded within an anionic monolayer on the surface of gold nanoparticles, outperform individual cucurbit[7]urils as well as nanoparticles, which also exhibit catalytic enzyme-like activity and thus act as nanozymes, by over 50 times, showcasing a 1044-fold acceleration in a model oxime formation reaction. The superior performance of such a suprazyme is attributed to a synergistic interplay between the organic monolayer and macrocycles, which is accompanied by a decreased local polarity and pH that favors the acid-catalyzed condensation process. The proposed approach holds promise for developing diverse suprazymes, contingent upon achieving a complementary structure and mechanism of action between the molecular catalyst and nanoparticles.
Collapse
Affiliation(s)
- Pavlo Hyziuk
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Matteo Flaibani
- Department of Engineering and Architecture, University of Trieste Via Alfonso Valerio, n. 6/A 34127 Trieste Italy
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste Via Alfonso Valerio, n. 6/A 34127 Trieste Italy
| | - Volodymyr Sashuk
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
2
|
Sultanova ED, Fedoseeva AA, Fatykhova AM, Mironova DA, Ziganshina SA, Ziganshin MA, Evtugyn VG, Burilov VA, Solovieva SE, Antipin IS. Multi-functional imidazolium dendrimers based on thiacalix[4]arenes: self-assembly, catalysis and DNA binding. SOFT MATTER 2024; 20:7072-7082. [PMID: 39189648 DOI: 10.1039/d4sm00764f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
For the first time, dendrimers based on thiacalix[4]arenes bearing imidazolium dendrons on one side and alkyl fragments on another side of the macrocyclic platform and symmetrical dendrimers with four dendrons on both sides were synthesized. Dendrons consist of gallic acid-based branches functionalized with imidazolium and triazolium groups. The physicochemical properties of the dendrimers such as micellar concentration (CMC), size, and solubilization capacity were measured. Novel dendrimers exhibit high binding efficiency with calf thymus DNA (ctDNA) as revealed by fluorescence quenching of the DNA-EtBr complex in the presence of macrocycles. Dendrimers have been used as supports for Pd nanoparticles, which show high catalytic activity for the reduction of nitroaromatic compounds.
Collapse
Affiliation(s)
- Elza D Sultanova
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Angelina A Fedoseeva
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Aigul M Fatykhova
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Diana A Mironova
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Sufia A Ziganshina
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Marat A Ziganshin
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Vladimir G Evtugyn
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Vladimir A Burilov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Svetlana E Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
| | - Igor S Antipin
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| |
Collapse
|
3
|
Tartour AR, Sanad MMS, El-Hallag IS, Moharram YI. Novel mixed heterovalent (Mo/Co)O x-zerovalent Cu system as bi-functional electrocatalyst for overall water splitting. Sci Rep 2024; 14:4601. [PMID: 38409208 PMCID: PMC10897199 DOI: 10.1038/s41598-024-54934-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
A novel hybrid ternary metallic electrocatalyst of amorphous Mo/Co oxides and crystallized Cu metal was deposited over Ni foam using a one-pot, simple, and scalable solvothermal technique. The chemical structure of the prepared ternary electrocatalyst was systematically characterized and confirmed via XRD, FTIR, EDS, and XPS analysis techniques. FESEM images of (Mo/Co)Ox-Cu@NF display the formation of 3D hierarchical structure with a particle size range of 3-5 µm. The developed (Mo/Co)Ox-Cu@NF ternary electrocatalyst exhibits the maximum activity with 188 mV and 410 mV overpotentials at 50 mA cm-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Electrochemical impedance spectroscopy (EIS) results for the (Mo/Co)Ox-Cu@NF sample demonstrate the minimum charge transfer resistance (Rct) and maximum constant phase element (CPE) values. A two-electrode cell based on the ternary electrocatalyst just needs a voltage of about 1.86 V at 50 mA cm-2 for overall water splitting (OWS). The electrocatalyst shows satisfactory durability during the OWS for 24 h at 10 mA cm-2 with an increase of only 33 mV in the cell potential.
Collapse
Affiliation(s)
- Ahmed R Tartour
- Central Metallurgical Research and Development Institute, P.O. Box: 87, Helwan, Cairo, 11421, Egypt
- Electroplating Department, Factory 100, Abu-Zaabal Company for Engineering Industries, Cairo, Egypt
| | - Moustafa M S Sanad
- Central Metallurgical Research and Development Institute, P.O. Box: 87, Helwan, Cairo, 11421, Egypt.
| | | | - Youssef I Moharram
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
4
|
Pomal NC, Bhatt KD, Kundariya DS, Desai RA, Bhatt V, Kongor A. Calix[4]pyrrole‐Grafted Gold Nanoparticles as a Turn‐On Fluorescence Sensor for Noxious Fungicide Dimoxystrobin and Their Anti‐Cancer Activity against the KB‐3‐1 Cell Line. ChemistrySelect 2023. [DOI: 10.1002/slct.202204252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Nandan C. Pomal
- Department of Chemistry Ganpat University 384012 Mehsana Gujarat India
| | - Keyur D. Bhatt
- Department of Chemistry Ganpat University 384012 Mehsana Gujarat India
| | - Dinesh S. Kundariya
- Department of Chemistry Tolani College of Arts & Science KSKV Kutch University 370001 Bhuj Gujarat India
| | - Riya A. Desai
- School of Applied Science & Technology Gujarat Technological University 382424 Ahmedabad Gujarat India
| | - Vaibhav Bhatt
- School of Applied Science & Technology Gujarat Technological University 382424 Ahmedabad Gujarat India
| | - Anita Kongor
- Department of Chemistry Gujarat University 380009 Ahmedabad Gujarat India
| |
Collapse
|
5
|
Calcaterra A, Polli F, Lamelza L, Del Plato C, Cammarone S, Ghirga F, Botta B, Mazzei F, Quaglio D. Resorc[4]arene-Modified Gold-Decorated Magnetic Nanoparticles for Immunosensor Development. Bioconjug Chem 2023; 34:529-537. [PMID: 36753752 PMCID: PMC10020960 DOI: 10.1021/acs.bioconjchem.2c00605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In recent years, several efforts have been made to develop selective, sensitive, fast response, and miniaturized immunosensors with improved performance for the monitoring and screening of analytes in several matrices, significantly expanding the use of this technology in a broad range of applications. However, one of the main technical challenges in developing immunosensors is overcoming the complexity of binding antibodies (Abs) to the sensor surface. Most immobilizing approaches lead to a random orientation of Abs, resulting in lower binding site density and immunoaffinity. In this context, supramolecular chemistry has emerged as a suitable surface modification tool to achieve the preorganization of artificial receptors and to improve the functional properties of self-assembled monolayers. Herein, a supramolecular chemistry/nanotechnology-based platform was conceived to develop sensitive label-free electrochemical immunosensors, by using a resorcarene macrocycle as an artificial linker for the oriented antibody immobilization. To this aim, a water-soluble bifunctional resorc[4]arene architecture (RW) was rationally designed and synthesized to anchor gold-coated magnetic nanoparticles (Au@MNPs) and to maximize the amount of the active immobilized antibody (Ab) in the proper "end-on" orientation. The resulting supramolecular chemistry-modified nanoparticles, RW@Au@MNPs, were deposited onto graphite screen printed electrodes which were then employed to immobilize three different Abs. Furthermore, an immunosensor for atrazine (ATZ) analysis was realized and characterized by the differential pulse voltammetry technique to demonstrate the validity of the developed biosensing platform as a proof of concept for electrochemical immunosensors. The RW-based immunosensor improved AbATZ loading on Au@MNPs and sensitivity toward ATZ by almost 1.5 times compared to the random platform. Particularly, the electrochemical characterization of the developed immunosensor displays a linearity range toward ATZ within 0.05-1.5 ng/mL, a limit of detection of 0.011 ng/ml, and good reproducibility and stability. The immunosensor was tested by analyzing spiked fortified water samples with a mean recovery ranging from 95.7 to 108.4%. The overall good analytical performances of this immunodevice suggest its application for the screening and monitoring of ATZ in real matrices. Therefore, the results highlighted the successful application of the resorc[4]arene-based sensor design strategy for developing sensitive electrochemical immunosensors with improved analytical performance and simplifying the Ab immobilization procedure.
