1
|
Cohen J, Sulimani L, Procaccia S, Lerenthal Y, Milay L, Taran I, Shapira A, Meiri D. Comprehensive analysis of 42 psilocybin-producing fungal strains reveals metabolite diversity and species-specific clusters. Sci Rep 2025; 15:13822. [PMID: 40263354 PMCID: PMC12015540 DOI: 10.1038/s41598-025-97710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Psilocybin-producing fungi have garnered attention due to accumulating evidence regarding the therapeutic potential of their principal component psilocybin. This diverse group of fungi harbors a wealth of less-studied metabolites, however, thus far most research has addressed them as a cohesive group. By optimizing an approach for extraction and analysis, we examined the metabolomes of 42 distinct fungi strains and show that the breadth and diversity of metabolites within and between 9 species. We integrated and validated the reproducible and reliable extraction of fruiting bodies followed by chromatographic separation, quantification and identification of their known and yet to be identified secondary metabolites. The optimal extraction of fruiting bodies for high yield of indole alkaloids was achieved using a 1:20 tissue:solvent ratio, 25:75 H2O:MeOH (pH = 9), for 1.5 h, followed by the quantification of 8 tryptophan-derived indolamines by HPLC-DAD and the identification of putative metabolite hydroxypsilocybin by HPLC-MS/MS. The metabolomic analysis revealed the diversity of metabolites within and between species. Finally, we developed and present a method that mimics the in vivo process of dephosphorylation that occurs upon ingestion for in vitro setups. Overall, our study summarizes a standardized approach for both in vitro and in vivo studies involving psilocybin-producing fungi, showcasing the unique metabolome of each strain and the rich diversity of these fungi, encompassing promising pharmaceutical potential.
Collapse
Affiliation(s)
- Jonathan Cohen
- Laboratory of Cancer Biology and Natural Drug Discovery, Faculty of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Liron Sulimani
- The Kleifeld Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
- Cannasoul Analytics, Caesarea, Israel
| | - Shiri Procaccia
- Laboratory of Cancer Biology and Natural Drug Discovery, Faculty of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | | | | | | | - Anna Shapira
- Laboratory of Cancer Biology and Natural Drug Discovery, Faculty of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - David Meiri
- Laboratory of Cancer Biology and Natural Drug Discovery, Faculty of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
2
|
Omidian H, Omidian A. The Emergence of Psilocybin in Psychiatry and Neuroscience. Pharmaceuticals (Basel) 2025; 18:555. [PMID: 40283990 PMCID: PMC12030455 DOI: 10.3390/ph18040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Psilocybin, a naturally occurring psychedelic compound, has garnered renewed scientific interest for its potential in treating psychiatric and neurological disorders. This review systematically examines the latest research on psilocybin's pharmacokinetics, pharmacodynamics, clinical efficacy, and safety profile. Emerging evidence supports its efficacy in conditions such as major depressive disorder (MDD), treatment-resistant depression (TRD), anxiety, alcohol use disorders (AUD), and cancer-related distress. Despite promising outcomes, significant barriers remain, including methodological constraints, regulatory hurdles, and limited population diversity in clinical trials. Advances in biosynthetic production and optimized psychotherapeutic integration are necessary to ensure scalability and accessibility. Future research should focus on long-term safety, dosing precision, and neurobiological mechanisms to refine its therapeutic applications. This review provides a critical foundation for advancing evidence-based clinical integration of psilocybin.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Alborz Omidian
- Department of Psychiatry, Westchester Medical Center, Valhalla, NY 10595, USA;
| |
Collapse
|
3
|
Schäfer T, Sherwood A, Kirkland T, Krüger T, Worbs J, Kniemeyer O, Gressler M, Hoffmeister D. In Vitro Psilocybin Synthesis by Co-Immobilized Enzymes. Chemistry 2025:e202501037. [PMID: 40202903 DOI: 10.1002/chem.202501037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 04/11/2025]
Abstract
Advanced clinical trials investigate the Psilocybe magic mushroom natural product psilocybin as a treatment against major depressive disorder. Currently, synthetic material is used to meet the demand for legitimate pharmaceutical purposes. Here, we report an in vitro approach to biocatalytically produce psilocybin on a solid-phase matrix charged with five covalently bound biosynthetic enzymes. These enzymes include three Psilocybe enzymes: IasA*, an engineered l-tryptophan decarboxylase/aromatic aldehyde synthase, the 4-hydroxytryptamine kinase PsiK and the norbaeocystin methyltransferase PsiM, along with Escherichia coli nucleosidase MtnN and adenine deaminase Ade. In a proof-of-principle experiment, this enzyme-charged resin allowed for quantitative turnover of 4-hydroxy-l-tryptophan into psilocybin. This facile process i) represents a sustainable approach with reusable enzymes, ii) circumvents the drawbacks of in vivo processes while harnessing the selectivity of enzymatic catalysis and iii) helps access an urgently needed drug candidate.
