1
|
Tamargo‐Azpilicueta J, Casado‐Combreras MÁ, Giner‐Arroyo RL, Velázquez‐Campoy A, Márquez I, Olloqui‐Sariego JL, De la Rosa MA, Diaz‐Moreno I. Phosphorylation of cytochrome c at tyrosine 48 finely regulates its binding to the histone chaperone SET/TAF-Iβ in the nucleus. Protein Sci 2024; 33:e5213. [PMID: 39548742 PMCID: PMC11568366 DOI: 10.1002/pro.5213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
Post-translational modifications (PTMs) of proteins are ubiquitous processes present in all life kingdoms, involved in the regulation of protein stability, subcellular location and activity. In this context, cytochrome c (Cc) is an excellent case study to analyze the structural and functional changes induced by PTMS as Cc is a small, moonlighting protein playing different roles in different cell compartments at different cell-cycle stages. Cc is actually a key component of the mitochondrial electron transport chain (ETC) under homeostatic conditions but is translocated to the cytoplasm and even the nucleus under apoptotic conditions and/or DNA damage. Phosphorylation does specifically alter the Cc redox activity in the mitochondria and the Cc non-redox interaction with apoptosis-related targets in the cytoplasm. However, little is known on how phosphorylation alters the interaction of Cc with histone chaperones in the nucleus. Here, we report the effect of Cc Tyr48 phosphorylation by examining the protein interaction with SET/TAF-Iβ in the nuclear compartment using a combination of molecular dynamics simulations, biophysical and structural approaches such as isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR) and in cell proximity ligation assays. From these experiments, we infer that Tyr48 phosphorylation allows a fine-tuning of the Cc-mediated inhibition of SET/TAF-Iβ histone chaperone activity in vitro. Our findings likewise reveal that phosphorylation impacts the nuclear, stress-responsive functions of Cc, and provide an experimental framework to explore novel aspects of Cc post-translational regulation in the nucleus.
Collapse
Affiliation(s)
- Joaquin Tamargo‐Azpilicueta
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| | - Rafael L. Giner‐Arroyo
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| | - Adrián Velázquez‐Campoy
- Institute for Biocomputation and Physic of Complex Systems (BIFI), Joint Unit GBsC‐CSIC‐BIFIUniversity of ZaragozaZaragozaSpain
- Department of Biochemistry and Molecular and Cellular BiologyUniversity of ZaragozaZaragozaSpain
- Institute for Health Research Aragón (IIS Aragon)ZaragozaSpain
- Centre for Biomedical Research Network of Hepatic and Digestive Diseases (CIBERehd)MadridSpain
| | | | | | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| | - Irene Diaz‐Moreno
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| |
Collapse
|
2
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
3
|
Mavillard F, Guerra-Castellano A, Guerrero-Gómez D, Rivas E, Cantero G, Servian-Morilla E, Folland C, Ravenscroft G, Martín MA, Miranda-Vizuete A, Cabrera-Serrano M, Diaz-Moreno I, Paradas C. A splice-altering homozygous variant in COX18 causes severe sensory-motor neuropathy with oculofacial apraxia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167330. [PMID: 38960055 DOI: 10.1016/j.bbadis.2024.167330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Affiliation(s)
- Fabiola Mavillard
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain
| | | | - David Guerrero-Gómez
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Eloy Rivas
- Department of Neuropathology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Gloria Cantero
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain
| | - Emilia Servian-Morilla
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Miguel A Martín
- Mitochondrial & Neuromuscular Disorders Group, Genetics Department, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Macarena Cabrera-Serrano
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain
| | - Irene Diaz-Moreno
- Instituto de Investigaciones Químicas, Universidad de Sevilla-CSIC, Sevilla, Spain.
| | - Carmen Paradas
- Neuromuscular Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS)/Hospital Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Sevilla, Spain.
| |
Collapse
|
4
|
Lockwood CWJ, Nash BW, Newton-Payne SE, van Wonderen JH, Whiting KPS, Connolly A, Sutton-Cook AL, Crook A, Aithal AR, Edwards MJ, Clarke TA, Sachdeva A, Butt JN. Genetic Code Expansion in Shewanella oneidensis MR-1 Allows Site-Specific Incorporation of Bioorthogonal Functional Groups into a c-Type Cytochrome. ACS Synth Biol 2024; 13:2833-2843. [PMID: 39158169 PMCID: PMC11421213 DOI: 10.1021/acssynbio.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Genetic code expansion has enabled cellular synthesis of proteins containing unique chemical functional groups to allow the understanding and modulation of biological systems and engineer new biotechnology. Here, we report the development of efficient methods for site-specific incorporation of structurally diverse noncanonical amino acids (ncAAs) into proteins expressed in the electroactive bacterium Shewanella oneidensis MR-1. We demonstrate that the biosynthetic machinery for ncAA incorporation is compatible and orthogonal to the endogenous pathways of S. oneidensis MR-1 for protein synthesis, maturation of c-type cytochromes, and protein secretion. This allowed the efficient synthesis of a c-type cytochrome, MtrC, containing site-specifically incorporated ncAA in S. oneidensis MR-1 cells. We demonstrate that site-specific replacement of surface residues in MtrC with ncAAs does not influence its three-dimensional structure and redox properties. We also demonstrate that site-specifically incorporated bioorthogonal functional groups could be used for efficient site-selective labeling of MtrC with fluorophores. These synthetic biology developments pave the way to expand the chemical repertoire of designer proteins expressed in S. oneidensis MR-1.
Collapse
Affiliation(s)
- Colin W J Lockwood
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Benjamin W Nash
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Simone E Newton-Payne
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Jessica H van Wonderen
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Keir P S Whiting
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Abigail Connolly
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Alexander L Sutton-Cook
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Archie Crook
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Advait R Aithal
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Marcus J Edwards
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, U.K
| | - Thomas A Clarke
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Amit Sachdeva
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
5
|
Baños-Jaime B, Corrales-Guerrero L, Pérez-Mejías G, Rejano-Gordillo CM, Velázquez-Campoy A, Martínez-Cruz LA, Martínez-Chantar ML, De la Rosa MA, Díaz-Moreno I. Phosphorylation at the disordered N-end makes HuR accumulate and dimerize in the cytoplasm. Nucleic Acids Res 2024; 52:8552-8565. [PMID: 38966993 PMCID: PMC11317137 DOI: 10.1093/nar/gkae564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/30/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024] Open
Abstract
Human antigen R (HuR) is an RNA binding protein mainly involved in maintaining the stability and controlling the translation of mRNAs, critical for immune response, cell survival, proliferation and apoptosis. Although HuR is a nuclear protein, its mRNA translational-related function occurs at the cytoplasm, where the oligomeric form of HuR is more abundant. However, the regulation of nucleo-cytoplasmic transport of HuR and its connection with protein oligomerization remain unclear. In this work, we describe the phosphorylation of Tyr5 as a new hallmark for HuR activation. Our biophysical, structural and computational assays using phosphorylated and phosphomimetic HuR proteins demonstrate that phosphorylation of Tyr5 at the disordered N-end stretch induces global changes on HuR dynamics and conformation, modifying the solvent accessible surface of the HuR nucleo-cytoplasmic shuttling (HNS) sequence and releasing regions implicated in HuR dimerization. These findings explain the preferential cytoplasmic accumulation of phosphorylated HuR in HeLa cells, aiding to comprehend the mechanisms underlying HuR nucleus-cytoplasm shuttling and its later dimerization, both of which are relevant in HuR-related pathogenesis.