Collapse
|
6
|
Noble Metal Nanoparticles Meet Molecular Cages: A tale of Integration and Synergy. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Huang J, Tan X, Li C, Wu R, Ran S, Tao Y, Mou T. Green Synthesis of Au-NPs on g-C 3N 4 Hybrid Nanomaterials Based on Supramolecular Pillar[6]arene and Its Applications for Catalysis. ACS OMEGA 2022; 7:18085-18093. [PMID: 35664603 PMCID: PMC9161382 DOI: 10.1021/acsomega.2c01603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/06/2022] [Indexed: 06/14/2023]
Abstract
Gold nanoparticles (Au NPs) are installed in situ on the surfaces of graphitic carbon nitride (g-C3N4) based on supramolecular hydroxylatopillar[6]arene (P6). The Au NPs can be obtained via the redox reaction between HAuCl4 and P6 without any NH2-NH2, NaBH4, and other reductants, where AuCl4 - is reduced to Au0 by the -OH groups in the presence of OH-, and the -OH groups are oxidized into -COOH. First, P6 is loaded onto the surface of g-C3N4 via π-π interaction between P6 and g-C3N4, which offers a stabilized and reduced site for in situ anchoring of Au NPs. The hybrid nanomaterial Au-NPs@P6@g-C3N4 exhibits higher catalytic capability than the Pd/C catalyst in 4-nitrophenol (4-NP) reduction and methylene blue degradation, which opens a new avenue for designing more efficient hybrid nanomaterials for application in catalysis, sensing, and other fields.
Collapse
Affiliation(s)
- Juncao Huang
- Chongqing Preschool Education College, Chongqing 404047, P. R. China
| | - Xiaoping Tan
- Chongqing Preschool Education College, Chongqing 404047, P. R. China
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Chaofan Li
- Chongqing Preschool Education College, Chongqing 404047, P. R. China
| | - Rui Wu
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Shuqin Ran
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Yuxin Tao
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Tong Mou
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| |
Collapse
|
8
|
Yang Q, Xu W, Cheng M, Zhang S, Kovaleva EG, Liang F, Tian D, Liu JA, Abdelhameed RM, Cheng J, Li H. Controlled release of drug molecules by pillararene-modified nanosystems. Chem Commun (Camb) 2022; 58:3255-3269. [PMID: 35195641 DOI: 10.1039/d1cc05584d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stimuli-responsive nanosystems have attracted the interest of researchers due to their intelligent function of controlled release regulated by a variety of external stimuli and have been applied in biomedical fields. Pillar[n]arenes with the advantages of a rigid structure, electron holes and easy functionalization are considered as excellent candidates for the construction of host-guest nanosystems. In recent years, many pillararene modified nanosystems have been reported in response to different stimuli. In this feature article, we summarize the advance of stimuli-responsive pillararene modified nanosystems for controlled release of drugs from the perspectives of decomposition release and gated release, focusing on the control principles of these nanosystems. We expect that this review can enlighten and guide investigators in the field of stimuli-responsive controlled release.
Collapse
Affiliation(s)
- Qinglin Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Elena G Kovaleva
- Department of Technology for Organic Synthesis, Ural Federal University, Mira Street, 28, 620002 Yekaterinburg, Russia.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Jun-An Liu
- The Department of Applied Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Center, 33 El Buhouth St., Dokki, Siza, P.O. 12311, Egypt.
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| |
Collapse
|
9
|
Fernández-Caro H, Méndez-Ardoy A, Montenegro J. Dynamic nanosurface reconfiguration by host-guest supramolecular interactions. NANOSCALE 2022; 14:3599-3608. [PMID: 35188162 DOI: 10.1039/d1nr05315a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dynamic functionalization of the nanoparticle surface with biocompatible coatings is a critical step towards the development of functional nano-sized systems. While covalent approaches have been broadly exploited in the stabilization of nanoparticle colloidal systems, these strategies hinder the dynamic nanosurface chemical reconfiguration. Supramolecular strategies based on specific host-guest interactions hold promise due to their intrinsic reversibility, self-healing capabilities and modularity. Host/guest couples have recently been implemented in nanoparticle platforms for the exchange and release of effector molecules. However, the direct exchange of biocompatible hydrophilic oligomers (e.g. peptides) for the modulation of the surface charge and chemical properties of nanoparticles still remains a challenge. Here, we show the intracellular reconfiguration of nanoparticles by a host/guest mechanism with biocompatible oligomeric competitors. The surface of gold nanoparticles was functionalized with cyclodextrin hosts and the guest exchange was studied with biocompatible mono and divalent adamantyl competitors. The systematic characterization of the size and surface potential of the host/guest nanoparticles allowed the optimization of the binding and the stabilization properties of these supramolecular systems. The in cellulo host/guest-mediated direct reconfiguration of the peptide layer at the surface of nanoparticles is achieved by controlling the valence of adamantane-equipped peptides. This work demonstrates that host/guest supramolecular systems can be exploited for the direct exchange of pendants at the surface of nanoparticles and the intracellular dynamic chemical reconfiguration of biocompatible colloidal systems.
Collapse
Affiliation(s)
- Héctor Fernández-Caro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Liu C, Zhou L, Cao S, Zhang H, Han J, Liu Z. Supramolecular systems prepared using terpyridine-containing pillararene. Polym Chem 2022. [DOI: 10.1039/d1py01397a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progresses about the preparation of terpyridine-containing pillararene, as well as the utilization of those building blocks for making external stimulud-responsive supramolecular systems were summarized in this review.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China
| |
Collapse
|
11
|
First characterization of functionalized nanoparticles—tandem of biosynthesized silver nanoparticles conjugated with piperine. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01911-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Khalil-Cruz LE, Liu P, Huang F, Khashab NM. Multifunctional Pillar[ n]arene-Based Smart Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31337-31354. [PMID: 34184874 DOI: 10.1021/acsami.1c05798] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The construction of smart nanomaterials from host macrocycles that are responsive to specific stimuli has gained significant attention in recent years. The application of pillar[n]arenes has been of particular interest given their ease of functionalization and tunability of the intrinsic cavity electronic properties that allows them to encapsulate a great variety of guests and complex with metal ions with high selectivity via noncovalent interactions, endowing them with captivating properties and functions. Herein, we present the most recent advances in the design and functionalization of pillar[n]arene-based smart nanomaterials, and their applications for sensing, catalysis, drug delivery, and artificial transmembrane channels.
Collapse
Affiliation(s)
- Laila E Khalil-Cruz
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Peiren Liu
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High- Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Mochizuki K, Matsukura L, Ito Y, Miyashita N, Taki M. A medium-firm drug-candidate library of cryptand-like structures on T7 phage: design and selection of a strong binder for Hsp90. Org Biomol Chem 2021; 19:146-150. [PMID: 33095213 DOI: 10.1039/d0ob01855d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed and synthesized a medium-firm drug-candidate library of cryptand-like structures possessing a randomized peptide linker on the bacteriophage T7. From the macrocyclic library with a 109 diversity, we obtained a binder toward a cancer-related protein (Hsp90) with an antibody-like strong affinity (KD = 62 nM) and the binding was driven by the enthalpy. The selected supramolecular ligand inhibited Hsp90 activity by site-specific binding outside of the well-known ATP-binding pocket on the N-terminal domain (NTD).
Collapse
Affiliation(s)
- Kazuto Mochizuki
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | | | | | | | | |
Collapse
|
14
|
Chen GY, Sun YB, Shi PC, Liu T, Li ZH, Luo SH, Wang XC, Cao XY, Ren B, Liu GK, Yang LL, Tian ZQ. Revealing unconventional host-guest complexation at nanostructured interface by surface-enhanced Raman spectroscopy. LIGHT, SCIENCE & APPLICATIONS 2021; 10:85. [PMID: 33875636 PMCID: PMC8055983 DOI: 10.1038/s41377-021-00526-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Interfacial host-guest complexation offers a versatile way to functionalize nanomaterials. However, the complicated interfacial environment and trace amounts of components present at the interface make the study of interfacial complexation very difficult. Herein, taking the advantages of near-single-molecule level sensitivity and molecular fingerprint of surface-enhanced Raman spectroscopy (SERS), we reveal that a cooperative effect between cucurbit[7]uril (CB[7]) and methyl viologen (MV2+2I-) in aggregating Au NPs originates from the cooperative adsorption of halide counter anions I-, MV2+, and CB[7] on Au NPs surface. Moreover, similar SERS peak shifts in the control experiments using CB[n]s but with smaller cavity sizes suggested the occurrence of the same guest complexations among CB[5], CB[6], and CB[7] with MV2+. Hence, an unconventional exclusive complexation model is proposed between CB[7] and MV2+ on the surface of Au NPs, distinct from the well-known 1:1 inclusion complexation model in aqueous solutions. In summary, new insights into the fundamental understanding of host-guest interactions at nanostructured interfaces were obtained by SERS, which might be useful for applications related to host-guest chemistry in engineered nanomaterials.