Collapse
Affiliation(s)
- Tim Schäfer
- Pharmaceutical Microbiology, Friedrich Schiller University, Beutenbergstrasse 11a, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstrasse 11a, Jena, Germany
| | | | - Thomas Kirkland
- Research & Development, Promega Corporation, 2800 Woods Hollow Road, Madison, WI, USA
| | - Thomas Krüger
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstrasse 11a, Jena, Germany
| | - Jakob Worbs
- Pharmaceutical Microbiology, Friedrich Schiller University, Beutenbergstrasse 11a, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstrasse 11a, Jena, Germany
| | - Olaf Kniemeyer
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstrasse 11a, Jena, Germany
| | - Markus Gressler
- Pharmaceutical Microbiology, Friedrich Schiller University, Beutenbergstrasse 11a, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstrasse 11a, Jena, Germany
| | - Dirk Hoffmeister
- Pharmaceutical Microbiology, Friedrich Schiller University, Beutenbergstrasse 11a, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstrasse 11a, Jena, Germany
| |
Collapse
|
4
|
Meng C, Guo W, Xiao C, Wen Y, Zhu X, Zhang Q, Liang Y, Li H, Xu S, Qiu Y, Chen H, Lin WJ, Wu B. Structural basis for psilocybin biosynthesis. Nat Commun 2025; 16:2827. [PMID: 40121242 PMCID: PMC11929908 DOI: 10.1038/s41467-025-58239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Psilocybin shows significant therapeutic potential for psilocybin-assisted psychotherapy in addressing various psychiatric conditions. The biosynthetic approach promises rapid and efficient production of psilocybin. Understanding the enzymes that contribute to the biosynthesis of psilocybin can enhance its production process. In this study, we elucidate the crystal structures of L-tryptophan-specific decarboxylase PsiD in both its apo and tryptamine-bound states, the 4-hydroxytryptamine kinase PsiK bound to its substrate, and several forms of the methyltransferase PsiM in either apo or substrate-bound forms derived from the psychedelic mushroom. Structure-based evaluations reveal the mechanisms of self-cleavage and self-inhibition in PsiD, along with the sequential catalytic steps from 4-hydroxytryptamine to the final compound, psilocybin. Additionally, we showcase the antidepressant properties of biosynthetic intermediates of psilocybin on female mice experiencing depression-like behaviors induced by sub-chronic variable stress. Our studies establish a structural basis for the future biosynthetic production of psilocybin using these enzymes and emphasize the clinical potential of norbaeocystin.
Collapse
Affiliation(s)
- Chunyan Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chuan Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xudong Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingrong Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yuxuan Liang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Hongwei Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sha Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuntan Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.
| |
Collapse
|
5
|
Junges LH, Müller-Santos M. Exploring the biocatalysis of psilocybin and other tryptamines: Enzymatic pathways, synthetic strategies, and industrial implications. Biotechnol Prog 2025; 41:e3513. [PMID: 39366919 DOI: 10.1002/btpr.3513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
Tryptamines play diverse roles as neurotransmitters and psychoactive compounds found in various organisms. Psilocybin, a notable tryptamine, has garnered attention for its therapeutic potential in treating mental health disorders like depression and anxiety. Despite its promising applications, current extraction methods for psilocybin are labor-intensive and economically limiting. We suggest biocatalysis as a sustainable alternative, leveraging enzymes to synthesize psilocybin and other tryptamines efficiently. By elucidating psilocybin biosynthesis pathways, researchers aim to advance synthetic methodologies and industrial applications. This review underscores the transformative potential of biocatalysis in enhancing our understanding of tryptamine biosynthesis and facilitating the production of high-purity psilocybin and other tryptamines for therapeutic and research use.
Collapse
Affiliation(s)
- Lucas Henrique Junges
- Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Marcelo Müller-Santos
- Department of Biochemistry and Molecular Biology, Nitrogen Fixation Laboratory, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
6
|
Rogge K, Wagner TJ, Hoffmeister D, Rupp B, Werten S. Substrate recognition by the 4-hydroxytryptamine kinase PsiK in psilocybin biosynthesis. FEBS Lett 2025; 599:447-455. [PMID: 39449146 PMCID: PMC11808438 DOI: 10.1002/1873-3468.15042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024]
Abstract
Psilocybin, the natural hallucinogen from Psilocybe (magic) mushrooms, is a highly promising drug candidate for the treatment of depression and several other mental health conditions. Biosynthesis of psilocybin from the amino acid l-tryptophan involves four strictly sequential modifications. The third of these, ATP-dependent phosphorylation of the intermediate 4-hydroxytryptamine, is catalysed by PsiK. Here we present a crystallographic analysis and a structure-based mutagenesis study of this kinase, providing insight into its mode of substrate recognition. The results of our work will support future bioengineering efforts aimed at generating variants of psilocybin with enhanced therapeutic properties.
Collapse
Affiliation(s)
- Kai Rogge
- Institute of PharmacyFriedrich Schiller UniversityJenaGermany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection BiologyHans Knöll InstituteJenaGermany
| | - Tobias Johannes Wagner
- Institute of PharmacyFriedrich Schiller UniversityJenaGermany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection BiologyHans Knöll InstituteJenaGermany
| | - Dirk Hoffmeister
- Institute of PharmacyFriedrich Schiller UniversityJenaGermany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection BiologyHans Knöll InstituteJenaGermany
| | - Bernhard Rupp
- Department of General, Inorganic and Theoretical ChemistryUniversity of InnsbruckAustria
- k.‐k. HofkristallamtSan DiegoCAUSA
| | - Sebastiaan Werten
- Department of General, Inorganic and Theoretical ChemistryUniversity of InnsbruckAustria
| |
Collapse
|
7
|
Shah FI, Shehzadi S, Akram F, Haq IU, Javed B, Sabir S, Kazim Y, Ashfaq S. Unveiling the Psychedelic Journey: An Appraisal of Psilocybin as a Profound Antidepressant Therapy. Mol Biotechnol 2025; 67:36-53. [PMID: 38117395 DOI: 10.1007/s12033-023-00994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
Depression, a global health concern with significant implications for suicide rates, remains challenging to treat effectively with conventional pharmacological options. The existing pharmaceutical interventions for these illnesses need daily dosing, are accompanied by various adverse effects, and may exhibit limited efficacy in certain cases. However, hope emerges from an unlikely source-Psilocybin, a natural hallucinogen found in certain mushrooms. Recently, this enigmatic compound has garnered attention for its potential therapeutic benefits in addressing various mental health issues, including depression. Psilocybin alters mood, cognition, and perception by acting on a particular subtype of serotonin receptors in the brain. It's feasible that these shifts in consciousness will promote healing development, offering a novel approach to depression management. This comprehensive review explores psilocybin, derived from specific mushrooms, and its implications in the treatment of depression. The study examines new perspectives and therapeutic possibilities surrounding psilocybin, addressing existing gaps in academic literature. It delves into its biosynthesis, unique mechanisms of action, therapeutic applications, and anti-depressive effects. By uncovering the potential of this mind-altering substance, the review aims to advance psychiatric care, offering hope to those globally affected by depression.
