1
|
Alex A, Kalita U, Bhowmik T, Singha NK, Choudhury S. Inversely Vulcanized Porous Copolymer Monolith for Efficient Removal of Metal Ions from Water. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40327555 DOI: 10.1021/acsami.5c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Heavy metal pollution poses a significant threat to the environment and human health. Developing efficient adsorbent materials for removing these contaminants from water is crucial. Sulfur-based polymers derived from inverse vulcanization were found to be promising candidates for the adsorption of several heavy metals from water. In this work, polysulfides bearing β-diketone functional groups are synthesized for the first time through the inverse vulcanization between acetoacetoxyethyl methacrylate (AAEMA) and sulfur. Successful copolymerization and the incorporation of the acetoacetate moiety into the polymer chain are confirmed by NMR, FT-IR, Raman, XPS, XRD, DSC, and TGA analyses. A porous variant of the adsorbent is made using a facile template-assisted method exploring NaCl as a porogen. The porous polymer is analyzed using X-ray micro-CT and SEM to get insights into the internal porous architecture as well as the surface porosity of the adsorbent. Energy-dispersive X-ray (EDAX) and CHNS(O) analyses of the adsorbent reveal a sulfur-rich surface with uniformly distributed oxygen and carbon. Heavy metal adsorption studies of the synthesized polymer are conducted in a multielement solution containing different types of metal ions. The porous adsorbent exhibited remarkable heavy metal chelation properties, with a removal efficiency of 100% for Hg2+ and 72-96% removal for Cr3+, Pb2+, Co2+, Fe3+, Ni2+, Ag+, and Cu2+. The synergistic interplay between the thiol functional groups, polysulfide loops, and the strong binding affinity of the β-diketone moiety and hydroxyl group coupled with the polymer's well-defined porous structure collectively enhances its adsorption capacity toward heavy metal ions. A prototype of an identical porous adsorbent in monolithic form has been constructed. The porous monolith retains all the benefits of porous adsorbent in particulate form while allowing the separation of the adsorbent from the treated water by simply lifting it as a single unit, eliminating the necessity for filtration as is necessary with particulate adsorbents.
Collapse
Affiliation(s)
- Aby Alex
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, India 721302
| | - Uddhab Kalita
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, India 721302
| | - Tridip Bhowmik
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India 721302
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, India 721302
| | - Soumyadip Choudhury
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, India 721302
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India 721302
| |
Collapse
|
2
|
Mann AK, Tonkin SJ, Sharma P, Gibson CT, Chalker JM. Probe-Based Mechanical Data Storage on Polymers Made by Inverse Vulcanization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409438. [PMID: 39680686 PMCID: PMC11792057 DOI: 10.1002/advs.202409438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/30/2024] [Indexed: 12/18/2024]
Abstract
Big data and artificial intelligence are driving increasing demand for high-density data storage. Probe-based data storage, such as mechanical storage using an atomic force microscope tip, is a potential solution with storage densities exceeding hard disks. However, the storage medium must be modifiable on the nanoscale. While polymers are promising storage media, they face challenges with synthesis, erasing temperatures, and stability. Here, a low-cost and robust polymer system is reported that allows repeated writing, reading and erasing. The polymer is made by inverse vulcanization, providing a network of S─S bonds that can be broken and re-formed repeatedly. This property is leveraged in mechanical indentation to encode information, and thermal S─S metathesis and polymer re-flow to erase. Exquisite control of indentation depth is possible over 1-30 nm. This control enables data encoding not just as a function of the presence or absence of an indent, but also indentation depth. This ternary coding increases the data density four-fold over binary coding. Furthermore, the coding can be done at room temperature which is rare for mechanical information storage. The low cost, ease of synthesis, and dynamic S─S bonds in these polymers are a promising advance in polymer storage media for probe-based data storage.