Collapse
Affiliation(s)
- Gan-Yu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yi-Bin Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pei-Chen Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhi-Hao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Si-Heng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Xin-Chang Wang
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen, 361005, China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| | - Liu-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
15
|
Gómez-Graña S, Pérez-Juste J, Hervés P. Cyclodextrins and inorganic nanoparticles: Another tale of synergy. Adv Colloid Interface Sci 2021; 288:102338. [PMID: 33383472 DOI: 10.1016/j.cis.2020.102338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
In this review, we summarize the recent research focused on the combination of inorganic nanoparticles and α-, β- and γ- cyclodextrins. Our intention is to highlight the most relevant publications on the synthesis of nanoparticle-cyclodextrin (NP-CD) nanohybrids, with CDs acting as reducing agents or through the post-synthetic modification of inorganic nanoparticles with CDs. We also discuss the new or enhanced properties that arise from the host-guest capabilities of the CDs and inorganic nanoparticles. Finally, we illustrate the potential applications of these materials in numerous research fields.
Collapse
Affiliation(s)
- Sergio Gómez-Graña
- CINBIO, Departamento de Química Física, Universidade de Vigo, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain.
| | - Jorge Pérez-Juste
- CINBIO, Departamento de Química Física, Universidade de Vigo, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Pablo Hervés
- CINBIO, Departamento de Química Física, Universidade de Vigo, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| |
Collapse
|
16
|
Kaabipour S, Hemmati S. A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:102-136. [PMID: 33564607 PMCID: PMC7849236 DOI: 10.3762/bjnano.12.9] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 05/08/2023]
Abstract
The significance of silver nanostructures has been growing considerably, thanks to their ubiquitous presence in numerous applications, including but not limited to renewable energy, electronics, biosensors, wastewater treatment, medicine, and clinical equipment. The properties of silver nanostructures, such as size, size distribution, and morphology, are strongly dependent on synthesis process conditions such as the process type, equipment type, reagent type, precursor concentration, temperature, process duration, and pH. Physical and chemical methods have been among the most common methods to synthesize silver nanostructures; however, they possess substantial disadvantages and short-comings, especially compared to green synthesis methods. On the contrary, the number of green synthesis techniques has been increasing during the last decade and they have emerged as alternative routes towards facile and effective synthesis of silver nanostructures with different morphologies. In this review, we have initially outlined the most common and popular chemical and physical methodologies and reviewed their advantages and disadvantages. Green synthesis methodologies are then discussed in detail and their advantages over chemical and physical methods have been noted. Recent studies are then reviewed in detail and the effects of essential reaction parameters, such as temperature, pH, precursor, and reagent concentration, on silver nanostructure size and morphology are discussed. Also, green synthesis techniques used for the synthesis of one-dimensional (1D) silver nanostructures have been reviewed, and the potential of alternative green reagents for their synthesis has been discussed. Furthermore, current challenges regarding the green synthesis of 1D silver nanostructures and future direction are outlined. To sum up, we aim to show the real potential of green nanotechnology towards the synthesis of silver nanostructures with various morphologies (especially 1D ones) and the possibility of altering current techniques towards more environmentally friendly, more energy-efficient, less hazardous, simpler, and cheaper procedures.
Collapse
Affiliation(s)
- Sina Kaabipour
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Shohreh Hemmati
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| |
Collapse
|
17
|
Steiner AM, Lissel F, Fery A, Lauth J, Scheele M. Perspektiven gekoppelter organisch‐anorganischer Nanostrukturen für Ladungs‐ und Energietransferanwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201916402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anja Maria Steiner
- Institut Physikalische Chemie und Physik der Polymere Leibniz-Institut für Polymerforschung Hohe Str. 6 01069 Dresden Deutschland
| | - Franziska Lissel
- Institut Makromolekulare Chemie Leibniz-Institut für Polymerforschung Hohe Str. 6 01069 Dresden Deutschland
- Technische Universität Dresden Mommsenstr. 4 01064 Dresden Deutschland
| | - Andreas Fery
- Institut Physikalische Chemie und Physik der Polymere Leibniz-Institut für Polymerforschung Hohe Str. 6 01069 Dresden Deutschland
- Technische Universität Dresden Mommsenstr. 4 01064 Dresden Deutschland
| | - Jannika Lauth
- Leibniz-Universität Hannover Institut für Physikalische Chemie und Elektrochemie Callinstr. 3A 30167 Hannover Deutschland
| | - Marcus Scheele
- Eberhard-Karls-Universität Tübingen Institut für Physikalische und Theoretische Chemie Auf der Morgenstelle 18 72076 Tübingen Deutschland
| |
Collapse
|
18
|
Steiner AM, Lissel F, Fery A, Lauth J, Scheele M. Prospects of Coupled Organic-Inorganic Nanostructures for Charge and Energy Transfer Applications. Angew Chem Int Ed Engl 2021; 60:1152-1175. [PMID: 32173981 PMCID: PMC7821299 DOI: 10.1002/anie.201916402] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/20/2022]
Abstract
We review the field of organic-inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. These nanocomposites undergo a variety of charge and energy transfer processes, enabling optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer. We discuss the physical chemistry of the most common organic and inorganic components. Based on those we derive synthesis and assembly strategies and design criteria on material and device level with a focus on photovoltaics, spin memories or optical upconverters. We conclude that future research in the field should be directed towards an improved understanding of the binding motif and molecular orientation at the hybrid interface.
Collapse
Affiliation(s)
- Anja Maria Steiner
- Institute for Physical Chemistry and Polymer PhysicsLeibniz Institute of Polymer ResearchHohe Str. 601069DresdenGermany
| | - Franziska Lissel
- Institute of Macromolecular ChemistryLeibniz Institute of Polymer ResearchHohe Str. 601069DresdenGermany
- Technische Universität DresdenMommsenstr. 401064DresdenGermany
| | - Andreas Fery
- Institute for Physical Chemistry and Polymer PhysicsLeibniz Institute of Polymer ResearchHohe Str. 601069DresdenGermany
- Technische Universität DresdenMommsenstr. 401064DresdenGermany
| | - Jannika Lauth
- Leibniz Universität HannoverInstitute of Physical Chemistry and ElectrochemistryCallinstr. 3A30167HannoverGermany
| | - Marcus Scheele
- Eberhard Karls-Universität TübingenInstitute of Physical and Theoretical ChemistryAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
19
|
Cheng G, Luo J, Liu Y, Chen X, Wu Z, Chen T. Cucurbituril-Oriented Nanoplatforms in Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:8211-8240. [PMID: 35019600 DOI: 10.1021/acsabm.0c01061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cucucrbituril (CB) belongs to a family of macrocycles that are easily accessible. Their structural specificity provides excellent molecular recognition capabilities, with the ability to be readily chemically modified. Because of these properties, researchers have found CB to be a useful molecular carrier for delivering drug molecules and therapeutic biomolecules. Their significance lies in the fact that CB not only increases the solubility and stability of an encapsulated guest but also provides the possibility to achieve targeted delivery of the guest molecule. Therefore, the emergence of CB undoubtedly provides opportunities for the development of targeted drug delivery in an era where intelligent drugs have attracted considerable attention. It has also been found that CB can enhance fluorescent dyes, allowing the preparation of biosensors with enhanced sensitivity for use in clinical settings. In the present review, the acquisition, properties, and structural modifications of CB are first comprehensively described, and then the value of this macrocycle in applications within the medical field is discussed. In addition, we have also summarized patent applications of CB in this field over recent years, aiming to illustrate the current status of developments of this molecule. Finally, we discuss the challenges faced by CB in the medical field and future trends in its development.