Collapse
Affiliation(s)
| | | | - Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | | | | | | | | |
Collapse
|
8
|
Syed OA, Petranker R, Fewster EC, Sobolenko V, Beidas Z, Husain MI, Lake S, Lucas P. Preferences, Perceptions, and Environmental Considerations of Natural and Synthetic Psychedelic Substances: Findings from the Global Psychedelic Survey. J Psychoactive Drugs 2024:1-11. [PMID: 39718337 DOI: 10.1080/02791072.2024.2446445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024]
Abstract
Although several studies have well described the characteristics of people who use psychedelics alongside their motivations and beliefs, little research has examined the preferences surrounding the source of psychedelic substances. In an anonymous online survey, we collected data from 6,379 consumers of 11 different psychedelic substances from 85 different countries, exploring their preferences and perceptions on natural and synthetic psychedelics. There was a strong preference of natural sources over synthetic alternatives for psilocybin (75%), DMT (56%), and mescaline (56%). Moreover, 50.8% of respondents believed that the source impacts the psychedelic's psychological and physiological effects, while 34.4% of respondents had a neutral stance on the topic. Despite the preference for natural sources, 67.7% of respondents agreed to switch to using synthetic alternatives to psychedelic substances if it would lessen the environmental impacts caused by the overharvesting of natural sources. This study presents novel insights into consumer preferences on the source of popular psychedelic substances. This international survey is limited to respondents primarily belonging to anglophone regions of the world.
Collapse
Affiliation(s)
- Omer A Syed
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Rotem Petranker
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Canada
| | | | - Valentyn Sobolenko
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Zeina Beidas
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - M Ishrat Husain
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Stephanie Lake
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Philippe Lucas
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Li G, Facchini PJ. New frontiers in the biosynthesis of psychoactive specialized metabolites. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102626. [PMID: 39288539 DOI: 10.1016/j.pbi.2024.102626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
The recent relaxation of psychedelic drug regulations has prompted extensive clinical investigation into their potential use to treat diverse mental health conditions including anxiety, depression, post-traumatic stress, and substance-abuse disorders. Most clinical trials have relied on a small number of known molecules found in nature, such as psilocybin, or long-known synthetic analogs of natural metabolites, including lysergic acid diethylamide (LSD). Elucidation of biosynthetic pathways leading to several psychedelic compounds has established an opportunity to use synthetic biology as a complement to synthetic chemistry for the preparation of novel derivatives with potentially superior pharmacological properties compared with known drugs. Herein we review the metabolic biochemistry of pathways from plants, fungi and animals that yield the medicinally important hallucinogenic specialized metabolites ibogaine, mescaline, psilocybin, lysergic acid, and N,N-dimethyltryptamine (DMT). We also summarize the reconstitution of these pathways in microorganisms and comment on the integration of native and non-native enzymes to prepare novel derivatives.
Collapse
Affiliation(s)
- Ginny Li
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
10
|
Kanis FC, Broude CN, Hellwarth EB, Gibbons WJ, Sen AK, Adams AM, Wang X, Jones JA. Evaluation of TrpM and PsiD substrate promiscuity reveals new biocatalytic capabilities. Biotechnol Prog 2024; 40:e3492. [PMID: 38888046 PMCID: PMC11659798 DOI: 10.1002/btpr.3492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
N-methylated tryptamines, such as the hallucinogenic natural products, psilocybin and N,N-dimethyltryptamine (DMT), are gaining interest from the medical community due to their potential as next generation treatments for mental health disorders. The clinical relevance of these compounds has driven scientists to develop biosynthetic production routes to a number of tryptamine drug candidates, and efforts are ongoing to expand and further develop these biosynthetic capabilities. To that end, we have further characterized the substrate preferences of two enzymes involved in tryptamine biosynthesis: TrpM, a tryptophan N-methyltransferase from Psilocybe serbica, and PsiD, the gateway decarboxylase of the psilocybin biosynthesis pathway. Here, we show that TrpM can N-methylate the non-native amino acid substrate, 4-hydroxytryptophan, a key intermediate in the Escherichia coli-based recombinant psilocybin biosynthesis pathway. However, the ability to incorporate TrpM into a functional psilocybin biosynthesis pathway was thwarted by PsiD's inability to use N,N-dimethyl-4-hydroxytryptophan as substrate, under the culturing conditions tested, despite demonstrating activity on N-methylated and 4-hydroxylated tryptophan derivatives individually. Taken together, this work expands upon the known substrates for TrpM and PsiD, further increasing the diversity of tryptamine biosynthetic products.