Collapse
Affiliation(s)
- Abigail K. Mann
- Institute for Nanoscale Science and TechnologyCollege of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
- College of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
| | - Samuel J. Tonkin
- Institute for Nanoscale Science and TechnologyCollege of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
- College of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
| | - Pankaj Sharma
- Institute for Nanoscale Science and TechnologyCollege of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
- College of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
- ARC Centre of Excellence in Future Low Energy Electronics Technologies (FLEET)UNSW SydneySydneyNSW2052Australia
| | - Christopher T. Gibson
- College of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
- Flinders Microscopy and MicroanalysisCollege of Science and EngineeringFlinders UniversityBedford ParkAdelaideSouth Australia5042Australia
- Adelaide MicroscopyThe University of AdelaideAdelaideSouth Australia5000Australia
| | - Justin M. Chalker
- Institute for Nanoscale Science and TechnologyCollege of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
- College of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
| |
Collapse
|
3
|
Shi CY, Zhang XP, Zhang Q, Chen M, Tian H, Qu DH. Closed-loop chemically recyclable covalent adaptive networks derived from elementary sulfur. Chem Sci 2024:d4sc05031b. [PMID: 39371464 PMCID: PMC11447730 DOI: 10.1039/d4sc05031b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
The development of sulfur-rich polymers derived from elementary sulfur provides an innovative approach to industrial waste valorization. Despite significant advancements in polymerization techniques and promising applications beyond traditional polymers, polysulfide networks are still primarily stabilized by diene crosslinkers, forming robust C-S bonds that hinder the degradation of sulfur-based polymers. In this study, the anionic ring-opening copolymerization of chemically homologous S8 and cyclic disulfides was explored to yield robust sulfur-rich copolymers with high molecular weight. The incorporation of polysulfide segments not only efficiently activated the crosslinked networks for excellent reprocessability and mechanical adaptability but also endowed the resulting copolymer with high optical transparency in the near-infrared region. More importantly, the dynamic disulfide crosslinking sites promoted the chemical closed-loop recyclability of the polysulfide networks via reversible S-S cleavage. This innovative inverse vulcanization strategy utilizing dynamic disulfide crosslinkers offers a promising pathway for the advanced applications and upcycling of high-performance sulfur-rich polymers.
Collapse
Affiliation(s)
- Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Xiao-Ping Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Meng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
4
|
Tisdale KA, Kapuge Dona NL, Smith RC. The Influence of the Comonomer Ratio and Reaction Temperature on the Mechanical, Thermal, and Morphological Properties of Lignin Oil-Sulfur Composites. Molecules 2024; 29:4209. [PMID: 39275057 PMCID: PMC11397338 DOI: 10.3390/molecules29174209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Although lignin is a plentiful biomass resource, it continually exists as an underutilized component of biomass material. Elemental sulfur is another abundant yet underutilized commodity produced as a by-product resulting from the refining of fossil fuels. The current study presents a strategy for preparing five durable composites via a simple one-pot synthesis involving the reaction of lignin oil and elemental sulfur. These lignin oil-sulfur composites LOSx@T (where x = wt. % sulfur, ranging from 80 to 90, and T represents the reaction temperature in °C) were prepared via the reaction of elemental sulfur and lignin oil (LO) with elemental sulfur. The resulting composites could be remelted and reshaped several times without the loss of mechanical strength. Mechanical, thermal, and morphological studies showed that LOSx@T possesses properties competitive with some mechanical properties of commercial building materials, exhibiting favorable compressive strengths (22.1-35.9 MPa) and flexural strengths (5.7-6.5 MPa) exceeding the values required for many construction applications of ordinary Portland cement (OPC) and brick formulations. While varying the amount of organic material did not result in a notable difference in mechanical strength, increasing the reaction temperature from 230 to 300 °C resulted in a significant increase in compressive strength. The results reported herein reveal potential applications of both lignin and waste sulfur during the ongoing effort toward developing recyclable and sustainable building materials.