Collapse
Affiliation(s)
- Blanca Baños-Jaime
- Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville - CSIC, Seville 41092, Spain
| | - Laura Corrales-Guerrero
- Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville - CSIC, Seville 41092, Spain
| | - Gonzalo Pérez-Mejías
- Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville - CSIC, Seville 41092, Spain
| | - Claudia M Rejano-Gordillo
- Centre for Biomedical Research Network of Hepatic and Digestive Diseases (CIBERehd), Madrid 28029, Spain
- Liver Disease Lab, BRTA CIC bioGUNE, Derio 48160 Bizkaia, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura; University Institute of Biosanitary Research of Extremadura (INUBE), Badajoz 06071, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physic of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, Zaragoza 50018, Spain
- Departament of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza 50009, Spain
- Institute for Health Research of Aragón (IIS Aragon), Zaragoza 50009, Spain
| | - Luis Alfonso Martínez-Cruz
- Centre for Biomedical Research Network of Hepatic and Digestive Diseases (CIBERehd), Madrid 28029, Spain
- Liver Disease Lab, BRTA CIC bioGUNE, Derio 48160 Bizkaia, Spain
| | - María Luz Martínez-Chantar
- Centre for Biomedical Research Network of Hepatic and Digestive Diseases (CIBERehd), Madrid 28029, Spain
- Liver Disease Lab, BRTA CIC bioGUNE, Derio 48160 Bizkaia, Spain
| | - Miguel A De la Rosa
- Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville - CSIC, Seville 41092, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville - CSIC, Seville 41092, Spain
| |
Collapse
|
6
|
Ruiz-Albor A, Chaves-Arquero B, Martín-Barros I, Guerra-Castellano A, Gonzalez-Magaña A, de Opakua AI, Merino N, Ferreras-Gutiérrez M, Berra E, Díaz-Moreno I, Blanco FJ. PCNA molecular recognition of different PIP motifs: Role of Tyr211 phosphorylation. Int J Biol Macromol 2024; 273:133187. [PMID: 38880460 DOI: 10.1016/j.ijbiomac.2024.133187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The coordination of enzymes and regulatory proteins for eukaryotic DNA replication and repair is largely achieved by Proliferating Cell Nuclear Antigen (PCNA), a toroidal homotrimeric protein that embraces the DNA duplex. Many proteins bind PCNA through a conserved sequence known as the PCNA interacting protein motif (PIP). PCNA is further regulated by different post-translational modifications. Phosphorylation at residue Y211 facilitates unlocking stalled replication forks to bypass DNA damage repair processes but increasing nucleotide misincorporation. We explore here how phosphorylation at Y211 affects PCNA recognition of the canonical PIP sequences of the regulatory proteins p21 and p15, which bind with nM and μM affinity, respectively. For that purpose, we have prepared PCNA with p-carboxymethyl-L-phenylalanine (pCMF, a mimetic of phosphorylated tyrosine) at position 211. We have also characterized PCNA binding to the non-canonical PIP sequence of the catalytic subunit of DNA polymerase δ (p125), and to the canonical PIP sequence of the enzyme ubiquitin specific peptidase 29 (USP29) which deubiquitinates PCNA. Our results show that Tyr211 phosphorylation has little effect on the molecular recognition of p21 and p15, and that the PIP sequences of p125 and USP29 bind to the same site on PCNA as other PIP sequences, but with very low affinity.
Collapse
Affiliation(s)
- Antonio Ruiz-Albor
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Belén Chaves-Arquero
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | | | | | | | | | | | | | | | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - Francisco J Blanco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain.
| |
Collapse
|
7
|
Allen MC, Karplus PA, Mehl RA, Cooley RB. Genetic Encoding of Phosphorylated Amino Acids into Proteins. Chem Rev 2024; 124:6592-6642. [PMID: 38691379 PMCID: PMC11658404 DOI: 10.1021/acs.chemrev.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons. This genetic programming of phospho-protein synthesis eliminates the reliance on kinase-based or chemical semisynthesis approaches, making it broadly applicable to diverse phospho-proteoforms. In this comprehensive review, we provide a brief introduction to GCE and trace the development of existing GCE technologies for installing phosphoserine, phosphothreonine, phosphotyrosine, and their mimics, discussing both their advantages as well as their limitations. While some of the technologies are still early in their development, others are already robust enough to greatly expand the range of biologically relevant questions that can be addressed. We highlight new discoveries enabled by these GCE approaches, provide practical considerations for the application of technologies by non-GCE experts, and also identify avenues ripe for further development.
Collapse
Affiliation(s)
- Michael C. Allen
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - P. Andrew Karplus
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Ryan A. Mehl
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Richard B. Cooley
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| |
Collapse
|
8
|
Morse PT, Arroum T, Wan J, Pham L, Vaishnav A, Bell J, Pavelich L, Malek MH, Sanderson TH, Edwards BF, Hüttemann M. Phosphorylations and Acetylations of Cytochrome c Control Mitochondrial Respiration, Mitochondrial Membrane Potential, Energy, ROS, and Apoptosis. Cells 2024; 13:493. [PMID: 38534337 PMCID: PMC10969761 DOI: 10.3390/cells13060493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cytochrome c (Cytc) has both life-sustaining and cellular death-related functions, depending on subcellular localization. Within mitochondria, Cytc acts as a single electron carrier as part of the electron transport chain (ETC). When released into the cytosol after cellular insult, Cytc triggers the assembly of the apoptosome, committing the cell to intrinsic apoptosis. Due to these dual natures, Cytc requires strong regulation by the cell, including post-translational modifications, such as phosphorylation and acetylation. Six phosphorylation sites and three acetylation sites have been detected on Cytc in vivo. Phosphorylations at T28, S47, Y48, T49, T58, and Y97 tend to be present under basal conditions in a tissue-specific manner. In contrast, the acetylations at K8, K39, and K53 tend to be present in specific pathophysiological conditions. All of the phosphorylation sites and two of the three acetylation sites partially inhibit respiration, which we propose serves to maintain an optimal, intermediate mitochondrial membrane potential (ΔΨm) to minimize reactive oxygen species (ROS) production. Cytc phosphorylations are lost during ischemia, which drives ETC hyperactivity and ΔΨm hyperpolarization, resulting in exponential ROS production thus causing reperfusion injury following ischemia. One of the acetylation sites, K39, shows a unique behavior in that it is gained during ischemia, stimulating respiration while blocking apoptosis, demonstrating that skeletal muscle, which is particularly resilient to ischemia-reperfusion injury compared to other organs, possesses a different metabolic strategy to handle ischemic stress. The regulation of Cytc by these post-translational modifications underscores the importance of Cytc for the ETC, ΔΨm, ROS production, apoptosis, and the cell as a whole.