Collapse
Affiliation(s)
- Fiona C. Kanis
- Department of Chemical, Paper, and Biomedical EngineeringMiami UniversityOxfordOhioUSA
| | - Caroline N. Broude
- Department of Chemical, Paper, and Biomedical EngineeringMiami UniversityOxfordOhioUSA
- Department of ChemistryWilliams CollegeWilliamstownMassachusettsUSA
| | - Elle B. Hellwarth
- Department of Chemical, Paper, and Biomedical EngineeringMiami UniversityOxfordOhioUSA
| | - William J. Gibbons
- Department of Chemical, Paper, and Biomedical EngineeringMiami UniversityOxfordOhioUSA
| | - Abhishek K. Sen
- Department of Chemical, Paper, and Biomedical EngineeringMiami UniversityOxfordOhioUSA
| | - Alexandra M. Adams
- Department of Chemical, Paper, and Biomedical EngineeringMiami UniversityOxfordOhioUSA
| | - Xin Wang
- Department of MicrobiologyMiami UniversityOxfordOhioUSA
- Department of Microbiology and Cell Science, Institute of Food and Agricultural SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - J. Andrew Jones
- Department of Chemical, Paper, and Biomedical EngineeringMiami UniversityOxfordOhioUSA
| |
Collapse
|
11
|
Hudspeth J, Rogge K, Dörner S, Müll M, Hoffmeister D, Rupp B, Werten S. Methyl transfer in psilocybin biosynthesis. Nat Commun 2024; 15:2709. [PMID: 38548735 PMCID: PMC10978996 DOI: 10.1038/s41467-024-46997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Psilocybin, the natural hallucinogen produced by Psilocybe ("magic") mushrooms, holds great promise for the treatment of depression and several other mental health conditions. The final step in the psilocybin biosynthetic pathway, dimethylation of the tryptophan-derived intermediate norbaeocystin, is catalysed by PsiM. Here we present atomic resolution (0.9 Å) crystal structures of PsiM trapped at various stages of its reaction cycle, providing detailed insight into the SAM-dependent methylation mechanism. Structural and phylogenetic analyses suggest that PsiM derives from epitranscriptomic N6-methyladenosine writers of the METTL16 family, which is further supported by the observation that bound substrates physicochemically mimic RNA. Inherent limitations of the ancestral monomethyltransferase scaffold hamper the efficiency of psilocybin assembly and leave PsiM incapable of catalysing trimethylation to aeruginascin. The results of our study will support bioengineering efforts aiming to create novel variants of psilocybin with improved therapeutic properties.
Collapse
Affiliation(s)
- Jesse Hudspeth
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Chemistry, Colorado School of Mines, Golden, CO, USA
| | - Kai Rogge
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Sebastian Dörner
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Maximilian Müll
- Research Group Biosynthetic Design of Natural Products, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Bernhard Rupp
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- k.-k. Hofkristallamt, San Diego, California, USA
| | - Sebastiaan Werten
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
12
|
Pepe M, Hesami M, de la Cerda KA, Perreault ML, Hsiang T, Jones AMP. A journey with psychedelic mushrooms: From historical relevance to biology, cultivation, medicinal uses, biotechnology, and beyond. Biotechnol Adv 2023; 69:108247. [PMID: 37659744 DOI: 10.1016/j.biotechadv.2023.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Psychedelic mushrooms containing psilocybin and related tryptamines have long been used for ethnomycological purposes, but emerging evidence points to the potential therapeutic value of these mushrooms to address modern neurological, psychiatric health, and related disorders. As a result, psilocybin containing mushrooms represent a re-emerging frontier for mycological, biochemical, neuroscience, and pharmacology research. This work presents crucial information related to traditional use of psychedelic mushrooms, as well as research trends and knowledge gaps related to their diversity and distribution, technologies for quantification of tryptamines and other tryptophan-derived metabolites, as well as biosynthetic mechanisms for their production within mushrooms. In addition, we explore the current state of knowledge for how psilocybin and related tryptamines are metabolized in humans and their pharmacological effects, including beneficial and hazardous human health implications. Finally, we describe opportunities and challenges for investigating the production of psychedelic mushrooms and metabolic engineering approaches to alter secondary metabolite profiles using biotechnology integrated with machine learning. Ultimately, this critical review of all aspects related to psychedelic mushrooms represents a roadmap for future research efforts that will pave the way to new applications and refined protocols.
Collapse
Affiliation(s)
- Marco Pepe
- Department of Plant Agriculture, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Karla A de la Cerda
- School of Environmental Sciences, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Melissa L Perreault
- Departments of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | | |
Collapse
|
13
|
Plazas E, Faraone N. Indole Alkaloids from Psychoactive Mushrooms: Chemical and Pharmacological Potential as Psychotherapeutic Agents. Biomedicines 2023; 11:461. [PMID: 36830997 PMCID: PMC9953455 DOI: 10.3390/biomedicines11020461] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Neuropsychiatric diseases such as depression, anxiety, and post-traumatic stress represent a substantial long-term challenge for the global health systems because of their rising prevalence, uncertain neuropathology, and lack of effective pharmacological treatments. The approved existing studies constitute a piece of strong evidence whereby psychiatric drugs have shown to have unpleasant side effects and reduction of sustained tolerability, impacting patients' quality of life. Thus, the implementation of innovative strategies and alternative sources of bioactive molecules for the search for neuropsychiatric agents are required to guarantee the success of more effective drug candidates. Psychotherapeutic use of indole alkaloids derived from magic mushrooms has shown great interest and potential as an alternative to the synthetic drugs currently used on the market. The focus on indole alkaloids is linked to their rich history, their use as pharmaceuticals, and their broad range of biological properties, collectively underscoring the indole heterocycle as significant in drug discovery. In this review, we aim to report the physicochemical and pharmacological characteristics of indole alkaloids, particularly those derived from magic mushrooms, highlighting the promising application of such active ingredients as safe and effective therapeutic agents for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Nicoletta Faraone
- Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada
| |
Collapse
|
14
|
Serreau R, Amirouche A, Benyamina A, Berteina-Raboin S. A Review of Synthetic Access to Therapeutic Compounds Extracted from Psilocybe. Pharmaceuticals (Basel) 2022; 16:ph16010040. [PMID: 36678537 PMCID: PMC9867295 DOI: 10.3390/ph16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Psychedelics are used for various pathologies of the central nervous system and are currently the subject of much research, some of which relates to the compounds contained in various Psilocybe-type hallucinogenic mushrooms. It is difficult, however, to obtain and purify sufficient quantities of these compounds from fungi to carry out biological studies, hence the need to develop simple and efficient synthetic routes. We review here the various syntheses used to obtain these molecules, focusing first on the classic historical syntheses, then the use of more recent metallo-catalyzed couplings and finally the known biocatalytic methods for obtaining these molecules. Other access routes are certainly possible and should be the subject of future research given the therapeutic interest of these compounds.