Collapse
Affiliation(s)
- Katelyn A Tisdale
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology, Clemson University, Clemson, SC 29634, USA
| | - Nawoda L Kapuge Dona
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology, Clemson University, Clemson, SC 29634, USA
| | - Rhett C Smith
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
5
|
Grimm AP, Plank M, Stihl A, Schmitt CW, Voll D, Schacher FH, Lahann J, Théato P. Inverse Vulcanization of Activated Norbornenyl Esters-A Versatile Platform for Functional Sulfur Polymers. Angew Chem Int Ed Engl 2024; 63:e202411010. [PMID: 38895894 DOI: 10.1002/anie.202411010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Elemental sulfur has shown to be a promising alternative feedstock for development of novel polymeric materials with high sulfur content. However, the utilization of inverse vulcanized polymers is restricted by the limitation of functional comonomers suitable for an inverse vulcanization. Control over properties and structure of inverse vulcanized polymers still poses a challenge to current research due to the dynamic nature of sulfur-sulfur bonds and high temperature of inverse vulcanization reactions. In here, we report for the first time the inverse vulcanization of norbornenyl pentafluorophenyl ester (NB-PFPE), allowing for post-modification of inverse vulcanized polymers via amidation of reactive PFP esters to yield high sulfur content polymers under mild conditions. Amidation of the precursor material with three functional primary amines (α-amino-ω-methoxy polyethylene glycol, aminopropyl trimethoxy silane, allylamine) was investigated. The resulting materials were applicable as sulfur containing poly(ethylene glycol) nanoparticles in aqueous environment. Cross-linked mercury adsorbents, sulfur surface coatings, and high-sulfur content networks with predictable thermal properties were achievable using aminopropyl trimethoxy silane and allylamine for post-polymerization modification, respectively. With the broad range of different amines available and applicable for post-polymerization modification, the versatility of poly(sulfur-random-NB-PFPE) as a platform precursor polymer for novel specialized sulfur containing materials was showcased.
Collapse
Affiliation(s)
- Alexander P Grimm
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martina Plank
- Institute of Functional Interfaces (IFG) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Stihl
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena (FSU), Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena (FSU), Philosophenweg 7, 07743, Jena, Germany
| | - Christian W Schmitt
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dominik Voll
- Institute for Technical Chemistry and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena (FSU), Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena (FSU), Philosophenweg 7, 07743, Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743, Jena, Germany
| | - Jörg Lahann
- Institute of Functional Interfaces (IFG) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Patrick Théato
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Technical Chemistry and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
| |
Collapse
|
6
|
Zheng B, Zhong L, Wang X, Lin P, Yang Z, Bai T, Shen H, Zhang H. Structural evolution during inverse vulcanization. Nat Commun 2024; 15:5507. [PMID: 38951493 PMCID: PMC11217493 DOI: 10.1038/s41467-024-49374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Inverse vulcanization exploits S8 to synthesize polysulfides. However, evolution of products and its mechanism during inverse vulcanization remains elusive. Herein, inverse vulcanization curves are obtained to describe the inverse vulcanization process in terms of three stages: induction, curing and over-cure. The typical curves exhibit a moduli increment before declining or plateauing, reflecting the process of polysulfide network formation and loosing depending on monomers. For aromatic alkenes, in the over-cure, the crosslinked polysulfide evolves significantly into a sparse network with accelerated relaxation, due to the degradation of alkenyl moieties into thiocarbonyls. The inverse vulcanization product of olefins degrades slowly with fluctuated relaxation time and modulus because of the generation of thiophene moieties, while the inverse vulcanization curve of dicyclopentadiene has a plateau following curing stage. Confirmed by calculations, the mechanisms reveal the alkenyl groups react spontaneously into thiocarbonyls or thiophenes via similar sulfur-substituted alkenyl intermediates but with different energy barriers.