Collapse
Affiliation(s)
- Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
- Division of Pediatric Critical Care, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Lauren Pavelich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Moh H. Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Thomas H. Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brian F.P. Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
9
|
Morse PT, Pérez-Mejías G, Wan J, Turner AA, Márquez I, Kalpage HA, Vaishnav A, Zurek MP, Huettemann PP, Kim K, Arroum T, De la Rosa MA, Chowdhury DD, Lee I, Brunzelle JS, Sanderson TH, Malek MH, Meierhofer D, Edwards BFP, Díaz-Moreno I, Hüttemann M. Cytochrome c lysine acetylation regulates cellular respiration and cell death in ischemic skeletal muscle. Nat Commun 2023; 14:4166. [PMID: 37443314 PMCID: PMC10345088 DOI: 10.1038/s41467-023-39820-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Skeletal muscle is more resilient to ischemia-reperfusion injury than other organs. Tissue specific post-translational modifications of cytochrome c (Cytc) are involved in ischemia-reperfusion injury by regulating mitochondrial respiration and apoptosis. Here, we describe an acetylation site of Cytc, lysine 39 (K39), which was mapped in ischemic porcine skeletal muscle and removed by sirtuin5 in vitro. Using purified protein and cellular double knockout models, we show that K39 acetylation and acetylmimetic K39Q replacement increases cytochrome c oxidase (COX) activity and ROS scavenging while inhibiting apoptosis via decreased binding to Apaf-1, caspase cleavage and activity, and cardiolipin peroxidase activity. These results are discussed with X-ray crystallography structures of K39 acetylated (1.50 Å) and acetylmimetic K39Q Cytc (1.36 Å) and NMR dynamics. We propose that K39 acetylation is an adaptive response that controls electron transport chain flux, allowing skeletal muscle to meet heightened energy demand while simultaneously providing the tissue with robust resilience to ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas, Universidad de Sevilla - CSIC, 41092, Sevilla, Spain
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Alice A Turner
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Inmaculada Márquez
- Instituto de Investigaciones Químicas, Universidad de Sevilla - CSIC, 41092, Sevilla, Spain
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Matthew P Zurek
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Philipp P Huettemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Katherine Kim
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas, Universidad de Sevilla - CSIC, 41092, Sevilla, Spain
| | - Dipanwita Dutta Chowdhury
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Joseph S Brunzelle
- Life Sciences Collaborative Access Team, Northwestern University, Center for Synchrotron Research, Argonne, IL, 60439, USA
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Moh H Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Brian F P Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas, Universidad de Sevilla - CSIC, 41092, Sevilla, Spain.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
10
|
Tomasina F, Martínez J, Zeida A, Chiribao ML, Demicheli V, Correa A, Quijano C, Castro L, Carnahan RH, Vinson P, Goff M, Cooper T, McDonald WH, Castellana N, Hannibal L, Morse PT, Wan J, Hüttemann M, Jemmerson R, Piacenza L, Radi R. De novo sequencing and construction of a unique antibody for the recognition of alternative conformations of cytochrome c in cells. Proc Natl Acad Sci U S A 2022; 119:e2213432119. [PMID: 36378644 PMCID: PMC9704708 DOI: 10.1073/pnas.2213432119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cytochrome c (cyt c) can undergo reversible conformational changes under biologically relevant conditions. Revealing these alternative cyt c conformers at the cell and tissue level is challenging. A monoclonal antibody (mAb) identifying a key conformational change in cyt c was previously reported, but the hybridoma was rendered nonviable. To resurrect the mAb in a recombinant form, the amino-acid sequences of the heavy and light chains were determined by peptide mapping-mass spectrometry-bioinformatic analysis and used to construct plasmids encoding the full-length chains. The recombinant mAb (R1D3) was shown to perform similarly to the original mAb in antigen-binding assays. The mAb bound to a variety of oxidatively modified cyt c species (e.g., nitrated at Tyr74 or oxidized at Met80), which lose the sixth heme ligation (Fe-Met80); it did not bind to several cyt c phospho- and acetyl-mimetics. Peptide competition assays together with molecular dynamic studies support that R1D3 binds a neoepitope within the loop 40-57. R1D3 was employed to identify alternative conformations of cyt c in cells under oxidant- or senescence-induced challenge as confirmed by immunocytochemistry and immunoaffinity studies. Alternative conformers translocated to the nuclei without causing apoptosis, an observation that was further confirmed after pinocytic loading of oxidatively modified cyt c to B16-F1 cells. Thus, alternative cyt c conformers, known to gain peroxidatic function, may represent redox messengers at the cell nuclei. The availability and properties of R1D3 open avenues of interrogation regarding the presence and biological functions of alternative conformations of cyt c in mammalian cells and tissues.
Collapse
Affiliation(s)
- Florencia Tomasina
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Jennyfer Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - María Laura Chiribao
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Unidad de Biología Molecular, Laboratorio de Interacción Hospedero Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Verónica Demicheli
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Celia Quijano
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Laura Castro
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
| | | | - Matt Goff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Tracy Cooper
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - W. Hayes McDonald
- Department of Biochemistry and the Proteomics Core of the Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37240
| | | | - Luciana Hannibal
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201
| | - Ronald Jemmerson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
11
|
Phosphorylation disrupts long-distance electron transport in cytochrome c. Nat Commun 2022; 13:7100. [PMID: 36402842 PMCID: PMC9675734 DOI: 10.1038/s41467-022-34809-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
It has been recently shown that electron transfer between mitochondrial cytochrome c and the cytochrome c1 subunit of the cytochrome bc1 can proceed at long-distance through the aqueous solution. Cytochrome c is thought to adjust its activity by changing the affinity for its partners via Tyr48 phosphorylation, but it is unknown how it impacts the nanoscopic environment, interaction forces, and long-range electron transfer. Here, we constrain the orientation and separation between cytochrome c1 and cytochrome c or the phosphomimetic Y48pCMF cytochrome c, and deploy an array of single-molecule, bulk, and computational methods to investigate the molecular mechanism of electron transfer regulation by cytochrome c phosphorylation. We demonstrate that phosphorylation impairs long-range electron transfer, shortens the long-distance charge conduit between the partners, strengthens their interaction, and departs it from equilibrium. These results unveil a nanoscopic view of the interaction between redox protein partners in electron transport chains and its mechanisms of regulation.
Collapse
|
12
|
Olloqui-Sariego JL, Pérez-Mejías G, Márquez I, Guerra-Castellano A, Calvente JJ, De la Rosa MA, Andreu R, Díaz-Moreno I. Electric field-induced functional changes in electrode-immobilized mutant species of human cytochrome c. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148570. [PMID: 35643148 DOI: 10.1016/j.bbabio.2022.148570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Post-translational modifications and naturally occurring mutations of cytochrome c have been recognized as a regulatory mechanism to control its biology. In this work, we investigate the effect of such in vivo chemical modifications of human cytochrome c on its redox properties in the adsorbed state onto an electrode. In particular, tyrosines 48 and 97 have been replaced by the non-canonical amino acid p-carboxymethyl-L-phenylalanine (pCMF), thus mimicking tyrosine phosphorylation. Additionally, tyrosine 48 has been replaced by a histidine producing the natural Y48H pathogenic mutant. Thermodynamics and kinetics of the interfacial electron transfer of wild-type cytochrome c and herein produced variants, adsorbed electrostatically under different local interfacial electric fields, were determined by means of variable temperature cyclic film voltammetry. It is shown that non-native cytochrome c variants immobilized under a low interfacial electric field display redox thermodynamics and kinetics similar to those of wild-type cytochrome c. However, upon increasing the strength of the electric field, the redox thermodynamics and kinetics of the modified proteins markedly differ from those of the wild-type species. The mutations promote stabilization of the oxidized form and a significant increase in the activation enthalpy values that can be ascribed to a subtle distortion of the heme cofactor and/or difference of the amino acid rearrangements rather than to a coarse protein structural change. Overall, these results point to a combined effect of the single point mutations at positions 48 and 97 and the strength of electrostatic binding on the regulatory mechanism of mitochondrial membrane activity, when acting as a redox shuttle protein.