Collapse
Affiliation(s)
- Guowang Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
20
|
Lou XY, Yang YW. Pillar[n]arene-Based Supramolecular Switches in Solution and on Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003263. [PMID: 32924206 DOI: 10.1002/adma.202003263] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The design and synthesis of new synthetic macrocycles has driven the rapid development of supramolecular chemistry and materials. Pillar[n]arenes, as a new type of macrocyclic compounds, are used as a promising type of building blocks for switchable supramolecular systems due to their versatile functionalization and the ability of binding toward various guest molecules. A number of guests can form inclusion complexes with pillar[n]arenes and their derivatives in solution, which are sensitive to different external triggers. Interestingly, the pursuit of complex stimuli-responsive functional materials and devices has largely motivated the shift of pillar[n]arene-based switches from solution media to surfaces for controllable macroscopic motions on solid platforms. Facilitated by the facile modification of pillar[n]arenes on various solid supports and the dynamic binding of host-guest complexes, numerous functional hybrid materials with adjustable physical or chemical properties and integrated functionalities have been reported in the last decade. Here, the advance of supramolecular switches in solution and on surfaces based on pillar[n]arenes and derivatives with an emphasis on the efforts and the latest contributions from the field is discussed.
Collapse
Affiliation(s)
- Xin-Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
21
|
Ahsan A, Farooq MA, Ahsan Bajwa A, Parveen A. Green Synthesis of Silver Nanoparticles Using Parthenium Hysterophorus: Optimization, Characterization and In Vitro Therapeutic Evaluation. Molecules 2020; 25:molecules25153324. [PMID: 32707950 PMCID: PMC7435648 DOI: 10.3390/molecules25153324] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 01/31/2023] Open
Abstract
Traditional synthetic techniques for silver nanoparticles synthesis involve toxic chemicals that are harmful to humans as well as the environment. The green chemistry method for nanoparticle synthesis is rapid, eco-friendly, and less toxic as compared to the traditional methods. In the present research, we synthesized silver nanoparticles employing a green chemistry approach from Parthenium hysterophorus leaf extract. The optimized parthenium silver nanoparticles (PrSNPs) had a mean particle size of 187.87 ± 4.89 nm with a narrow size distribution of 0.226 ± 0.009 and surface charge −34 ± 3.12 mV, respectively. The physicochemical characterization of optimized SNPs was done by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the transmission electron microscopy (TEM) analysis indicates the spherical shape of NPs with an average diameter of 20–25 nm. PrSNPs were investigated for in vitro antibacterial, antifungal, anti-inflammatory, and antioxidant properties, and showed excellent profiles. The cytotoxic activity was analyzed against two cancer cell lines, i.e., B16F10 and HepG2 for 24 h and 48 h. PrSNPs proved to be an excellent anticancer agent. These PrSNPs were also employed for the treatment of wastewater by monitoring the E. coli count, and it turned out to be reduced by 58%; hence these NPs could be used for disinfecting water. Hence, we can propose that PrSNPs could be a suitable candidate as an antimicrobial, antioxidant, anti-inflammatory, and antitumor agent for the treatment of several ailments.
Collapse
Affiliation(s)
- Anam Ahsan
- College of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China;
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211100 Nanjing, China;
| | - Ali Ahsan Bajwa
- Weeds Research Unit, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia;
| | - Amna Parveen
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu Incheon 406–799, Korea
- Correspondence: ; Tel.: +82-10-5925-2733
| |
Collapse
|
22
|
Clément M, Abdellah I, Martini C, Fossard F, Dragoe D, Remita H, Huc V, Lampre I. Gold(i)-silver(i)-calix[8]arene complexes, precursors of bimetallic alloyed Au-Ag nanoparticles. NANOSCALE ADVANCES 2020; 2:2768-2773. [PMID: 36132403 PMCID: PMC9418713 DOI: 10.1039/d0na00111b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 05/06/2023]
Abstract
In this paper, we report the first synthesis and characterisations of bimetallic gold(i)-silver(i) calix[8]arene complexes. We show that the radiolytic reduction of these complexes leads to the formation of small bimetallic nanoparticles with an alloyed structure, as evidenced by XPS, HR-TEM and STEM/HAADF-EDX measurements.
Collapse
Affiliation(s)
- Marie Clément
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000 91405 Orsay France
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 91405 Orsay France
| | - Ibrahim Abdellah
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 91405 Orsay France
| | - Cyril Martini
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 91405 Orsay France
| | - Frédéric Fossard
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Etude des Microstructures 92322 Châtillon France
| | - Diana Dragoe
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 91405 Orsay France
| | - Hynd Remita
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000 91405 Orsay France
| | - Vincent Huc
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 91405 Orsay France
| | - Isabelle Lampre
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000 91405 Orsay France
| |
Collapse
|
23
|
Shalaeva Y, Morozova JE, Gubaidullin A, Saifina A, Shumatbaeva A, Nizameev I, Kadirov M, Ovsyannikov A, Antipin I. Photocatalytic properties of supramolecular nanoassociates based on gold and platinum nanoparticles, capped by amphiphilic calix[4]resorcinarenes, towards organic dyes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Zhao YY, Yang JM, Jin XY, Cong H, Ge QM, Liu M, Tao Z. Recent Development of Supramolecular Sensors Constructed by Hybridization of Organic Macrocycles with Nanomaterials. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200214110110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Macrocyclic compounds have attracted tremendous attention for their superior
performance in supramolecular recognition, catalysis, and host-guest interaction. With
these admirable properties, macrocyclic compounds were used as modifiers for enhancing
the sensitivity and selectivity of electrodes and optical sensors. The classic macrocyclic
compounds, including crown ethers, cyclodextrins, calixarenes, cucurbiturils, and pillararenes,
were employed as receptors for electrochemical and optical sensors to develop
new analytical methods with the wilder detection range, lower detection limit, and better
tolerance of interference. Macrocyclic molecules functionalized with nanomaterials, the
small entities with dimensions in the nanoscale, realized the versatility and diversification
of the nano-hybrid materials, which improved the capabilities of recognition and response
with the combining characteristics of two components. Herein, this review focused on the development in the
research field of hybridization of organic macrocycles with nanoparticles and their applications for chemosensors,
aiming at both existing researchers in the field and who would like to enter into the research.
Collapse
Affiliation(s)
- Yong-Yi Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jian-Mei Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xian-Yi Jin
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qing-Mei Ge
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Mao Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
25
|
Zhou Y, Jie K, Zhao R, Huang F. Supramolecular-Macrocycle-Based Crystalline Organic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904824. [PMID: 31535778 DOI: 10.1002/adma.201904824] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Supramolecular macrocycles are well known as guest receptors in supramolecular chemistry, especially host-guest chemistry. In addition to their wide applications in host-guest chemistry and related areas, macrocycles have also been employed to construct crystalline organic materials (COMs) owing to their particular structures that combine both rigidity and adaptivity. There are two main types of supramolecular-macrocycle-based COMs: those constructed from macrocycles themselves and those prepared from macrocycles with other organic linkers. This review summarizes recent developments in supramolecular-macrocycle-based COMs, which are categorized by various types of macrocycles, including cyclodextrins, calixarenes, resorcinarenes, pyrogalloarenes, cucurbiturils, pillararenes, and others. Effort is made to focus on the structures of supramolecular-macrocycle-based COMs and their structure-function relationships. In addition, the application of supramolecular-macrocycle-based COMs in gas storage or separation, molecular separation, solid-state electrolytes, proton conduction, iodine capture, water or environmental treatment, etc., are also presented. Finally, perspectives and future challenges in the field of supramolecular-macrocycle-based COMs are discussed.
Collapse
Affiliation(s)
- Yujuan Zhou
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Run Zhao
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
26
|
Barrow SJ, Palma A, de Nijs B, Chikkaraddy R, Bowman RW, Baumberg JJ, Scherman OA. Nanometer control in plasmonic systems through discrete layer-by-layer macrocycle-cation deposition. NANOSCALE 2020; 12:8706-8710. [PMID: 32270155 DOI: 10.1039/d0nr00902d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we demonstrate that coordination interactions between Fe3+ and cucurbit[7]uril (CB[7]) can be utilised to build up defined nanoscale spacing layers in metallic nanosystems. We begin by characterising the layer-by-layer deposition of CB[7] and FeCl3·6H2O coordination layers through the use of a Quartz-Crystal Microbalance (QCM) and contact angle measurements. We then apply this layered structure to accurately control the spacing, and thus optical properties, of gold nanoparticles in a Nanoparticle-on-Mirror (NPoM) structure, which is demonstrated via normalising plasmon resonance spectroscopy.