Collapse
Affiliation(s)
- Botuo Zheng
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Liling Zhong
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Xiaoxiao Wang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Peiyao Lin
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Zezhou Yang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Tianwen Bai
- Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province in Jiaxing University, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Hang Shen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China.
| | - Huagui Zhang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
7
|
Mann AK, Lisboa LS, Tonkin SJ, Gascooke JR, Chalker JM, Gibson CT. Modification of Polysulfide Surfaces with Low-Power Lasers. Angew Chem Int Ed Engl 2024; 63:e202404802. [PMID: 38501442 DOI: 10.1002/anie.202404802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
The modification of polymer surfaces using laser light is important for many applications in the nano-, bio- and chemical sciences. Such capabilities have supported advances in biomedical devices, electronics, information storage, microfluidics, and other applications. In most cases, these modifications require high power lasers that are expensive and require specialized equipment and facilities to minimize risk of hazardous radiation. Additionally, polymer systems that can be easily modified by lasers are often complex and costly to prepare. In this report, these challenges are addressed with the discovery of low-cost sulfur copolymers that can be rapidly modified with lasers emitting low-power infrared and visible light. The featured copolymers are made from elemental sulfur and either cyclopentadiene or dicyclopentadiene. Using a suite of lasers with discreet wavelengths (532, 638 and 786 nm) and powers, a variety of surface modifications could be made on the polymers such as controlled swelling or etching via ablation. The facile synthesis and laser modification of these polymer systems were exploited in applications such as direct laser lithography and erasable information storage.
Collapse
Affiliation(s)
- Abigail K Mann
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Lynn S Lisboa
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Samuel J Tonkin
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Jason R Gascooke
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
- Australian National Fabrication Facility, South Australia Node, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - Justin M Chalker
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Christopher T Gibson
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| |
Collapse
|
8
|
Lyu S, Abidin ZZ, Yaw TCS, Resul MFMG. Synthesis of surface-modified porous polysulfides from soybean oil by inverse vulcanization and its sorption behavior for Pb(II), Cu(II), and Cr(III). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29264-29279. [PMID: 38573576 DOI: 10.1007/s11356-024-33152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Guided by efficient utilization of natural plant oil and sulfur as low-cost sorbents, it is desired to tailor the porosity and composition of polysulfides to achieve their optimal applications in the management of aquatic heavy metal pollution. In this study, polysulfides derived from soybean oil and sulfur (PSSs) with improved porosity (10.2-22.9 m2/g) and surface oxygen content (3.1-7.0 wt.%) were prepared with respect to reaction time of 60 min, reaction temperature of 170 °C, and mass ratios of sulfur/soybean oil/NaCl/sodium citrate of 1:1:3:2. The sorption behaviors of PSSs under various hydrochemical conditions such as contact time, pH, ionic strength, coexisting cations and anions, temperature were systematically investigated. PSSs presented a fast sorption kinetic (5.0 h) and obviously improved maximum sorption capacities for Pb(II) (180.5 mg/g), Cu(II) (49.4 mg/g), and Cr(III) (37.0 mg/g) at pH 5.0 and T 298 K, in comparison with polymers made without NaCl/sodium citrate. This study provided a valuable reference for the facile preparation of functional polysulfides as well as a meaningful option for the removal of aquatic heavy metals.
Collapse
Affiliation(s)
- Shiqi Lyu
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Zurina Zainal Abidin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia.
| | - Thomas Choong Shean Yaw
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Mohamad Faiz Mukhtar Gunam Resul
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
9
|
Lyu S, Abidin ZZ, Yaw TCS, Resul MFMG. Inverse vulcanization induced oxygen modified porous polysulfides for efficient sorption of heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16940-16957. [PMID: 38326685 DOI: 10.1007/s11356-024-32323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The applications of polysulfides derived from natural plant oil and sulfur via the inverse vulcanization in the removal of heavy metals from aqueous solutions suffered from their low porosity and scarce surface functionality because of their hydrophobic surfaces and bulk characteristics. In this study, polysulfides from sulfur and palm oil (PSPs) with significantly enhanced porosity (13.7-24.1 m2/g) and surface oxygen-containing functional groups (6.9-8.6 wt.%) were synthesized with the optimization of process conditions including reaction time, temperature, and mass ratios of sulfur/palm oil/NaCl/sodium citrate. PSPs were applied as sorbents to remove heavy metals present in aqueous solutions. The integration of porosity and oxygen modification allowed a fast kinetic (4.0 h) and enhanced maximum sorption capacities for Pb(II) (218.5 mg/g), Cu(II) (74.8 mg/g), and Cr(III) (68.4 mg/g) at pH 5.0 and T 298 K comparing with polysulfides made without NaCl/sodium citrate. The sorption behaviors of Pb(II), Cu(II), and Cr(III) on PSPs were highly dependent on the solution pH values and ionic strength. The sorption presented excellent anti-interference capability for the coexisting cations and anions. The sorption processes were endothermic and spontaneous. This work would guide the preparation of porous polysulfides with surface modification as efficient sorbents to remediate heavy metals from aqueous solutions.