Collapse
Affiliation(s)
- José Luis Olloqui-Sariego
- Departamento de Química Física, Universidad de Sevilla, Profesor García González, 1, 41012 Sevilla, Spain
| | - Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Américo Vespucio 49, 41092 Sevilla, (Spain)
| | - Inmaculada Márquez
- Departamento de Química Física, Universidad de Sevilla, Profesor García González, 1, 41012 Sevilla, Spain; Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Américo Vespucio 49, 41092 Sevilla, (Spain)
| | - Alejandra Guerra-Castellano
- Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Américo Vespucio 49, 41092 Sevilla, (Spain)
| | - Juan José Calvente
- Departamento de Química Física, Universidad de Sevilla, Profesor García González, 1, 41012 Sevilla, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Américo Vespucio 49, 41092 Sevilla, (Spain)
| | - Rafael Andreu
- Departamento de Química Física, Universidad de Sevilla, Profesor García González, 1, 41012 Sevilla, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas, cicCartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Américo Vespucio 49, 41092 Sevilla, (Spain).
| |
Collapse
|
13
|
Grasso K, Singha Roy SJ, Osgood AO, Yeo MJR, Soni C, Hillenbrand CM, Ficaretta ED, Chatterjee A. A Facile Platform to Engineer Escherichia coli Tyrosyl-tRNA Synthetase Adds New Chemistries to the Eukaryotic Genetic Code, Including a Phosphotyrosine Mimic. ACS CENTRAL SCIENCE 2022; 8:483-492. [PMID: 35559426 PMCID: PMC9088295 DOI: 10.1021/acscentsci.1c01465] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 06/03/2023]
Abstract
The Escherichia coli tyrosyl-tRNA synthetase (EcTyrRS)/tRNAEcTyr pair offers an attractive platform for genetically encoding new noncanonical amino acids (ncAA) in eukaryotes. However, challenges associated with a eukaryotic selection system, which is needed to engineer the platform, have impeded its success in the past. Recently, using a facile E. coli-based selection system, we showed that EcTyrRS could be engineered in a strain where the endogenous tyrosyl pair was substituted with an archaeal counterpart. However, significant cross-reactivity between the UAG-suppressing tRNACUA EcTyr and the bacterial glutaminyl-tRNA synthetase limited the scope of this strategy, preventing the selection of moderately active EcTyrRS mutants. Here we report an engineered tRNACUA EcTyr that overcomes this cross-reactivity. Optimized selection systems based on this tRNA enabled the efficient enrichment of both strongly and weakly active ncAA-selective EcTyrRS mutants. We also developed a wide dynamic range (WiDR) antibiotic selection to further enhance the activities of the weaker first-generation EcTyrRS mutants. We demonstrated the utility of our platform by developing several new EcTyrRS mutants that efficiently incorporated useful ncAAs in mammalian cells, including photoaffinity probes, bioconjugation handles, and a nonhydrolyzable mimic of phosphotyrosine.
Collapse
|
14
|
Oviedo-Rouco S, Spedalieri C, Scocozza MF, Tomasina F, Tórtora V, Radi R, Murgida DH. Correlated electric field modulation of electron transfer parameters and the access to alternative conformations of multifunctional cytochrome c. Bioelectrochemistry 2022; 143:107956. [PMID: 34624727 DOI: 10.1016/j.bioelechem.2021.107956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022]
Abstract
Cytochrome c (Cytc) is a multifunctional protein that, in its native conformation, shuttles electrons in the mitochondrial respiratory chain. Conformational transitions that involve replacement of the heme distal ligand lead to the gain of alternative peroxidase activity, which is crucial for membrane permeabilization during apoptosis. Using a time-resolved SERR spectroelectrochemical approach, we found that the key physicochemical parameters that characterize the electron transfer (ET) canonic function and those that determine the transition to alternative conformations are strongly correlated and are modulated by local electric fields (LEF) of biologically meaningful magnitude. The electron shuttling function is optimized at moderate LEFs of around 1 V nm-1. A decrease of the LEF is detrimental for ET as it rises the reorganization energy. Moreover, LEF values below and above the optimal for ET favor alternative conformations with peroxidase activity and downshifted reduction potentials. The underlying proposed mechanism is the LEF modulation of the flexibility of crucial protein segments, which produces a differential effect on the kinetic ET and conformational parameters of Cytc. These findings might be related to variations in the mitochondrial membrane potential during apoptosis, as the basis for the switch between canonic and alternative functions of Cytc. Moreover, they highlight the possible role of variable LEFs in determining the function of other moonlighting proteins through modulation of the protein dynamics.
Collapse
Affiliation(s)
- Santiago Oviedo-Rouco
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Spedalieri
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Magalí F Scocozza
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia Tomasina
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Daniel H Murgida
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Pérez-Mejías G, Díaz-Quintana A, Guerra-Castellano A, Díaz-Moreno I, De la Rosa MA. Novel insights into the mechanism of electron transfer in mitochondrial cytochrome c. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Márquez I, Pérez‐Mejías G, Guerra‐Castellano A, Olloqui‐Sariego JL, Andreu R, Calvente JJ, De la Rosa MA, Díaz‐Moreno I. Structural and functional insights into lysine acetylation of cytochrome c using mimetic point mutants. FEBS Open Bio 2021; 11:3304-3323. [PMID: 34455704 PMCID: PMC8634867 DOI: 10.1002/2211-5463.13284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Abstract
Post-translational modifications frequently modulate protein functions. Lysine acetylation in particular plays a key role in interactions between respiratory cytochrome c and its metabolic partners. To date, in vivo acetylation of lysines at positions 8 and 53 has specifically been identified in mammalian cytochrome c, but little is known about the structural basis of acetylation-induced functional changes. Here, we independently replaced these two residues in recombinant human cytochrome c with glutamine to mimic lysine acetylation and then characterized the structure and function of the resulting K8Q and K53Q mutants. We found that the physicochemical features were mostly unchanged in the two acetyl-mimetic mutants, but their thermal stability was significantly altered. NMR chemical shift perturbations of the backbone amide resonances revealed local structural changes, and the thermodynamics and kinetics of electron transfer in mutants immobilized on gold electrodes showed an increase in both protein dynamics and solvent involvement in the redox process. We also observed that the K8Q (but not the K53Q) mutation slightly increased the binding affinity of cytochrome c to its physiological electron donor, cytochrome c1 -which is a component of mitochondrial complex III, or cytochrome bc1 -thus suggesting that Lys8 (but not Lys53) is located in the interaction area. Finally, the K8Q and K53Q mutants exhibited reduced efficiency as electron donors to complex IV, or cytochrome c oxidase.
Collapse
Affiliation(s)
- Inmaculada Márquez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | | | - Rafael Andreu
- Departament of Physical ChemistryUniversity of SevilleSpain
| | | | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
17
|
González‐Arzola K, Guerra‐Castellano A, Rivero‐Rodríguez F, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MA. Mitochondrial cytochrome c shot towards histone chaperone condensates in the nucleus. FEBS Open Bio 2021; 11:2418-2440. [PMID: 33938164 PMCID: PMC8409293 DOI: 10.1002/2211-5463.13176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.