Collapse
Affiliation(s)
- Raphaël Serreau
- Unité de Recherche PSYCOMADD, APHP Université Paris Saclay, Hôpital Paul-Brousse, 12 Avenue Paul Vaillant Couturier, 94804 Villejuif, France
- Addictologie EPSM Georges DAUMEZON, GHT Loiret, 1 Route de Chanteau, 45400 Fleury les Aubrais, France
| | - Ammar Amirouche
- Unité de Recherche PSYCOMADD-Psychiatrie Comorbidités Addictions, APHP Université Paris Saclay, Hôpital Paul-Brousse, 12 Avenue Paul Vaillant Couturier, 94804 Villejuif, France
| | - Amine Benyamina
- Unité de Recherche PSYCOMADD-Psychiatrie Comorbidités Addictions, APHP Université Paris Saclay, Hôpital Paul-Brousse, 12 Avenue Paul Vaillant Couturier, 94804 Villejuif, France
| | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans, UMR-CNRS 7311, BP 6759, Rue de Chartres, CEDEX 2, 45067 Orléans, France
- Correspondence: ; Tel.: +33-238-494-856
| |
Collapse
|
15
|
Schäfer T, Kramer K, Werten S, Rupp B, Hoffmeister D. Characterization of the Gateway Decarboxylase for Psilocybin Biosynthesis. Chembiochem 2022; 23:e202200551. [PMID: 36327140 DOI: 10.1002/cbic.202200551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The l-tryptophan decarboxylase PsiD catalyzes the initial step of the metabolic cascade to psilocybin, the major indoleethylamine natural product of the "magic" mushrooms and a candidate drug against major depressive disorder. Unlike numerous pyridoxal phosphate (PLP)-dependent decarboxylases for natural product biosyntheses, PsiD is PLP-independent and resembles type II phosphatidylserine decarboxylases. Here, we report on the in vitro biochemical characterization of Psilocybe cubensis PsiD along with in silico modeling of the PsiD structure. A non-canonical serine protease triad for autocatalytic cleavage of the pro-protein was predicted and experimentally verified by site-directed mutagenesis.
Collapse
Affiliation(s)
- Tim Schäfer
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Kristina Kramer
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Sebastiaan Werten
- Institute of Genetic Epidemiology, Medizinische Universität Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Bernhard Rupp
- Institute of Genetic Epidemiology, Medizinische Universität Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria.,k.-k. Hofkristallamt, 991 Audrey Place, Vista, CA, 92084, USA
| | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| |
Collapse
|
16
|
The Power of Biocatalysts for Highly Selective and Efficient Phosphorylation Reactions. Catalysts 2022. [DOI: 10.3390/catal12111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reactions involving the transfer of phosphorus-containing groups are of key importance for maintaining life, from biological cells, tissues and organs to plants, animals, humans, ecosystems and the whole planet earth. The sustainable utilization of the nonrenewable element phosphorus is of key importance for a balanced phosphorus cycle. Significant advances have been achieved in highly selective and efficient biocatalytic phosphorylation reactions, fundamental and applied aspects of phosphorylation biocatalysts, novel phosphorylation biocatalysts, discovery methodologies and tools, analytical and synthetic applications, useful phosphoryl donors and systems for their regeneration, reaction engineering, product recovery and purification. Biocatalytic phosphorylation reactions with complete conversion therefore provide an excellent reaction platform for valuable analytical and synthetic applications.
Collapse
|
17
|
Yao S, Wei C, Lin H, Zhang P, Liu Y, Deng Y, Huang Q, Xie B. Cystathionine Gamma-Lyase Regulate Psilocybin Biosynthesis in Gymnopilus dilepis Mushroom via Amino Acid Metabolism Pathways. J Fungi (Basel) 2022; 8:870. [PMID: 36012858 PMCID: PMC9410116 DOI: 10.3390/jof8080870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
As a potential medicine for the treatment of depression, psilocybin has gradually attracted attention. To elucidate the molecular mechanism regulating psilocybin synthesis in Gymnopilus dilepis, ultra-performance liquid chromatography (UPLC) was used to detect the changes in psilocybin content after S-adenosyl-l-homocysteine (SAH) treatment and the changes of psilocybin content in different parts (stipe and pileus), and RNA-Seq was used to explore the mechanism of psilocybin content changes. In this study, the psilocybin content in G. dilepis mycelia treated with SAH was significantly lower than that in the control group, and the content of psilocybin in the stipe was significantly higher than that in the pileus. Transcriptome analysis revealed that differential expression genes (DEGs) were associated with cysteine and methionine metabolism. In particular, the transcription levels of genes encoding Cystathionine gamma-lyase (CTH) in different treatments and different parts were positively correlated with psilocybin content. In addition, we found that the exogenous addition of CTH activity inhibitor (DL-propargylglycine, PAG) could reduce the content of psilocybin and L-serine, and the content of psilocybin and L-serine returned to normal levels after L-cysteine supplementation, suggesting that psilocybin synthesis may be positively correlated with L-cysteine or CTH, and L-cysteine regulates the synthesis of psilocybin by affecting L-serine and 4-hydroxy-L-tryptophan. In conclusion, this study revealed a new molecular mechanism that affects psilocybin biosynthesis, which can provide a theoretical basis for improving psilocybin synthesis and the possibility for the development of biomedicine.