Collapse
Affiliation(s)
- Steven J Barrow
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, CB2 1EW, UK.
| | | | | | | | | | | | | |
Collapse
|
27
|
Padnya P, Gorbachuk V, Stoikov I. The Role of Calix[n]arenes and Pillar[n]arenes in the Design of Silver Nanoparticles: Self-Assembly and Application. Int J Mol Sci 2020; 21:ijms21041425. [PMID: 32093189 PMCID: PMC7073139 DOI: 10.3390/ijms21041425] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
Silver nanoparticles (AgNPs) are an attractive alternative to plasmonic gold nanoparticles. The relative cheapness and redox stability determine the growing interest of researchers in obtaining selective plasmonic and electrochemical (bio)sensors based on silver nanoparticles. The controlled synthesis of metal nanoparticles of a defined morphology is a nontrivial task, important for such fields as biochemistry, catalysis, biosensors and microelectronics. Cyclophanes are well known for their great receptor properties and are of particular interest in the creation of metal nanoparticles due to a variety of cyclophane 3D structures and unique redox abilities. Silver ion-based supramolecular assemblies are attractive due to the possibility of reduction by “soft” reducing agents as well as being accessible precursors for silver nanoparticles of predefined morphology, which are promising for implementation in plasmonic sensors. For this purpose, the chemistry of cyclophanes offers a whole arsenal of approaches: exocyclic ion coordination, association, stabilization of the growth centers of metal nanoparticles, as well as in reduction of silver ions. Thus, this review presents the recent advances in the synthesis and stabilization of Ag (0) nanoparticles based on self-assembly of associates with Ag (I) ions with the participation of bulk platforms of cyclophanes (resorcin[4]arenes, (thia)calix[n]arenes, pillar[n]arenes).
Collapse
Affiliation(s)
- Pavel Padnya
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| | | | - Ivan Stoikov
- Correspondence: (P.P.); (I.S.); Tel.: +7-843-233-7241 (I.S.)
| |
Collapse
|
28
|
Tan X, Xu J, Huang T, Wang S, Yuan M, Zhao G. Graphdiyne bearing pillar[5]arene-reduced Au nanoparticles for enhanced catalytic performance towards the reduction of 4-nitrophenol and methylene blue. RSC Adv 2019; 9:38372-38380. [PMID: 35540210 PMCID: PMC9075914 DOI: 10.1039/c9ra07347g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/09/2019] [Indexed: 12/18/2022] Open
Abstract
Graphdiyne (GD), a novel two dimensional (2D) carbon material, has earned a lot of attention in recent years. Constructing a novel hybrid nanomaterial based on GD, macrocyclic host and Au nanoparticles is an effective strategy for heterogeneous catalysis applications. While tremendous advancements in the preparation of two dimensional (2D) materials anchoring Au nanoparticles have been made, it is an urgent requirement to explore a green, efficient and facile approach for obtaining small-sized Au nanoparticles. The use of the 2D material graphdiyne (GD) presents more-promising candidates for constructing excellent sites for loading metal nanoparticles. In this study, a novel 2D heterogeneous hybrid nanomaterial (P5A-Au-GD) based on GD and pillar[5]arene (P5A)-reduced Au nanoparticles (P5A-Au) was successfully prepared. In this strategy, the P5A can reduce HAuCl4 with the aid of NaOH in the dispersion of GD. Accordingly, the generated P5A-Au can immediately interact with GD to form the P5A-Au-GD hybrid nanomaterial without any harsh reduced materials or other energies. The Au nanoparticles with average diameter of 2-3 nm are homogeneously dispersed on the surface of GD. The heterogeneous 2D catalyst of P5A-Au-GD shows high catalytic performances in the reduction of 4-nitrophenol and methylene blue by comparing commercial Pd/C catalyst. Meanwhile, the unique 2D heterogeneous hybrid material P5A-Au-GD exhibits durable recyclability and stability during the catalytic reaction. Considering the outstanding merits of the heterogeneous 2D catalyst of P5A-Au-GD as well as the simple and green preparation, this study might not only present enormous opportunities for the stabilized, high-performance and sustainable catalysts but also be applied in other frontier studies of sustainable functionalized nanocomposites and advanced materials.
Collapse
Affiliation(s)
- Xiaoping Tan
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Jianhua Xu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Ting Huang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Sheng Wang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Maojie Yuan
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| | - Genfu Zhao
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University Fuling 408100 China
| |
Collapse
|
29
|
Su P, Smith AJ, Warneke J, Laskin J. Gas-Phase Fragmentation of Host-Guest Complexes of Cyclodextrins and Polyoxometalates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1934-1945. [PMID: 31414375 DOI: 10.1007/s13361-019-02266-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Gas-phase fragmentation pathways of host-guest complexes of cyclodextrins (CDs) and polyoxometalates (POMs) were examined using collision-induced dissociation (CID). The host-guest complexes studied here were composed of two different classes of POMs-Keggin (PW12O403-) and Lindqvist (M6O192-, M = Mo, W)-and three types of CDs (α-, β-, and γ-CD) differing in the diameter of the inner cavity. The CD-POM complexes were generated either by mixing methanol solutions of POM and CD or through a one-step acidic condensation of tetraoxometalates MO42- (M = Mo, W) with CDs for complexes with Keggin and Lindqvist anions, respectively, and introduced into the gas phase using electrospray ionization (ESI). We observe distinct differences in fragmentation pathways of the complexes of Keggin and Lindqvist POMs under high- and low-energy CID conditions. Specifically, direct dissociation and proton transfer from CD to POM accompanied by the separation of fragments is observed in CID of Keggin CD-POM complexes. In contrast, dissociation of CD complexes with Lindqvist POMs is dominated by the simultaneous loss of multiple water molecules. This unusual fragmentation channel is attributed to dissociation of the POM cluster inside the CD cavity accompanied by covalent bond formation between the fragments and CD and elimination of multiple water molecules. The observed covalent coupling of metal oxide clusters opens up opportunities for derivatization of macrocyclic host molecules using collisional excitation of gaseous non-covalent complexes.
Collapse
Affiliation(s)
- Pei Su
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Andrew J Smith
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Jonas Warneke
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnestr. 2, 04103, Leipzig, Germany
| | - Julia Laskin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
30
|
Prakash R, Usha G, Karpagalakshmi K, Ramalakshmi S, Piramuthu L, Yang C, Selvapalam N. Vitamin B1 Sensor at Neutral pH and Improvement by Cucurbit[7]uril. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ramesh Prakash
- Center for Supramolecular Chemistry and Department of Chemistry, International Research Center, Kalasalingam Academy of Research and Education (Kalasalingam University), Krishnankoil, Tamil Nadu State 626-126, India
| | - Govindaraj Usha
- Center for Supramolecular Chemistry and Department of Chemistry, International Research Center, Kalasalingam Academy of Research and Education (Kalasalingam University), Krishnankoil, Tamil Nadu State 626-126, India
| | - Karuppasamy Karpagalakshmi
- Center for Supramolecular Chemistry and Department of Chemistry, International Research Center, Kalasalingam Academy of Research and Education (Kalasalingam University), Krishnankoil, Tamil Nadu State 626-126, India
| | - Sundaram Ramalakshmi
- Center for Supramolecular Chemistry and Department of Chemistry, International Research Center, Kalasalingam Academy of Research and Education (Kalasalingam University), Krishnankoil, Tamil Nadu State 626-126, India
| | - Lakshminarayanan Piramuthu
- Center for Supramolecular Chemistry and Department of Chemistry, International Research Center, Kalasalingam Academy of Research and Education (Kalasalingam University), Krishnankoil, Tamil Nadu State 626-126, India
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610-064, P. R. China
| | - Narayanan Selvapalam
- Center for Supramolecular Chemistry and Department of Chemistry, International Research Center, Kalasalingam Academy of Research and Education (Kalasalingam University), Krishnankoil, Tamil Nadu State 626-126, India
| |
Collapse
|
31
|
Li ZQ, Tang JH, Zhong YW. Multidentate Anchors for Surface Functionalization. Chem Asian J 2019; 14:3119-3126. [PMID: 31389657 DOI: 10.1002/asia.201900989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/06/2019] [Indexed: 01/01/2023]
Abstract
The bottom-up functionalization of solid surfaces shows increasing importance for a wide range of interdisciplinary applications. Multidentate anchors with more than two contact points can bind to solid surfaces with strong chemisorption, well-defined upright configuration, and tailored functionality. The surface functionalization using multidentate anchors with three (tripodal), four (quadripodal), or more binding points is summarized herein, with a focus on those beyond classical tripodal anchors. In particular, the molecular design on how to achieve multisite interaction between anchor and substrate and the introduction of functional groups to thin films are discussed.