Collapse
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Francisco Rivero‐Rodríguez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
18
|
Rivero-Rodríguez F, Díaz-Quintana A, Velázquez-Cruz A, González-Arzola K, Gavilan MP, Velázquez-Campoy A, Ríos RM, De la Rosa MA, Díaz-Moreno I. Inhibition of the PP2A activity by the histone chaperone ANP32B is long-range allosterically regulated by respiratory cytochrome c. Redox Biol 2021; 43:101967. [PMID: 33882408 PMCID: PMC8082267 DOI: 10.1016/j.redox.2021.101967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 12/26/2022] Open
Abstract
Repair of injured DNA relies on nucleosome dismantling by histone chaperones and de-phosphorylation events carried out by Protein Phosphatase 2A (PP2A). Typical histone chaperones are the Acidic leucine-rich Nuclear Phosphoprotein 32 family (ANP32) members, e.g. ANP32A, which is also a well-known PP2A inhibitor (a.k.a. I1PP2A). Here we report the novel interaction between the endogenous family member B—so-called ANP32B—and endogenous cytochrome c in cells undergoing camptothecin-induced DNA damage. Soon after DNA lesions but prior to caspase cascade activation, the hemeprotein translocates to the nucleus to target the Low Complexity Acidic Region (LCAR) of ANP32B; in a similar way, our group recently reported that the hemeprotein targets the acidic domain of SET/Template Activating Factor-Iβ (SET/TAF-Iβ), which is another histone chaperone and PP2A inhibitor (a.k.a. I2PP2A). The nucleosome assembly activity of ANP32B is indeed unaffected by cytochrome c binding. Like ANP32A, ANP32B inhibits PP2A activity and is thus herein referred to as I3PP2A. Our data demonstrates that ANP32B-dependent inhibition of PP2A is regulated by respiratory cytochrome c, which induces long-distance allosteric changes in the structured N-terminal domain of ANP32B upon binding to the C-terminal LCAR. In agreement with the reported role of PP2A in the DNA damage response, we propose a model wherein cytochrome c is translocated from the mitochondria into the nucleus upon DNA damage to modulate PP2A activity via its interaction with ANP32B. Respiratory cytochrome c interacts with ANP32B under DNA damage in the nucleus. Cytochrome c binding to ANP32B LCAR restores ANP32B-mediated PP2A inhibition. Cytochrome c emerges as a DNA Damage Response regulator.
Collapse
Affiliation(s)
- Francisco Rivero-Rodríguez
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Antonio Díaz-Quintana
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Alejandro Velázquez-Cruz
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Katiuska González-Arzola
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Maria P Gavilan
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, University of Seville, CSIC, University Pablo de Olavide, Avda. Américo Vespucio 24, Seville, 41092, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSICBIFI,and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragon), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain; Fundación ARAID, Gobierno de Aragón, 50018, Zaragoza, Spain
| | - Rosa M Ríos
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, University of Seville, CSIC, University Pablo de Olavide, Avda. Américo Vespucio 24, Seville, 41092, Spain
| | - Miguel A De la Rosa
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain.
| |
Collapse
|
19
|
Elena-Real CA, González-Arzola K, Pérez-Mejías G, Díaz-Quintana A, Velázquez-Campoy A, Desvoyes B, Gutiérrez C, De la Rosa MA, Díaz-Moreno I. Proposed mechanism for regulation of H 2 O 2 -induced programmed cell death in plants by binding of cytochrome c to 14-3-3 proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:74-85. [PMID: 33354856 DOI: 10.1111/tpj.15146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 05/27/2023]
Abstract
Programmed cell death (PCD) is crucial for development and homeostasis of all multicellular organisms. In human cells, the double role of extra-mitochondrial cytochrome c in triggering apoptosis and inhibiting survival pathways is well reported. In plants, however, the specific role of cytochrome c upon release from the mitochondria remains in part veiled yet death stimuli do trigger cytochrome c translocation as well. Here, we identify an Arabidopsis thaliana 14-3-3ι isoform as a cytosolic cytochrome c target and inhibitor of caspase-like activity. This finding establishes the 14-3-3ι protein as a relevant factor at the onset of plant H2 O2 -induced PCD. The in vivo and in vitro studies herein reported reveal that the interaction between cytochrome c and 14-3-3ι exhibits noticeable similarities with the complex formed by their human orthologues. Further analysis of the heterologous complexes between human and plant cytochrome c with plant 14-3-3ι and human 14-3-3ε isoforms corroborated common features. These results suggest that cytochrome c blocks p14-3-3ι so as to inhibit caspase-like proteases, which in turn promote cell death upon H2 O2 treatment. Besides establishing common biochemical features between human and plant PCD, this work sheds light onto the signaling networks of plant cell death.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Katiuska González-Arzola
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain
- Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, 50009, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain
- Biomedical Research Networking Centre for Liver and Digestive Diseases (CIBERehd), Madrid, 28029, Spain
- Fundacion ARAID, Government of Aragon, Zaragoza, 50018, Spain
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Crisanto Gutiérrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| |
Collapse
|
20
|
Sedlák E, Žár T, Varhač R, Musatov A, Tomášková N. Anion-Specific Effects on the Alkaline State of Cytochrome c. BIOCHEMISTRY (MOSCOW) 2021; 86:59-73. [PMID: 33705282 DOI: 10.1134/s0006297921010065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Specific effects of anions on the structure, thermal stability, and peroxidase activity of native (state III) and alkaline (state IV) cytochrome c (cyt c) have been studied by the UV-VIS absorbance spectroscopy, intrinsic tryptophan fluorescence, and circular dichroism. Thermal and isothermal denaturation monitored by the tryptophan fluorescence and circular dichroism, respectively, implied lower stability of cyt c state IV in comparison with the state III. The pKa value of alkaline isomerization of cyt c depended on the present salts, i.e., kosmotropic anions increased and chaotropic anions decreased pKa (Hofmeister effect on protein stability). The peroxidase activity of cyt c in the state III, measured by oxidation of guaiacol, showed clear dependence on the salt position in the Hofmeister series, while cyt c in the alkaline state lacked the peroxidase activity regardless of the type of anions present in the solution. The alkaline isomerization of cyt c in the presence of 8 M urea, measured by Trp59 fluorescence, implied an existence of a high-affinity non-native ligand for the heme iron even in a partially denatured protein conformation. The conformation of the cyt c alkaline state in 8 M urea was considerably modulated by the specific effect of anions. Based on the Trp59 fluorescence quenching upon titration to alkaline pH in 8 M urea and molecular dynamics simulation, we hypothesize that the Lys79 conformer is most likely the predominant alkaline conformer of cyt c. The high affinity of the sixth ligand for the heme iron is likely a reason of the lack of peroxidase activity of cyt c in the alkaline state.
Collapse
Affiliation(s)
- Erik Sedlák
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Košice, 04154, Slovakia. .,Centre for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Košice, 04154, Slovakia
| | - Tibor Žár
- Centre for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Košice, 04154, Slovakia.
| | - Rastislav Varhač
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Košice, 04154, Slovakia.
| | - Andrej Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, 040 01, Slovakia.
| | - Nataša Tomášková
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Košice, 04154, Slovakia.
| |
Collapse
|
21
|
Guerra-Castellano A, Márquez I, Pérez-Mejías G, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. Post-Translational Modifications of Cytochrome c in Cell Life and Disease. Int J Mol Sci 2020; 21:E8483. [PMID: 33187249 PMCID: PMC7697256 DOI: 10.3390/ijms21228483] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the powerhouses of the cell, whilst their malfunction is related to several human pathologies, including neurodegenerative diseases, cardiovascular diseases, and various types of cancer. In mitochondrial metabolism, cytochrome c is a small soluble heme protein that acts as an essential redox carrier in the respiratory electron transport chain. However, cytochrome c is likewise an essential protein in the cytoplasm acting as an activator of programmed cell death. Such a dual role of cytochrome c in cell life and death is indeed fine-regulated by a wide variety of protein post-translational modifications. In this work, we show how these modifications can alter cytochrome c structure and functionality, thus emerging as a control mechanism of cell metabolism but also as a key element in development and prevention of pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain; (A.G.-C.); (I.M.); (G.P.-M.); (A.D.-Q.); (M.A.D.l.R.)