Collapse
Affiliation(s)
- Sen Yao
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chuanzheng Wei
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Lin
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Zhang
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Liu
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youjin Deng
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianhui Huang
- College of Life Science, Ningde Normal University, Ningde 352100, China
| | - Baogui Xie
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
18
|
Dörner S, Rogge K, Fricke J, Schäfer T, Wurlitzer JM, Gressler M, Pham DNK, Manke DR, Chadeayne AR, Hoffmeister D. Genetic Survey of Psilocybe Natural Products. Chembiochem 2022; 23:e202200249. [PMID: 35583969 PMCID: PMC9400892 DOI: 10.1002/cbic.202200249] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Psilocybe magic mushrooms are best known for their main natural product, psilocybin, and its dephosphorylated congener, the psychedelic metabolite psilocin. Beyond tryptamines, the secondary metabolome of these fungi is poorly understood. The genomes of five species (P. azurescens, P. cubensis, P. cyanescens, P. mexicana, and P. serbica) were browsed to understand more profoundly common and species-specific metabolic capacities. The genomic analyses revealed a much greater and yet unexplored metabolic diversity than evident from parallel chemical analyses. P. cyanescens and P. mexicana were identified as aeruginascin producers. Lumichrome and verpacamide A were also detected as Psilocybe metabolites. The observations concerning the potential secondary metabolome of this fungal genus support pharmacological and toxicological efforts to find a rational basis for yet elusive phenomena, such as paralytic effects, attributed to consumption of some magic mushrooms.
Collapse
Affiliation(s)
- Sebastian Dörner
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Kai Rogge
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Janis Fricke
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Tim Schäfer
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Jacob M. Wurlitzer
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Markus Gressler
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Duyen N. K. Pham
- Department of Chemistry & BiochemistryUniversity of Massachusetts285 Old Westport RoadDartmouthMA02747USA
| | - David R. Manke
- Department of Chemistry & BiochemistryUniversity of Massachusetts285 Old Westport RoadDartmouthMA02747USA
| | | | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
19
|
Lenz C, Dörner S, Trottmann F, Hertweck C, Sherwood A, Hoffmeister D. Assessment of Bioactivity-Modulating Pseudo-Ring Formation in Psilocin and Related Tryptamines. Chembiochem 2022; 23:e202200183. [PMID: 35483009 PMCID: PMC9401598 DOI: 10.1002/cbic.202200183] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/27/2022] [Indexed: 11/12/2022]
Abstract
Psilocybin (1) is the major alkaloid found in psychedelic mushrooms and acts as a prodrug to psilocin (2, 4‐hydroxy‐N,N‐dimethyltryptamine), a potent psychedelic that exerts remarkable alteration of human consciousness. In contrast, the positional isomer bufotenin (7, 5‐hydroxy‐N,N‐dimethyltryptamine) differs significantly in its reported pharmacology. A series of experiments was designed to explore chemical differences between 2 and 7 and specifically to test the hypothesis that the C‐4 hydroxy group of 2 significantly influences the observed physical and chemical properties through pseudo‐ring formation via an intramolecular hydrogen bond (IMHB). NMR spectroscopy, accompanied by quantum chemical calculations, was employed to compare hydrogen bond behavior in 4‐ and 5‐hydroxylated tryptamines. The results provide evidence for a pseudo‐ring in 2 and that sidechain/hydroxyl interactions in 4‐hydroxytryptamines influence their oxidation kinetics. We conclude that the propensity to form IMHBs leads to a higher number of uncharged species that easily cross the blood‐brain barrier, compared to 7 and other 5‐hydroxytryptamines, which cannot form IMHBs. Our work helps understand a fundamental aspect of the pharmacology of 2 and should support efforts to introduce it (via the prodrug 1) as an urgently needed therapeutic against major depressive disorder.
Collapse
Affiliation(s)
- Claudius Lenz
- Friedrich-Schiller-Universitat Jena, Pharmaceutical Microbiology, GERMANY
| | - Sebastian Dörner
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena, Pharmaceutical Microbiology, 07745, Jena, GERMANY
| | - Felix Trottmann
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie eV Hans-Knöll-Institut: Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut, Biomolecular Chemistry, 07745, Jena, GERMANY
| | - Christian Hertweck
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie eV Hans-Knöll-Institut: Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut, Biomolecular Chemistry, GERMANY
| | - Alexander Sherwood
- Usona Institute, Chemistry, 2800 Woods Hollow Road, 53711, Madison, UNITED STATES
| | - Dirk Hoffmeister
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut, Pharmaceutical Microbiology at the Hans-Kn�ll-Institute, Beutenbergstrasse 11a, 07745, Jena, GERMANY
| |
Collapse
|
20
|
Della-Felice F, de Andrade Bartolomeu A, Pilli RA. The phosphate ester group in secondary metabolites. Nat Prod Rep 2022; 39:1066-1107. [PMID: 35420073 DOI: 10.1039/d1np00078k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2000 to mid-2021The phosphate ester is a versatile, widespread functional group involved in a plethora of biological activities. Its presence in secondary metabolites, however, is relatively rare compared to other functionalities and thus is part of a rather unexplored chemical space. Herein, the chemistry of secondary metabolites containing the phosphate ester group is discussed. The text emphasizes their structural diversity, biological and pharmacological profiles, and synthetic approaches employed in the phosphorylation step during total synthesis campaigns, covering the literature from 2000 to mid-2021.