Collapse
Affiliation(s)
- Zhong-Qiu Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Bei Yi Jie, Zhong Guan Cun, Haidian District, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hong Tang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Bei Yi Jie, Zhong Guan Cun, Haidian District, Beijing, 100190, China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Bei Yi Jie, Zhong Guan Cun, Haidian District, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Yang Y, Poss G, Weng Y, Qi R, Zheng H, Nianias N, Kay ER, Guldin S. Probing the interaction of nanoparticles with small molecules in real time via quartz crystal microbalance monitoring. NANOSCALE 2019; 11:11107-11113. [PMID: 31166356 DOI: 10.1039/c9nr03162f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite extensive advances in the field of molecular recognition, the real-time monitoring of small molecule binding to nanoparticles (NP) remains a challenge. To this end, we report on a versatile approach, based on quartz crystal microbalance with dissipation monitoring, for the stepwise in situ quantification of gold nanoparticle (AuNPs) immobilisation and subsequent uptake and release of binding partners. AuNPs stabilised by thiol-bound ligand shells of prescribed chemical composition were densely immobilised onto gold surfaces via dithiol linkers. The boronate ester formation between salicylic acid derivatives in solution and boronic acids in the AuNP ligand shell was then studied in real time, revealing a drastic effect of both ligand architecture and Lewis base concentration on the interaction strength. The binding kinetics were analysed with frequency response modelling for a thorough comparison of binding parameters including relaxation time as well as association rate constant. The results directly mirror those from previously reported in-depth studies using nuclear magnetic resonance spectroscopy. By achieving quantitative characterisation of selective binding of analytes with molecular weight below 300 Da, this new method enables rapid, low cost, rational screening of AuNP candidates for molecular recognition.
Collapse
Affiliation(s)
- Ye Yang
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Guillaume Poss
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Yini Weng
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Runzhang Qi
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Hanrui Zheng
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Nikolaos Nianias
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, 1015 Lausanne, Switzerland
| | - Euan R Kay
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
33
|
You Y, Zhou K, Guo B, Liu Q, Cao Z, Liu L, Wu HC. Measuring Binding Constants of Cucurbituril-Based Host-Guest Interactions at the Single-Molecule Level with Nanopores. ACS Sens 2019; 4:774-779. [PMID: 30865423 DOI: 10.1021/acssensors.9b00408] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cucurbiturils are one type of widely used macrocyclic host compound in supramolecular chemistry. Their peculiar properties have led to applications in a wide variety of research areas such as fluorescence spectroscopy, drug delivery, catalysis, and nanotechnology. However, the solubilities of cucurbiturils are rather poor in water and many organic solvents, which may cause accuracy problems when measuring binding constants with traditional methods. In this report, we aim to develop an approach to measure the binding constants of cucurbituril-based host-guest interactions at the single-molecule level. First, we covalently attach different guest compounds to the side-chain of DNA molecules. Then, excess cucurbiturils are incubated with DNA probes to form the host-guest complexes. Next, the modified DNA hybrids are threaded through α-hemolysin nanopore to generate highly characteristic current events. Finally, statistical analyses of the obtained events afford the binding constants of cucurbiturils with various molecules. This new approach provides a simple and straightforward method to compare binding strength of different host-guest complexes and may find applications for quantifying other macrocycle-based host-guest interactions.
Collapse
Affiliation(s)
- Yi You
- Collaborative Innovation Center of Micro/nano Bio-sensing and Food Safety Inspection, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Ke Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bingyuan Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Quansheng Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Multidisciplinary Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Cao
- Collaborative Innovation Center of Micro/nano Bio-sensing and Food Safety Inspection, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Lei Liu
- Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Multidisciplinary Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
34
|
Oliveira OVD, Costa GDC, Costa LT. Encapsulation of the Sulfur Compounds by Cucurbit[7]uril: A Quantum Chemistry Study. J Phys Chem B 2018; 122:12107-12113. [PMID: 30452266 DOI: 10.1021/acs.jpcb.8b09419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Benzothiophene (BT) and dibenzothiophene (DT) are the most important contaminants in the petroleum derivatives responsible for serious environmental and health problems. Therefore, we have investigated the absorption of these compounds for the first time by considering cucurbit[7]uril (CB[7]) as the host molecule and using the theoretical levels of density functional theory//B3LYP-D3/6-31G(d). BT and DT absorbed into CB[7] do not undergo a significant structural change in the CB[7] structure. The energy gap of the S-compounds@CB[7] in water and hexane solvents was approximately 5 eV, and this large value implies that the complexes have high chemical stability. Moreover, the absorption of the BT and DT into CB[7] in the water and hexane solvents is a favorable process, whereas the lowest binding energy was observed between the dibenzothiophene and CB[7] in the DT@CB[7] complex. The solvation enthalpy shows a preferential solvation of the complexes in water than in hexane solvent. This trend is confirmed by the AIM analysis that shows the highest stability for the DT@CB[7] system with the contribution of cooperative hydrogen bonding. The transfer free energy of S-compounds@CB[7] complexes from hexane to water are -66.12 and -59.56 kcal/mol for BT@CB[7] and DT@CB[7], respectively, implying the spontaneous transference of these complexes from hexane to water solvent. Overall, our results show that the cucurbiturils can be a new class of host molecules to be used in the removal of S-compounds from petroleum derivatives. Finally, a schematic flow diagram of the desulfurization process by cucurbiturils was proposed.
Collapse
Affiliation(s)
- Osmair Vital de Oliveira
- Instituto Federal de Educação Ciência e Tecnologia de São Paulo, campus Catanduva , CEP: 29106-010 , Catanduva, São Paulo 15808-305 , Brazil
| | - Gabriela de Carvalho Costa
- Instituto de Química, Universidade Federal Fluminense - Outeiro de São João Batista , s/n CEP:24020-141 , Niterói, Rio de Janeiro 24210-000 , Brazil
| | - Luciano T Costa
- Instituto de Química, Universidade Federal Fluminense - Outeiro de São João Batista , s/n CEP:24020-141 , Niterói, Rio de Janeiro 24210-000 , Brazil
| |
Collapse
|
35
|
Zhang S, Domínguez Z, Assaf KI, Nilam M, Thiele T, Pischel U, Schedler U, Nau WM, Hennig A. Precise supramolecular control of surface coverage densities on polymer micro- and nanoparticles. Chem Sci 2018; 9:8575-8581. [PMID: 30568782 PMCID: PMC6253680 DOI: 10.1039/c8sc03150a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
We report herein the controlled surface functionalization of micro- and nanoparticles by supramolecular host-guest interactions. Our idea is to exploit the competition of two high-affinity guests for binding to the surface-bound supramolecular host cucurbit[7]uril (CB7). To establish our strategy, surface azide groups were introduced to hard-sphere (poly)methylmethacrylate particles with a grafted layer of poly(acrylic acid), and a propargyl derivative of CB7 was coupled to the surface by click chemistry. The amount of surface-bound CB7 was quantified with the high-affinity guest aminomethyladamantane (AMADA), which revealed CB7 surface coverage densities around 0.3 nmol cm-2 indicative of a 3D layer of CB7 binding sites on the surface. The potential for surface functionalization was demonstrated with an aminoadamantane-labeled rhodamine (Ada-Rho) as a second high-affinity guest. Simultaneous incubation of CB7-functionalized particles with both high-affinity guests, AMADA and Ada-Rho, revealed a simple linear relationship between the resulting surface coverage densities of the model fluorescent dye and the mole fraction of Ada-Rho in the incubation mixture. This suggests a highly modular supramolecular strategy for the stable immobilization of application-relevant molecules on particle surfaces and a precise control of their surface coverage densities.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Life Sciences and Chemistry , Jacobs University Bremen , Campus Ring 1 , D-28759 Bremen , Germany .