Collapse
Affiliation(s)
- Shiqi Lyu
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Zurina Zainal Abidin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia.
| | - Thomas Choong Shean Yaw
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Mohamad Faiz Mukhtar Gunam Resul
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
10
|
Bischoff DJ, Lee T, Kang KS, Molineux J, O'Neil Parker W, Pyun J, Mackay ME. Unraveling the rheology of inverse vulcanized polymers. Nat Commun 2023; 14:7553. [PMID: 37985754 PMCID: PMC10662295 DOI: 10.1038/s41467-023-43117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
Multiple relaxation times are used to capture the numerous stress relaxation modes found in bulk polymer melts. Herein, inverse vulcanization is used to synthesize high sulfur content (≥50 wt%) polymers that only need a single relaxation time to describe their stress relaxation. The S-S bonds in these organopolysulfides undergo dissociative bond exchange when exposed to elevated temperatures, making the bond exchange dominate the stress relaxation. Through the introduction of a dimeric norbornadiene crosslinker that improves thermomechanical properties, we show that it is possible for the Maxwell model of viscoelasticity to describe both dissociative covalent adaptable networks and living polymers, which is one of the few experimental realizations of a Maxwellian material. Rheological master curves utilizing time-temperature superposition were constructed using relaxation times as nonarbitrary horizontal shift factors. Despite advances in inverse vulcanization, this is the first complete characterization of the rheological properties of this class of unique polymeric material.
Collapse
Affiliation(s)
- Derek J Bischoff
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Taeheon Lee
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Kyung-Seok Kang
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Jake Molineux
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Jeffrey Pyun
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| | - Michael E Mackay
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
11
|
Pople JMM, Nicholls TP, Pham LN, Bloch WM, Lisboa LS, Perkins MV, Gibson CT, Coote ML, Jia Z, Chalker JM. Electrochemical Synthesis of Poly(trisulfides). J Am Chem Soc 2023; 145:11798-11810. [PMID: 37196214 DOI: 10.1021/jacs.3c03239] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
With increasing interest in high sulfur content polymers, there is a need to develop new methods for their synthesis that feature improved safety and control of structure. In this report, electrochemically initiated ring-opening polymerization of norbornene-based cyclic trisulfide monomers delivered well-defined, linear poly(trisulfides), which were solution processable. Electrochemistry provided a controlled initiation step that obviates the need for hazardous chemical initiators. The high temperatures required for inverse vulcanization are also avoided resulting in an improved safety profile. Density functional theory calculations revealed a reversible "self-correcting" mechanism that ensures trisulfide linkages between monomer units. This control over sulfur rank is a new benchmark for high sulfur content polymers and creates opportunities to better understand the effects of sulfur rank on polymer properties. Thermogravimetric analysis coupled with mass spectrometry revealed the ability to recycle the polymer to the cyclic trisulfide monomer by thermal depolymerization. The featured poly(trisulfide) is an effective gold sorbent, with potential applications in mining and electronic waste recycling. A water-soluble poly(trisulfide) containing a carboxylic acid group was also produced and found to be effective in the binding and recovery of copper from aqueous media.