| |
Collapse
|
22
|
Pérez-Mejías G, Velázquez-Cruz A, Guerra-Castellano A, Baños-Jaime B, Díaz-Quintana A, González-Arzola K, Ángel De la Rosa M, Díaz-Moreno I. Exploring protein phosphorylation by combining computational approaches and biochemical methods. Comput Struct Biotechnol J 2020; 18:1852-1863. [PMID: 32728408 PMCID: PMC7369424 DOI: 10.1016/j.csbj.2020.06.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications of proteins expand their functional diversity, regulating the response of cells to a variety of stimuli. Among these modifications, phosphorylation is the most ubiquitous and plays a prominent role in cell signaling. The addition of a phosphate often affects the function of a protein by altering its structure and dynamics. However, these alterations are often difficult to study and the functional and structural implications remain unresolved. New approaches are emerging to overcome common obstacles related to the production and manipulation of these samples. Here, we summarize the available methods for phosphoprotein purification and phosphomimetic engineering, highlighting the advantages and disadvantages of each. We propose a general workflow for protein phosphorylation analysis combining computational and biochemical approaches, building on recent advances that enable user-friendly and easy-to-access Molecular Dynamics simulations. We hope this innovative workflow will inform the best experimental approach to explore such post-translational modifications. We have applied this workflow to two different human protein models: the hemeprotein cytochrome c and the RNA binding protein HuR. Our results illustrate the usefulness of Molecular Dynamics as a decision-making tool to design the most appropriate phosphomimetic variant.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandra Guerra-Castellano
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Blanca Baños-Jaime
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Katiuska González-Arzola
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Miguel Ángel De la Rosa
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
23
|
Wheel and Deal in the Mitochondrial Inner Membranes: The Tale of Cytochrome c and Cardiolipin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6813405. [PMID: 32377304 PMCID: PMC7193304 DOI: 10.1155/2020/6813405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Cardiolipin oxidation and degradation by different factors under severe cell stress serve as a trigger for genetically encoded cell death programs. In this context, the interplay between cardiolipin and another mitochondrial factor—cytochrome c—is a key process in the early stages of apoptosis, and it is a matter of intense research. Cytochrome c interacts with lipid membranes by electrostatic interactions, hydrogen bonds, and hydrophobic effects. Experimental conditions (including pH, lipid composition, and post-translational modifications) determine which specific amino acid residues are involved in the interaction and influence the heme iron coordination state. In fact, up to four binding sites (A, C, N, and L), driven by different interactions, have been reported. Nevertheless, key aspects of the mechanism for cardiolipin oxidation by the hemeprotein are well established. First, cytochrome c acts as a pseudoperoxidase, a process orchestrated by tyrosine residues which are crucial for peroxygenase activity and sensitivity towards oxidation caused by protein self-degradation. Second, flexibility of two weakest folding units of the hemeprotein correlates with its peroxidase activity and the stability of the iron coordination sphere. Third, the diversity of the mode of interaction parallels a broad diversity in the specific reaction pathway. Thus, current knowledge has already enabled the design of novel drugs designed to successfully inhibit cardiolipin oxidation.
Collapse
|
24
|
Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis. Int J Biochem Cell Biol 2020; 121:105704. [PMID: 32023432 DOI: 10.1016/j.biocel.2020.105704] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/30/2022]
Abstract
Cytochrome c (Cytc)1is a cellular life and death decision molecule that regulates cellular energy supply and apoptosis through tissue specific post-translational modifications. Cytc is an electron carrier in the mitochondrial electron transport chain (ETC) and thus central for aerobic energy production. Under conditions of cellular stress, Cytc release from the mitochondria is a committing step for apoptosis, leading to apoptosome formation, caspase activation, and cell death. Recently, Cytc was shown to be a target of cellular signaling pathways that regulate the functions of Cytc by tissue-specific phosphorylations. So far five phosphorylation sites of Cytc have been mapped and functionally characterized, Tyr97, Tyr48, Thr28, Ser47, and Thr58. All five phosphorylations partially inhibit respiration, which we propose results in optimal intermediate mitochondrial membrane potentials and low ROS production under normal conditions. Four of the phosphorylations result in inhibition of the apoptotic functions of Cytc, suggesting a cytoprotective role for phosphorylated Cytc. Interestingly, these phosphorylations are lost during stress conditions such as ischemia. This results in maximal ETC flux during reperfusion, mitochondrial membrane potential hyperpolarization, excessive ROS generation, and apoptosis. We here present a new model proposing that the electron transfer from Cytc to cytochrome c oxidase is the rate-limiting step of the ETC, which is regulated via post-translational modifications of Cytc. This regulation may be dysfunctional in disease conditions such as ischemia-reperfusion injury and neurodegenerative disorders through increased ROS, or cancer, where post-translational modifications on Cytc may provide a mechanism to evade apoptosis.
Collapse
|
25
|
González‐Arzola K, Velázquez‐Cruz A, Guerra‐Castellano A, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MÁ. New moonlighting functions of mitochondrial cytochromecin the cytoplasm and nucleus. FEBS Lett 2019; 593:3101-3119. [DOI: 10.1002/1873-3468.13655] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Alejandro Velázquez‐Cruz
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Miguel Á. De la Rosa
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| |
Collapse
|
26
|
Pérez-Mejías G, Guerra-Castellano A, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. Cytochrome c: Surfing Off of the Mitochondrial Membrane on the Tops of Complexes III and IV. Comput Struct Biotechnol J 2019; 17:654-660. [PMID: 31193759 PMCID: PMC6542325 DOI: 10.1016/j.csbj.2019.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022] Open
Abstract
The proper arrangement of protein components within the respiratory electron transport chain is nowadays a matter of intense debate, since altering it leads to cell aging and other related pathologies. Here, we discuss three current views—the so-called solid, fluid and plasticity models—which describe the organization of the main membrane-embedded mitochondrial protein complexes and the key elements that regulate and/or facilitate supercomplex assembly. The soluble electron carrier cytochrome c has recently emerged as an essential factor in the assembly and function of respiratory supercomplexes. In fact, a ‘restricted diffusion pathway’ mechanism for electron transfer between complexes III and IV has been proposed based on the secondary, distal binding sites for cytochrome c at its two membrane partners recently discovered. This channeling pathway facilitates the surfing of cytochrome c on both respiratory complexes, thereby tuning the efficiency of oxidative phosphorylation and diminishing the production of reactive oxygen species. The well-documented post-translational modifications of cytochrome c could further contribute to the rapid adjustment of electron flow in response to changing cellular conditions.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandra Guerra-Castellano
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
27
|
Kalpage HA, Bazylianska V, Recanati MA, Fite A, Liu J, Wan J, Mantena N, Malek MH, Podgorski I, Heath EI, Vaishnav A, Edwards BF, Grossman LI, Sanderson TH, Lee I, Hüttemann M. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. FASEB J 2019; 33:1540-1553. [PMID: 30222078 PMCID: PMC6338631 DOI: 10.1096/fj.201801417r] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/14/2018] [Indexed: 02/02/2023]
Abstract
Cytochrome c (Cyt c) plays a vital role in the mitochondrial electron transport chain (ETC). In addition, it is a key regulator of apoptosis. Cyt c has multiple other functions including ROS production and scavenging, cardiolipin peroxidation, and mitochondrial protein import. Cyt c is tightly regulated by allosteric mechanisms, tissue-specific isoforms, and post-translational modifications (PTMs). Distinct residues of Cyt c are modified by PTMs, primarily phosphorylations, in a highly tissue-specific manner. These modifications downregulate mitochondrial ETC flux and adjust the mitochondrial membrane potential (ΔΨm), to minimize reactive oxygen species (ROS) production under normal conditions. In pathologic and acute stress conditions, such as ischemia-reperfusion, phosphorylations are lost, leading to maximum ETC flux, ΔΨm hyperpolarization, excessive ROS generation, and the release of Cyt c. It is also the dephosphorylated form of the protein that leads to maximum caspase activation. We discuss the complex regulation of Cyt c and propose that it is a central regulatory step of the mammalian ETC that can be rate limiting in normal conditions. This regulation is important because it maintains optimal intermediate ΔΨm, limiting ROS generation. We examine the role of Cyt c PTMs, including phosphorylation, acetylation, methylation, nitration, nitrosylation, and sulfoxidation and consider their potential biological significance by evaluating their stoichiometry.-Kalpage, H. A., Bazylianska, V., Recanati, M. A., Fite, A., Liu, J., Wan, J., Mantena, N., Malek, M. H., Podgorski, I., Heath, E. I., Vaishnav, A., Edwards, B. F., Grossman, L. I., Sanderson, T. H., Lee, I., Hüttemann, M. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis.