| | - Zoe Domínguez
- PolyAn GmbH , Rudolf-Baschant-Strasse 2 , D-13086 Berlin , Germany
| | - Khaleel I Assaf
- Department of Life Sciences and Chemistry , Jacobs University Bremen , Campus Ring 1 , D-28759 Bremen , Germany .
| | - Mohamed Nilam
- Department of Life Sciences and Chemistry , Jacobs University Bremen , Campus Ring 1 , D-28759 Bremen , Germany .
| | - Thomas Thiele
- CIQSO - Center for Research in Sustainable Chemistry , Department of Chemistry , University of Huelva , Campus de El Carmen , E-21071 Huelva , Spain
| | - Uwe Pischel
- PolyAn GmbH , Rudolf-Baschant-Strasse 2 , D-13086 Berlin , Germany
| | - Uwe Schedler
- CIQSO - Center for Research in Sustainable Chemistry , Department of Chemistry , University of Huelva , Campus de El Carmen , E-21071 Huelva , Spain
| | - Werner M Nau
- Department of Life Sciences and Chemistry , Jacobs University Bremen , Campus Ring 1 , D-28759 Bremen , Germany .
| | - Andreas Hennig
- Department of Life Sciences and Chemistry , Jacobs University Bremen , Campus Ring 1 , D-28759 Bremen , Germany .
| |
Collapse
|
36
|
Zhang L, Liu S, Wang Y, Zhang H, Liang F. Controllable Synthesis and Catalytic Performance of Gold Nanoparticles with Cucurbit[ n]urils ( n = 5⁻ 8). NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1015. [PMID: 30563230 PMCID: PMC6316165 DOI: 10.3390/nano8121015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 12/12/2022]
Abstract
A series of gold nanoparticles (AuNPs) was prepared in situ with different cucurbit[n]urils (CB[n]s) in an alkaline aqueous solution. The nanoparticle sizes can be well controlled by CB[n]s (n = 5, 6, 7, 8) with different ring sizes. The packing densities of CB[5⁻8] and free surface area on AuNPs were determined. A direct relationship was found between the ring size and packing density of CB[n]s with respect to the AuNP-catalyzed reduction of 4-nitrophenol in the presence of NaBH₄. The larger particle size and higher surface coverage of bigger CB[n]-capped AuNPs significantly decreased the catalytic activity. Furthermore, this work could lead to new applications that utilize AuNPs under an overlayer of CB[n]s for catalysis, sensing, and drug delivery.
Collapse
Affiliation(s)
- Liangfeng Zhang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, Hubei Province Key Laboratory of Science in Metallurgical Process, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, Hubei Province Key Laboratory of Science in Metallurgical Process, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yuhua Wang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, Hubei Province Key Laboratory of Science in Metallurgical Process, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, Hubei Province Key Laboratory of Science in Metallurgical Process, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, Hubei Province Key Laboratory of Science in Metallurgical Process, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
37
|
Samanta K, Sicking W, Schmuck C. Guanidiniocarbonyl Pyrrole Cation (GCP) - A New Guest for Cucurbit[8]uril: Application to the Synthesis of Supramolecular Polymers Based on CB[8]@2GCP Complex Formation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Krishnananda Samanta
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| | - Wilhelm Sicking
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| | - Carsten Schmuck
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| |
Collapse
|
38
|
Novel Competitive Fluorescence Sensing Platform for L-carnitine Based on Cationic Pillar[5]Arene Modified Gold Nanoparticles. SENSORS 2018; 18:s18113927. [PMID: 30441777 PMCID: PMC6263671 DOI: 10.3390/s18113927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022]
Abstract
Supramolecular host-guest interaction and sensing between cationic pillar[5]arenes (CP5) and L-carnitine were developed by the competitive host-guest recognition for the first time. The fluorescence sensing platform was constructed by CP5 functionalized Au nanoparticles (CP5@Au-NPs) as receptor and probe (rhodamine 123, R123), which shown high sensitivity and selectivity for L-carnitine detection. Due to the negative charge and molecular size properties of L-carnitine, it can be highly captured by the CP5 via electrostatic interactions and hydrophobic interactions. The host-guest mechanism between PP5 and L-carnitine was studied by 1H NMR and molecular docking, indicating that more affinity binding force of CP5 with L-carnitine. Therefore, a selective and sensitive fluorescent method was developed. It has a linear response of 0.1–2.0 and 2.0–25.0 μM and a detection limit of 0.067 μM (S/N = 3). The fluorescent sensing platform was also used to detect L-carnitine in human serum and milk samples, which provided potential applications for the detection of drugs abuse and had path for guarding a serious food safety issues.
Collapse
|
39
|
Xiao B, Liang F, Liu S, Im J, Li Y, Liu J, Zhang B, Zhou J, He J, Chang S. Cucurbituril mediated single molecule detection and identification via recognition tunneling. NANOTECHNOLOGY 2018; 29:365501. [PMID: 29882746 DOI: 10.1088/1361-6528/aacb63] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recognition tunneling (RT) is an emerging technique for investigating single molecules in a tunnel junction. We have previously demonstrated its capability of single molecule detection and identification, as well as probing the dynamics of intermolecular bonding at the single molecule level. Here by introducing cucurbituril as a new class of recognition molecule, we demonstrate a powerful platform for electronically investigating the host-guest chemistry at single molecule level. In this report, we first investigated the single molecule electrical properties of cucurbituril in a tunnel junction. Then we studied two model guest molecules, aminoferrocene and amantadine, which were encapsulated by cucurbituril. Small differences in conductance and lifetime can be recognized between the host-guest complexes with the inclusion of different guest molecules. By using a machine learning algorithm to classify the RT signals in a hyper dimensional space, the accuracy of guest molecule recognition can be significantly improved, suggesting the possibility of using cucurbituril molecule for single molecule identification. This work enables a new class of recognition molecule for RT technique and opens the door for detecting a vast variety of small molecules by electrical measurements.
Collapse
Affiliation(s)
- Bohuai Xiao
- The State Key laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Shalaeva YV, Morozova JE, Gubaidullin AT, Saifina AF, Syakaev VV, Ermakova AM, Nizameev IR, Kadirov MK, Ovsyannikov AS, Konovalov AI. Gold nanoparticles, capped by carboxy-calix[4]resorcinarenes: effect of structure and concentration of macrocycles on the nanoparticles size and aggregation. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0836-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Montes-García V, Rodal-Cedeira S, Cordero-Ferradás MJ, Gómez B, García-Río L, Pastoriza-Santos I, Pérez-Juste J. Pillar[5]arene-stabilized Plasmonic Nanoparticles as Selective SERS Sensors. Isr J Chem 2018. [DOI: 10.1002/ijch.201800041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Verónica Montes-García
- Departamento de Química Física y Centro Singular de Investigaciones biomédicas (CINBIO); Universidade de Vigo; 36310 Vigo Spain
| | - Sergio Rodal-Cedeira
- Departamento de Química Física y Centro Singular de Investigaciones biomédicas (CINBIO); Universidade de Vigo; 36310 Vigo Spain
| | - María José Cordero-Ferradás
- Departamento de Química Física y Centro Singular de Investigaciones biomédicas (CINBIO); Universidade de Vigo; 36310 Vigo Spain
| | - Borja Gómez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Física; Universidade de Santiago; 15782 Santiago Spain
| | - Luis García-Río
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Física; Universidade de Santiago; 15782 Santiago Spain
| | - Isabel Pastoriza-Santos
- Departamento de Química Física y Centro Singular de Investigaciones biomédicas (CINBIO); Universidade de Vigo; 36310 Vigo Spain
| | - Jorge Pérez-Juste
- Departamento de Química Física y Centro Singular de Investigaciones biomédicas (CINBIO); Universidade de Vigo; 36310 Vigo Spain
| |
Collapse
|
43
|
Abstract
Pillararenes are a unique group of supramolecular macrocycles, presenting important features and potential applications on account of their intrinsic structural properties and functionality. Developing pillararene-based self-assembled amphiphiles (PSAs) is an efficient approach to translate pillararenes into functional systems and materials for facilitating their practical applications. In this review article, we highlight recent significant advancements in PSAs. A new standard according to the number, solubility, and amphiphilicity of building blocks is employed for dividing PSAs into different categories. The fabrication of PSAs based on various building blocks and supramolecular interactions, and the formation of amphiphile-based self-assemblies are then discussed based on this standard. Furthermore, interesting stimulus-responsiveness to various factors, such as pH, redox, temperature, light, ionic effect, and host-guest competition, generated by the functional groups on various building blocks is summarized, and the corresponding supramolecular interactions in PSAs and their self-assemblies are elaborated. In addition, some important applications of PSAs and their assemblies are discussed. This review not only provides fundamental findings on the construction of PSAs, but also foresees future research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Huacheng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | | | | |
Collapse
|
44
|
Steinberg J, Bauer D, Reissig F, Köckerling M, Pietzsch HJ, Mamat C. Modified Calix[4]crowns as Molecular Receptors for Barium. ChemistryOpen 2018; 7:432-438. [PMID: 29928566 PMCID: PMC5987830 DOI: 10.1002/open.201800019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 01/14/2023] Open
Abstract
A series of modified calix[4]crown-6 derivatives was synthesized to chelate the heavy group 2 metal barium, which serves as a non-radioactive surrogate for radium-223/-224; radionuclides with promising properties for radiopharmaceutical use. These calixcrowns were functionalized with either cyclic amide moieties or with deprotonizable groups, and the corresponding barium complexes were synthesized. Stability constants of these complexes were measured by using NMR and UV/Vis titration techniques to determine logK values of >4.1. Further extraction studies were performed to characterize the binding affinity of calixcrowns to radioactive barium-133. Additionally, the ligands containing cyclic amides were investigated regarding their rotational barriers by using temperature-dependent NMR measurements.