Collapse
Affiliation(s)
- Jasmine M M Pople
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Thomas P Nicholls
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Le Nhan Pham
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Witold M Bloch
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Lynn S Lisboa
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Michael V Perkins
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Christopher T Gibson
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Zhongfan Jia
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Justin M Chalker
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
12
|
Kobayashi Y, Yamagishi Y, Nishimura R, Xiao CL, Kitano D, Horiguchi A, Hashimoto S, Yamaguchi H. Supramolecular sulfur-containing polymers with hydrogen bonding. J Sulphur Chem 2023. [DOI: 10.1080/17415993.2023.2183773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Yuichiro Kobayashi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ISC-OTRI), Osaka University, Osaka, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yuki Yamagishi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| | - Ryuto Nishimura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| | - Chun-Lin Xiao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| | - Daiki Kitano
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| | - Akiyoshi Horiguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| | - Shun Hashimoto
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ISC-OTRI), Osaka University, Osaka, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Maladeniya CP, Tennyson AG, Smith RC. Single‐stage chemical recycling of plastic waste to yield durable composites via a tandem transesterification‐thiocracking process. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
| | - Andrew G. Tennyson
- Department of Chemistry Clemson University Clemson South Carolina USA
- Department of Materials Science and Engineering Clemson University Clemson South Carolina USA
| | - Rhett C. Smith
- Department of Chemistry Clemson University Clemson South Carolina USA
| |
Collapse
|
14
|
Graham MJ, Lopez CV, Maladeniya CP, Tennyson AG, Smith RC. Influence of pozzolans on plant
oil‐sulfur
polymer cements: More sustainable and
chemically‐resistant
alternatives to Portland cement. J Appl Polym Sci 2023. [DOI: 10.1002/app.53684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Matthew J. Graham
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology Clemson University Clemson South Carolina USA
| | - Claudia V. Lopez
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology Clemson University Clemson South Carolina USA
| | - Charini P. Maladeniya
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology Clemson University Clemson South Carolina USA
| | - Andrew G. Tennyson
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology Clemson University Clemson South Carolina USA
| | - Rhett C. Smith
- Department of Chemistry and Center for Optical Materials Science and Engineering Technology Clemson University Clemson South Carolina USA
| |
Collapse
|
15
|
Karunarathna MS, Maladeniya CP, Lauer MK, Tennyson AG, Smith RC. Durable composites by vulcanization of oleyl-esterified lignin. RSC Adv 2023; 13:3234-3240. [PMID: 36756427 PMCID: PMC9855616 DOI: 10.1039/d2ra07082k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Productive utilization of lignocellulosic biomass is critical to the continued advancement of human civilization. Whereas the cellulose component can be efficiently upconverted to automotive fuel-grade ethanol, the lack of upconversion methods for the lignin component constitutes one of the grand challenges facing science. Lignin is an attractive feedstock for structural applications, in which its highly-crosslinked architecture can endow composite structures with high strengths. Prior work suggests that high-strength composites can be prepared by the reaction of olefin-modified lignin with sulfur. Those studies were limited to ≤5 wt% lignin, due to phase-separation of hydrophilic lignin from hydrophobic sulfur matrices. Herein we report a protocol to increase lignin hydrophobicity and thus its incorporation into sulfur-rich materials. This improvement is affected by esterifying lignin with oleic acid prior to its reaction with sulfur. This approach allowed preparation of esterified lignin-sulfur (ELS) composites comprising up to 20 wt% lignin. Two reaction temperatures were employed such that the reaction of ELS with sulfur at 180 °C would only produce S-C bonds at olefinic sites, whereas the reaction at 230 °C would produce C-S bonds at both olefin and aryl sites. Mechanistic analyses and microstructural characterization elucidated two ELS composites having compressive strength values (>20 MPa), exceeding the values observed with ordinary Portland cements. Consequently, this new method represents a way to improve lignin utilization to produce durable composites that represent sustainable alternatives to Portland cements.