Collapse
Affiliation(s)
- Hasini A. Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Viktoriia Bazylianska
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Maurice A. Recanati
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Alemu Fite
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Nikhil Mantena
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Moh H. Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Elizabeth I. Heath
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Brian F. Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Thomas H. Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Emergency Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, South Korea
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
28
|
Medina-Carmona E, Rizzuti B, Martín-Escolano R, Pacheco-García JL, Mesa-Torres N, Neira JL, Guzzi R, Pey AL. Phosphorylation compromises FAD binding and intracellular stability of wild-type and cancer-associated NQO1: Insights into flavo-proteome stability. Int J Biol Macromol 2018; 125:1275-1288. [PMID: 30243998 DOI: 10.1016/j.ijbiomac.2018.09.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
Over a quarter million of protein phosphorylation sites have been identified so far, although the effects of site-specific phosphorylation on protein function and stability, as well as their possible impact in the phenotypic manifestation in genetic diseases are vastly unknown. We investigated here the effects of phosphorylating S82 in human NADP(H):quinone oxidoreductase 1, a representative example of disease-associated flavoprotein in which protein stability is coupled to the intracellular flavin levels. Additionally, the cancer-associated P187S polymorphism causes inactivation and destabilization of the enzyme. By using extensive in vitro and in silico characterization of phosphomimetic S82D mutations, we showed that S82D locally affected the flavin binding site of the wild-type (WT) and P187S proteins thus altering flavin binding affinity, conformational stability and aggregation propensity. Consequently, the phosphomimetic S82D may destabilize the WT protein intracellularly by promoting the formation of the degradation-prone apo-protein. Noteworthy, WT and P187S proteins respond differently to the phosphomimetic mutation in terms of intracellular stability, further supporting differences in molecular recognition of these two variants by the proteasomal degradation pathway. We propose that phosphorylation could have critical consequences on stability and function of human flavoproteins, important for our understanding of genotype-phenotype relationships in their related genetic diseases.
Collapse
Affiliation(s)
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, 18071 Granada, Spain
| | | | - Noel Mesa-Torres
- Department of Physical Chemistry, University of Granada, 18071 Granada, Spain
| | - José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. del Ferrocarril s/n, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de los Sistemas Complejos (BIFI), 50009 Zaragoza, Spain
| | - Rita Guzzi
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy; Molecular Biophysics Laboratory, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
29
|
Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria. Proc Natl Acad Sci U S A 2018; 115:7955-7960. [PMID: 30018060 PMCID: PMC6077723 DOI: 10.1073/pnas.1806833115] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dysfunction of mitochondria, the powerhouses of living cells, favors the onset of human diseases, namely neurodegenerative diseases, cardiovascular pathologies, and cancer. Actually, respiratory cytochrome c has been found to be phosphorylated at tyrosine 97 during the insulin-induced neuroprotection response following a brain ischemic injury. Here, we report that the decrease in neuronal death could be directly ascribed to changes in mitochondrial metabolism—including lower production of reactive oxygen species—and cell homeostasis induced by cytochrome c phosphorylation. Our findings thus provide the basis for understanding the molecular mechanism and potential use of phosphomimetic species of cytochrome c, thereby yielding new opportunities to develop more efficient therapies against acute pathologies. Respiratory cytochrome c has been found to be phosphorylated at tyrosine 97 in the postischemic brain upon neuroprotective insulin treatment, but how such posttranslational modification affects mitochondrial metabolism is unclear. Here, we report the structural features and functional behavior of a phosphomimetic cytochrome c mutant, which was generated by site-specific incorporation at position 97 of p-carboxymethyl-l-phenylalanine using the evolved tRNA synthetase method. We found that the point mutation does not alter the overall folding and heme environment of cytochrome c, but significantly affects the entire oxidative phosphorylation process. In fact, the electron donation rate of the mutant heme protein to cytochrome c oxidase, or complex IV, within respiratory supercomplexes was higher than that of the wild-type species, in agreement with the observed decrease in reactive oxygen species production. Direct contact of cytochrome c with the respiratory supercomplex factor HIGD1A (hypoxia-inducible domain family member 1A) is reported here, with the mutant heme protein exhibiting a lower affinity than the wild-type species. Interestingly, phosphomimetic cytochrome c also exhibited a lower caspase-3 activation activity. Altogether, these findings yield a better understanding of the molecular basis for mitochondrial metabolism in acute diseases, such as brain ischemia, and thus could allow the use of phosphomimetic cytochrome c as a neuroprotector with therapeutic applications.
Collapse
|
30
|
Cytochrome c speeds up caspase cascade activation by blocking 14-3-3ε-dependent Apaf-1 inhibition. Cell Death Dis 2018; 9:365. [PMID: 29511177 PMCID: PMC5840378 DOI: 10.1038/s41419-018-0408-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
Apoptosis is a highly regulated form of programmed cell death, essential to the development and homeostasis of multicellular organisms. Cytochrome c is a central figure in the activation of the apoptotic intrinsic pathway, thereby activating the caspase cascade through its interaction with Apaf-1. Our recent studies have revealed 14-3-3ε (a direct inhibitor of Apaf-1) as a cytosolic cytochrome c target. Here we explore the cytochrome c / 14-3-3ε interaction and show the ability of cytochrome c to block 14-3-3ε-mediated Apaf-1 inhibition, thereby unveiling a novel function for cytochrome c as an indirect activator of caspase-9/3. We have used calorimetry, NMR spectroscopy, site mutagenesis and computational calculations to provide an insight into the structural features of the cytochrome c / 14-3-3ε complex. Overall, these findings suggest an additional cytochrome c-mediated mechanism to modulate apoptosome formation, shedding light onto the rigorous apoptotic regulation network.