Collapse
Affiliation(s)
- Janine Steinberg
- Institut für Radiopharmazeutische Krebsforschung Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstraße 400 01328 Dresden Germany
- Fakultät Chemie und Lebensmittelchemie TU Dresden 01062 Dresden Germany
| | - David Bauer
- Institut für Radiopharmazeutische Krebsforschung Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstraße 400 01328 Dresden Germany
- Fakultät Chemie und Lebensmittelchemie TU Dresden 01062 Dresden Germany
| | - Falco Reissig
- Institut für Radiopharmazeutische Krebsforschung Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstraße 400 01328 Dresden Germany
- Fakultät Chemie und Lebensmittelchemie TU Dresden 01062 Dresden Germany
| | - Martin Köckerling
- Institut für Chemie-Anorganische Festkörperchemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Germany
| | - Hans-Jürgen Pietzsch
- Institut für Radiopharmazeutische Krebsforschung Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstraße 400 01328 Dresden Germany
- Fakultät Chemie und Lebensmittelchemie TU Dresden 01062 Dresden Germany
| | - Constantin Mamat
- Institut für Radiopharmazeutische Krebsforschung Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstraße 400 01328 Dresden Germany
- Fakultät Chemie und Lebensmittelchemie TU Dresden 01062 Dresden Germany
| |
Collapse
|
45
|
Li D, Qi L. Self-assembly of inorganic nanoparticles mediated by host-guest interactions. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Saptal VB, Sasaki T, Bhanage BM. Ru@PsIL-Catalyzed Synthesis of N
-Formamides and Benzimidazole by using Carbon Dioxide and Dimethylamine Borane. ChemCatChem 2018. [DOI: 10.1002/cctc.201800185] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vitthal B. Saptal
- Department of Chemistry; Institute of Chemical Technology; Matunga Mumbai- 400 019 India
| | - Takehiko Sasaki
- Department of Complexity Science and Engineering; Graduate School of Frontier Sciences; The University of Tokyo; 5-1-5, Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Bhalchandra M. Bhanage
- Department of Chemistry; Institute of Chemical Technology; Matunga Mumbai- 400 019 India
| |
Collapse
|
47
|
Engel S, Möller N, Stricker L, Peterlechner M, Ravoo BJ. A Modular System for the Design of Stimuli-Responsive Multifunctional Nanoparticle Aggregates by Use of Host-Guest Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704287. [PMID: 29573341 DOI: 10.1002/smll.201704287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/24/2018] [Indexed: 06/08/2023]
Abstract
A self-assembly approach for the design of multifunctional nanomaterials consisting of different nanoparticles (gold, iron oxide, and lanthanide-doped LiYF4 ) is developed. This modular system takes advantage of the light-responsive supramolecular host-guest chemistry of β-cyclodextrin and arylazopyrazole, which enables the dynamic and reversible self-assembly of particles to spherical nanoparticle aggregates in aqueous solution. Due to the magnetic iron oxide nanoparticles, the aggregates can be manipulated by an external magnetic field leading to the formation of linear structures. As a result of the integration of upconversion nanoparticles, the aggregates are additionally responsive to near-infrared light and can be redispersed by use of the upconversion effect. By varying the nanoparticle and linker concentrations the composition, size, shape, and properties of the multifunctional nanoparticle aggregates can be fine-tuned.
Collapse
Affiliation(s)
- Sabrina Engel
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Nadja Möller
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Lucas Stricker
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Martin Peterlechner
- Institute of Materials Physics, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
48
|
Plant-Extract-Assisted Green Synthesis of Silver Nanoparticles Using Origanum vulgare L. Extract and Their Microbicidal Activities. SUSTAINABILITY 2018. [DOI: 10.3390/su10040913] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Supramolecular Control over the Interparticle Distance in Gold Nanoparticle Arrays by Cyclodextrin Polyrotaxanes. NANOMATERIALS 2018; 8:nano8030168. [PMID: 29547539 PMCID: PMC5869659 DOI: 10.3390/nano8030168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 01/09/2023]
Abstract
Amphiphilic nonionic ligands, synthesized with a fixed hydrophobic moiety formed by a thiolated alkyl chain and an aromatic ring, and with a hydrophilic tail composed of a variable number of oxyethylene units, were used to functionalize spherical gold nanoparticles (AuNPs) in water. Steady-state and time-resolved fluorescence measurements of the AuNPs in the presence of α-cyclodextrin (α-CD) revealed the formation of supramolecular complexes between the ligand and macrocycle at the surface of the nanocrystals. The addition of α-CD induced the formation of inclusion complexes with a high apparent binding constant that decreased with the increasing oxyethylene chain length. The formation of polyrotaxanes at the surface of AuNPs, in which many α-CDs are trapped as hosts on the long and linear ligands, was demonstrated by the formation of large and homogeneous arrays of self-assembled AuNPs with hexagonal close packing, where the interparticle distance increased with the length of the oxyethylene chain. The estimated number of α-CDs per polyrotaxane suggests a high rigidization of the ligand upon complexation, allowing for nearly perfect control of the interparticle distance in the arrays. This degree of supramolecular control was extended to arrays formed by AuNPs stabilized with polyethylene glycol and even to binary arrays. Electromagnetic simulations showed that the enhancement and distribution of the electric field can be finely controlled in these plasmonic arrays.
Collapse
|
50
|
Blanco E, Atienzar P, Hernández P, Quintana C. The Langmuir-Hinshelwood approach for kinetic evaluation of cucurbit[7]uril-capped gold nanoparticles in the reduction of the antimicrobial nitrofurantoin. Phys Chem Chem Phys 2018; 19:18913-18923. [PMID: 28715032 DOI: 10.1039/c7cp03534a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, gold nanoparticles protected by the macrocycle cucurbit[7]uril were used as a catalyst in the reduction of the hazardous antimicrobial nitrofurantoin. 4-Nitrophenol was also employed as the substrate of the reduction for comparative purposes. The kinetic data were modeled to the Langmuir-Hinshelwood equation to know the affinities of the reactants for the surface and the real kinetic constants, a comparison at the molecular level that is made for the first time. From the results, it was observed that the adsorption of nitrofurantoin was stronger than that of 4-nitrophenol whilst the kinetic constant on the surface was higher for 4-nitrophenol than for nitrofurantoin. Additionally, shifts in the nanoparticle surface plasmon band permitted insights to be obtained into the adsorption rate and strength. The reaction induction times were also investigated and were highly dependent on the borohydride concentration and, due to the higher surface affinity of nitrofurantoin compared with 4-nitrophenol, an increase in nitrofurantoin concentration increased the induction time, while a lag phase was not observed for 4-nitrophenol.
Collapse
Affiliation(s)
- E Blanco
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - P Atienzar
- Instituto Universitario de Tecnología Química CSIC-UPV, Departamento de Química, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - P Hernández
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - C Quintana
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|