Collapse
Affiliation(s)
| | | | - Moira K. Lauer
- Department of Chemistry, Clemson UniversityClemsonSouth Carolina29634USA
| | - Andrew G. Tennyson
- Department of Chemistry, Clemson UniversityClemsonSouth Carolina29634USA,Department of Materials Science and Engineering, Clemson UniversityClemsonSouth Carolina29634USA
| | - Rhett C. Smith
- Department of Chemistry, Clemson UniversityClemsonSouth Carolina29634USA
| |
Collapse
|
16
|
Nayeem A, Ali MF, Shariffuddin JH. The recent development of inverse vulcanized polysulfide as an alternative adsorbent for heavy metal removal in wastewater. ENVIRONMENTAL RESEARCH 2023; 216:114306. [PMID: 36191616 DOI: 10.1016/j.envres.2022.114306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Inverse vulcanized polysulfides have been used as low-cost and effective adsorbents to remediate heavy metals in wastewater. Inverse vulcanization introduces sustainable polysulfide synthesis by solving the rapid desulfurization problem of unstable polysulfides, and provides superior performance compared to conventional commercial adsorbents. The review discussed the brief applications of the inverse vulcanized polysulfides to remove heavy metal wastewater and emphasized the modified synthesis processes for enhanced uptake ratios. The characteristics of polysulfide adsorbents, which play a vital role during the removal process are highlighted with a proper discussion of the interaction between metal ions and polysulfides. The review paper concludes with remarks on the future outlook of these low-cost adsorbents with high selectivity to heavy metals. These polysulfide adsorbents can be prepared using a wide variety of crosslinker monomers including organic hydrocarbons, cooking oils, and agro-based waste materials. They have shown good surface area and excellent metal-binding capabilities compared to the commercially available adsorbents. Proper postmodification processes have enabled the benefits of repetitive uses of the polysulfide adsorbents. The improved surface area obtained by appropriate choice of crosslinkers, modified synthesis techniques, and regeneration through post-modification has made inverse vulcanized polysulfides capable of removing.
Collapse
Affiliation(s)
- Abdullah Nayeem
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
| | - Mohd Faizal Ali
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
| | - Jun Haslinda Shariffuddin
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia; Centre for Sustainability of Ecosystem & Earth Resources, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia.
| |
Collapse
|
17
|
Integration of the Exogenous Tuning of Thraustochytrid Fermentation and Sulfur Polymerization of Single-Cell Oil for Developing Plant-like Oils. Mar Drugs 2022; 20:md20100655. [PMID: 36286478 PMCID: PMC9604933 DOI: 10.3390/md20100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, we have demonstrated a bioprocessing approach encompassing the exogenous addition of low-molecular-weight compounds to tune the fatty acid (FA) profile in a novel thraustochytrid strain to produce desirable FAs. Maximum lipid recovery (38%, dry wt. biomass) was obtained at 1% Tween 80 and 0.25 mg/L of Vitamin B12. The transesterified lipid showed palmitic acid (C16, 35.7% TFA), stearic acid (C18, 2.1% TFA), and oleic acid (C18:1, 18.7% TFA) as the main components of total FAs, which are mainly present in plant oils. Strikingly, D-limonene addition in the fermentation medium repressed the production of polyunsaturated fatty acid (PUFAs). Sulfur-polymerization-guided lipid separation revealed the presence of saturated (SFAs, 53% TFA) and monounsaturated fatty acids (MUFAs, 46.6% TFA) in thraustochytrid oil that mimics plant-oil-like FA profiles. This work is industrially valuable and advocates the use of sulfur polymerization for preparation of plant-like oils through tuneable thraustochytrid lipids.