Collapse
Affiliation(s)
- Franco Della-Felice
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil.,Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
| | | | - Ronaldo Aloise Pilli
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil
| |
Collapse
|
21
|
Van Court R, Wiseman M, Meyer K, Ballhorn D, Amses K, Slot J, Dentinger B, Garibay-Orijel R, Uehling J. Diversity, biology, and history of psilocybin-containing fungi: Suggestions for research and technological development. Fungal Biol 2022; 126:308-319. [DOI: 10.1016/j.funbio.2022.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/18/2022]
|
22
|
Vilca-Melendez S, Uthaug MV, Griffin JL. 1H Nuclear Magnetic Resonance: A Future Approach to the Metabolic Profiling of Psychedelics in Human Biofluids? Front Psychiatry 2021; 12:742856. [PMID: 34966300 PMCID: PMC8710695 DOI: 10.3389/fpsyt.2021.742856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
While psychedelics may have therapeutic potential for treating mental health disorders such as depression, further research is needed to better understand their biological effects and mechanisms of action when considering the development of future novel therapy approaches. Psychedelic research could potentially benefit from the integration of metabonomics by proton nuclear magnetic resonance (1H NMR) spectroscopy which is an analytical chemistry-based approach that can measure the breakdown of drugs into their metabolites and their metabolic consequences from various biofluids. We have performed a systematic review with the primary aim of exploring published literature where 1H NMR analysed psychedelic substances including psilocin, lysergic acid diethylamide (LSD), LSD derivatives, N,N-dimethyltryptamine (DMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and bufotenin. The second aim was to assess the benefits and limitations of 1H NMR spectroscopy-based metabolomics as a tool in psychedelic research and the final aim was to explore potential future directions. We found that the most current use of 1H NMR in psychedelic research has been for the structural elucidation and analytical characterisation of psychedelic molecules and that no papers used 1H NMR in the metabolic profiling of biofluids, thus exposing a current research gap and the underuse of 1H NMR. The efficacy of 1H NMR spectroscopy was also compared to mass spectrometry, where both metabonomics techniques have previously shown to be appropriate for biofluid analysis in other applications. Additionally, potential future directions for psychedelic research were identified as real-time NMR, in vivo 1H nuclear magnetic resonance spectroscopy (MRS) and 1H NMR studies of the gut microbiome. Further psychedelic studies need to be conducted that incorporate the use of 1H NMR spectroscopy in the analysis of metabolites both in the peripheral biofluids and in vivo to determine whether it will be an effective future approach for clinical and naturalistic research.
Collapse
Affiliation(s)
- Sylvana Vilca-Melendez
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Malin V. Uthaug
- The Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Julian L. Griffin
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
McKernan K, Kane LT, Crawford S, Chin CS, Trippe A, McLaughlin S. A draft reference assembly of the Psilocybe cubensis genome. F1000Res 2021; 10:281. [PMID: 34322225 PMCID: PMC8220353 DOI: 10.12688/f1000research.51613.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
We describe the use of high-fidelity single molecule sequencing to assemble the genome of the psychoactive
Psilocybe cubensis mushroom. The genome is 46.6Mb, 46% GC, and in 32 contigs with an N50 of 3.3Mb. The BUSCO completeness scores are 97.6% with 1.2% duplicates. The Psilocybin synthesis cluster exists in a single 3.2Mb contig. The dataset is available from NCBI BioProject with accessions
PRJNA687911 and
PRJNA700437.
Collapse
Affiliation(s)
| | - Liam T Kane
- R&D, Medicinal Genomics, Beverly, Mass, 01915, USA
| | | | | | | | | |
Collapse
|
24
|
The Therapeutic Potential of Psilocybin. Molecules 2021; 26:molecules26102948. [PMID: 34063505 PMCID: PMC8156539 DOI: 10.3390/molecules26102948] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
The psychedelic effects of some plants and fungi have been known and deliberately exploited by humans for thousands of years. Fungi, particularly mushrooms, are the principal source of naturally occurring psychedelics. The mushroom extract, psilocybin has historically been used as a psychedelic agent for religious and spiritual ceremonies, as well as a therapeutic option for neuropsychiatric conditions. Psychedelic use was largely associated with the "hippie" counterculture movement, which, in turn, resulted in a growing, and still lingering, negative stigmatization for psychedelics. As a result, in 1970, the U.S. government rescheduled psychedelics as Schedule 1 drugs, ultimately ending scientific research on psychedelics. This prohibition on psychedelic drug research significantly delayed advances in medical knowledge on the therapeutic uses of agents such as psilocybin. A 2004 pilot study from the University of California, Los Angeles, exploring the potential of psilocybin treatment in patients with advanced-stage cancer managed to reignite interest and significantly renewed efforts in psilocybin research, heralding a new age in exploration for psychedelic therapy. Since then, significant advances have been made in characterizing the chemical properties of psilocybin as well as its therapeutic uses. This review will explore the potential of psilocybin in the treatment of neuropsychiatry-related conditions, examining recent advances as well as current research. This is not a systematic review.
Collapse
|
25
|
Fricke J, Sherwood AM, Halberstadt AL, Kargbo RB, Hoffmeister D. Chemoenzymatic Synthesis of 5-Methylpsilocybin: A Tryptamine with Potential Psychedelic Activity. JOURNAL OF NATURAL PRODUCTS 2021; 84:1403-1408. [PMID: 33667102 PMCID: PMC9191645 DOI: 10.1021/acs.jnatprod.1c00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A novel analogue of psilocybin was produced by hybrid chemoenzymatic synthesis in sufficient quantity to enable bioassay. Utilizing purified 4-hydroxytryptamine kinase from Psilocybe cubensis, chemically synthesized 5-methylpsilocin (2) was enzymatically phosphorylated to provide 5-methylpsilocybin (1). The zwitterionic product was isolated from the enzymatic step with high purity utilizing a solvent-antisolvent precipitation approach. Subsequently, 1 was tested for psychedelic-like activity using the mouse head-twitch response assay, which indicated activity that was more potent than the psychedelic dimethyltryptamine, but less potent than that of psilocybin.