Collapse
|
31
|
Lin YW. Structure and function of heme proteins regulated by diverse post-translational modifications. Arch Biochem Biophys 2018; 641:1-30. [PMID: 29407792 DOI: 10.1016/j.abb.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
|
32
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
33
|
González-Arzola K, Díaz-Quintana A, Rivero-Rodríguez F, Velázquez-Campoy A, De la Rosa MA, Díaz-Moreno I. Histone chaperone activity of Arabidopsis thaliana NRP1 is blocked by cytochrome c. Nucleic Acids Res 2017; 45:2150-2165. [PMID: 27924001 PMCID: PMC5389710 DOI: 10.1093/nar/gkw1215] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Higher-order plants and mammals use similar mechanisms to repair and tolerate oxidative DNA damage. Most studies on the DNA repair process have focused on yeast and mammals, in which histone chaperone-mediated nucleosome disassembly/reassembly is essential for DNA to be accessible to repair machinery. However, little is known about the specific role and modulation of histone chaperones in the context of DNA damage in plants. Here, the histone chaperone NRP1, which is closely related to human SET/TAF-Iβ, was found to exhibit nucleosome assembly activity in vitro and to accumulate in the chromatin of Arabidopsis thaliana after DNA breaks. In addition, this work establishes that NRP1 binds to cytochrome c, thereby preventing the former from binding to histones. Since NRP1 interacts with cytochrome c at its earmuff domain, that is, its histone-binding domain, cytochrome c thus competes with core histones and hampers the activity of NRP1 as a histone chaperone. Altogether, the results obtained indicate that the underlying molecular mechanisms in nucleosome disassembly/reassembly are highly conserved throughout evolution, as inferred from the similar inhibition of plant NRP1 and human SET/TAF-Iβ by cytochrome c during DNA damage response.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Antonio Díaz-Quintana
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Rivero-Rodríguez
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit Institute of Physical Chemistry Rocasolano (IQFR)-BIFI-Spanish National Research Council (CSIC), University of Zaragoza, Mariano Esquillor s/n, 50018 Zaragoza, Spain.,Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); and Aragon Agency for Research and Development (ARAID), Regional Government of Aragon, Maria de Luna 11, 50018 Zaragoza, Spain
| | - Miguel A De la Rosa
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
34
|
Völler JS, Thi To TM, Biava H, Koksch B, Budisa N. Global substitution of hemeproteins with noncanonical amino acids in Escherichia coli with intact cofactor maturation machinery. Enzyme Microb Technol 2017; 106:55-59. [PMID: 28859810 DOI: 10.1016/j.enzmictec.2017.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Global substitution of canonical amino acids (cAAs) with noncanonical (ncAAs) counterparts in proteins whose function is dependent on post-translational events such as cofactor binding is still a methodically challenging and difficult task as ncAA insertion generally interferes with the cofactor biosynthesis machinery. Here, we report a technology for the expression of fully substituted and functionally active cofactor-containing hemeproteins. The maturation process which yields an intact cofactor is timely separated from cAA→ncAA substitutions. This is achieved by an optimised expression and fermentation procedure which includes pre-induction of the heme cofactor biosynthesis followed by an incorporation experiment at multiple positions in the protein sequence. This simple strategy can be potentially applied for engineering of other cofactor-containing enzymes.
Collapse
Affiliation(s)
- Jan-Stefan Völler
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany; Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Tuyet Mai Thi To
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany; Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Hernan Biava
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Nediljko Budisa
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany.
| |
Collapse
|
35
|
Luo X, Fu G, Wang RE, Zhu X, Zambaldo C, Liu R, Liu T, Lyu X, Du J, Xuan W, Yao A, Reed SA, Kang M, Zhang Y, Guo H, Huang C, Yang PY, Wilson IA, Schultz PG, Wang F. Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria. Nat Chem Biol 2017; 13:845-849. [PMID: 28604693 PMCID: PMC5577365 DOI: 10.1038/nchembio.2405] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/14/2017] [Indexed: 01/14/2023]
Abstract
Tyrosine phosphorylation is a common protein posttranslational modification, which plays a critical role in signal transduction and the regulation of many cellular processes. Using a pro-peptide strategy to increase cellular uptake of O-phosphotyrosine (pTyr) and its nonhydrolyzable analog 4-phosphomethyl-L-phenylalanine (Pmp), we identified an orthogonal aminoacyl-tRNA synthetase/tRNA pair that allows the site-specific incorporation of both pTyr and Pmp into recombinant proteins in response to the amber stop codon in Escherichia coli in good yields. The X-ray crystal structure of the synthetase reveals a reconfigured substrate binding site formed by non-conservative mutations and substantial local structural perturbations. We demonstrate the utility of this method by introducing Pmp into a putative phosphorylation site whose corresponding kinase is unknown and determined the affinities of the individual variants for the substrate 3BP2. In summary, this work provides a useful recombinant tool to dissect the biological functions of tyrosine phosphorylation at specific sites in the proteome.
Collapse
Affiliation(s)
- Xiaozhou Luo
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Guangsen Fu
- California Institute for Biomedical Research (Calibr), La Jolla, California, USA
| | - Rongsheng E Wang
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Claudio Zambaldo
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Renhe Liu
- California Institute for Biomedical Research (Calibr), La Jolla, California, USA
| | - Tao Liu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Xiaoxuan Lyu
- California Institute for Biomedical Research (Calibr), La Jolla, California, USA
| | - Jintang Du
- California Institute for Biomedical Research (Calibr), La Jolla, California, USA
| | - Weimin Xuan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Anzhi Yao
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Sean A Reed
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Mingchao Kang
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Yuhan Zhang
- California Institute for Biomedical Research (Calibr), La Jolla, California, USA
| | - Hui Guo
- California Institute for Biomedical Research (Calibr), La Jolla, California, USA
| | - Chunhui Huang
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Peng-Yu Yang
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ian A Wilson
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Peter G Schultz
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA.,California Institute for Biomedical Research (Calibr), La Jolla, California, USA
| | - Feng Wang
- California Institute for Biomedical Research (Calibr), La Jolla, California, USA
| |
Collapse
|
36
|
Structural basis of mitochondrial dysfunction in response to cytochrome c phosphorylation at tyrosine 48. Proc Natl Acad Sci U S A 2017; 114:E3041-E3050. [PMID: 28348229 DOI: 10.1073/pnas.1618008114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of mitochondrial activity allows cells to adapt to changing conditions and to control oxidative stress, and its dysfunction can lead to hypoxia-dependent pathologies such as ischemia and cancer. Although cytochrome c phosphorylation-in particular, at tyrosine 48-is a key modulator of mitochondrial signaling, its action and molecular basis remain unknown. Here we mimic phosphorylation of cytochrome c by replacing tyrosine 48 with p-carboxy-methyl-l-phenylalanine (pCMF). The NMR structure of the resulting mutant reveals significant conformational shifts and enhanced dynamics around pCMF that could explain changes observed in its functionality: The phosphomimetic mutation impairs cytochrome c diffusion between respiratory complexes, enhances hemeprotein peroxidase and reactive oxygen species scavenging activities, and hinders caspase-dependent apoptosis. Our findings provide a framework to further investigate the modulation of mitochondrial activity by phosphorylated cytochrome c and to develop novel therapeutic approaches based on its prosurvival effects.
Collapse
|
37
|
Structural and functional characterization of phosphomimetic mutants of cytochrome c at threonine 28 and serine 47. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:387-95. [PMID: 26806033 DOI: 10.1016/j.bbabio.2016.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 12/31/2022]
Abstract
Protein function is frequently modulated by post-translational modifications of specific residues. Cytochrome c, in particular, is phosphorylated in vivo at threonine 28 and serine 47. However, the effect of such modifications on the physiological functions of cytochrome c - namely, the transfer of electrons in the respiratory electron transport chain and the triggering of programmed cell death - is still unknown. Here we replace each of these two residues by aspartate, in order to mimic phosphorylation, and report the structural and functional changes in the resulting cytochrome c variants. We find that the T28D mutant causes a 30-mV decrease on the midpoint redox potential and lowers the affinity for the distal site of Arabidopsis thaliana cytochrome c1 in complex III. Both the T28D and S47D variants display a higher efficiency as electron donors for the cytochrome c oxidase activity of complex IV. In both protein mutants, the peroxidase activity is significantly higher, which is related to the ability of cytochrome c to leave the mitochondria and reach the cytoplasm. We also find that both mutations at serine 47 (S47D and S47A) impair the ability of cytoplasmic cytochrome c to activate the caspases cascade, which is essential for triggering programmed cell death.
Collapse
|