Collapse
Affiliation(s)
- Janis Fricke
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität Jena, Winzerlaer Strasse 2, 07745 Jena, Germany
| | | | - Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093-0804, United States
- Research Service, VA San Diego Healthcare System, San Diego, California 92161, United States
| | | | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität Jena, Winzerlaer Strasse 2, 07745 Jena, Germany
| |
Collapse
|
26
|
Gressler M, Löhr NA, Schäfer T, Lawrinowitz S, Seibold PS, Hoffmeister D. Mind the mushroom: natural product biosynthetic genes and enzymes of Basidiomycota. Nat Prod Rep 2021; 38:702-722. [PMID: 33404035 DOI: 10.1039/d0np00077a] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: up to September 2020 Mushroom-forming fungi of the division Basidiomycota have traditionally been recognised as prolific producers of structurally diverse and often bioactive secondary metabolites, using the methods of chemistry for research. Over the past decade, -omics technologies were applied on these fungi, and sophisticated heterologous gene expression platforms emerged, which have boosted research into the genetic and biochemical basis of the biosyntheses. This review provides an overview on experimentally confirmed natural product biosyntheses of basidiomycete polyketides, amino acid-derived products, terpenoids, and volatiles. We also present challenges and solutions particular to natural product research with these fungi. 222 references are cited.
Collapse
Affiliation(s)
- Markus Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Nikolai A Löhr
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Tim Schäfer
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Stefanie Lawrinowitz
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Paula Sophie Seibold
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
27
|
Lenz C, Sherwood A, Kargbo R, Hoffmeister D. Taking Different Roads: l-Tryptophan as the Origin of Psilocybe Natural Products. Chempluschem 2020; 86:28-35. [PMID: 33237633 DOI: 10.1002/cplu.202000581] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Psychotropic fungi of the genus Psilocybe, colloquially referred to as "magic mushrooms", are best known for their l-tryptophan-derived major natural product, psilocybin. Yet, recent research has revealed a more diverse secondary metabolism that originates from this amino acid. In this minireview, the focus is laid on l-tryptophan and the various Psilocybe natural products and their metabolic routes are highlighted. Psilocybin and its congeners, the heterogeneous blue-colored psilocyl oligomers, alongside β-carbolines and N,N-dimethyl-l-tryptophan, are presented as well as current knowledge on their biosynthesis is provided. The multidisciplinary character of natural product research is demonstrated, and pharmacological, medicinal, ecological, biochemical, and evolutionary aspects are included.
Collapse
Affiliation(s)
- Claudius Lenz
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| | | | - Robert Kargbo
- The Usona Institute, 2800 Woods Hollow Road, Madison, 53711, WI, USA
| | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, 07745, Jena, Germany
| |
Collapse
|
28
|
Fricke J, Kargbo R, Regestein L, Lenz C, Peschel G, Rosenbaum MA, Sherwood A, Hoffmeister D. Scalable Hybrid Synthetic/Biocatalytic Route to Psilocybin. Chemistry 2020; 26:8281-8285. [PMID: 32101345 PMCID: PMC7383583 DOI: 10.1002/chem.202000134] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Indexed: 01/24/2023]
Abstract
Psilocybin, the principal indole alkaloid of Psilocybe mushrooms, is currently undergoing clinical trials as a medication against treatment-resistant depression and major depressive disorder. The psilocybin supply for pharmaceutical purposes is met by synthetic chemistry. We replaced the problematic phosphorylation step during synthesis with the mushroom kinase PsiK. This enzyme was biochemically characterized and used to produce one gram of psilocybin from psilocin within 20 minutes. We also describe a pilot-scale protocol for recombinant PsiK that yielded 150 mg enzyme in active and soluble form. Our work consolidates the simplicity of tryptamine chemistry with the specificity and selectivity of enzymatic catalysis and helps provide access to an important drug at potentially reasonable cost.
Collapse
Affiliation(s)
- Janis Fricke
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Robert Kargbo
- Usona Institute2780 Woods Hollow RoadMadisonWI53711USA
| | - Lars Regestein
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-InstituteBeutenbergstrasse 11a07745JenaGermany
| | - Claudius Lenz
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Gundela Peschel
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-InstituteBeutenbergstrasse 11a07745JenaGermany
| | - Miriam A. Rosenbaum
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-InstituteBeutenbergstrasse 11a07745JenaGermany
| | | | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
29
|
Nichols DE. Psilocybin: from ancient magic to modern medicine. J Antibiot (Tokyo) 2020; 73:679-686. [PMID: 32398764 DOI: 10.1038/s41429-020-0311-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
Abstract
Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) is an indole-based secondary metabolite produced by numerous species of mushrooms. South American Aztec Indians referred to them as teonanacatl, meaning "god's flesh," and they were used in religious and healing rituals. Spanish missionaries in the 1500s attempted to destroy all records and evidence of the use of these mushrooms. Nevertheless, a 16th century Spanish Franciscan friar and historian mentioned teonanacatl in his extensive writings, intriguing 20th century ethnopharmacologists and leading to a decades-long search for the identity of teonanacatl. Their search ultimately led to a 1957 photo-essay in a popular magazine, describing for the Western world the use of these mushrooms. Specimens were ultimately obtained, and their active principle identified and chemically synthesized. In the past 10-15 years several FDA-approved clinical studies have indicated potential medical value for psilocybin-assisted psychotherapy in treating depression, anxiety, and certain addictions. At present, assuming that the early clinical studies can be validated by larger studies, psilocybin is poised to make a significant impact on treatments available to psychiatric medicine.
Collapse
Affiliation(s)
- David E Nichols
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|