Collapse
|
18
|
Nayeem A, Ali MF, Shariffuddin JH. Polysulfide Synthesis Using Waste Cooking Palm Oil via Inverse Vulcanization. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abdullah Nayeem
- Universiti Malaysia Pahang College of Engineering 26300 Gambang Kuantan Malaysia
| | - Mohd Faizal Ali
- Universiti Malaysia Pahang Faculty of Chemical and Process Engineering Technology 26300 Gambang Kuantan Malaysia
| | | |
Collapse
|
19
|
Scheiger JM, Hoffmann M, Falkenstein P, Wang Z, Rutschmann M, Scheiger VW, Grimm A, Urbschat K, Sengpiel T, Matysik J, Wilhelm M, Levkin PA, Theato P. Inverse Vulcanization of Norbornenylsilanes: Soluble Polymers with Controllable Molecular Properties via Siloxane Bonds. Angew Chem Int Ed Engl 2022; 61:e202114896. [PMID: 35068039 PMCID: PMC9302686 DOI: 10.1002/anie.202114896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/10/2022]
Abstract
The inverse vulcanization produces high sulfur content polymers from alkenes and elemental sulfur. Control over properties such as the molar mass or the solubility of polymers is not well established, and existing strategies lack predictability or require large variations of the composition. Systematic design principles are sought to allow for a targeted design of materials. Herein, we report on the inverse vulcanization of norbornenylsilanes (NBS), with a different number of hydrolysable groups at the silicon atom. Inverse vulcanization of mixtures of NBS followed by polycondensation yielded soluble high sulfur content copolymers (50 wt % S) with controllable weight average molar mass (MW ), polydispersity (Đ), glass transition temperature (TG ), or zero-shear viscosity (η0 ). Polycondensation was conducted in the melt with HCl as a catalyst, abolishing the need for a solvent. Purification by precipitation afforded polymers with a greatly reduced amount of low molar mass species.
Collapse
Affiliation(s)
- Johannes M. Scheiger
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Maxi Hoffmann
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Patricia Falkenstein
- Leipzig UniversityInstitute of Analytical ChemistryLinnéstrasse 304103LeipzigGermany
| | - Zhenwu Wang
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Mark Rutschmann
- Institute of Inorganic Chemistry (IAC)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1576131KarlsruheGermany
| | - Valentin W. Scheiger
- Institute of Applied Informatics and Formal Description Methods (AIFB)Karlsruhe Institute of Technology (KIT)Kaiserstrasse 8976133KarlsruheGermany
| | - Alexander Grimm
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Klara Urbschat
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Tobias Sengpiel
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Jörg Matysik
- Leipzig UniversityInstitute of Analytical ChemistryLinnéstrasse 304103LeipzigGermany
| | - Manfred Wilhelm
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Pavel A. Levkin
- Institute of Biological and Chemical Systems–Functional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676313Eggenstein-LeopoldshafenGermany
| | - Patrick Theato
- Institute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
- Soft Matter Synthesis Laboratory - Institute for Biological Interfaces III (IBG-3)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
20
|
Scheiger JM, Hoffmann M, Falkenstein P, Wang Z, Rutschmann M, Scheiger VW, Grimm A, Urbschat K, Sengpiel T, Matysik J, Wilhelm M, Levkin PA, Theato P. Inverse Vulcanization of Norbornenylsilanes: Soluble Polymers with Controllable Molecular Properties via Siloxane Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Johannes Martin Scheiger
- Karlsruher Institut fur Technologie Institute of Technical Chemistry and Polymer Chemistry Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen GERMANY
| | - Maxi Hoffmann
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | | | - Zhenwu Wang
- Karlsruhe Institute of Technology Institute of Biological and Chemical Systems GERMANY
| | - Mark Rutschmann
- Karlsruhe Institute of Technology Institute of Inorganic Chemistry GERMANY
| | - Valentin W. Scheiger
- Karlsruhe Institute of Technology Institute of Applied Informatics and Formal Description Methods GERMANY
| | - Alexander Grimm
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Klara Urbschat
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Tobias Sengpiel
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Jörg Matysik
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Manfred Wilhelm
- Karlsruhe Institute of Technology Institute of Technical Chemistry and Polymer Chemistry GERMANY
| | - Pavel A. Levkin
- Karlsruhe Institute of Technology Institute of Biological and Chemical Systems GERMANY
| | - Patrick Theato
- Karlruher Institut für Technologie (KIT) Präparative Makromolekulare Chemie Kaiserstr. 12 76131 Karlsruhe GERMANY
| |
Collapse
|
21
|
Lopez CV, Smith AD, Smith RC. High strength composites from low-value animal coproducts and industrial waste sulfur. RSC Adv 2022; 12:1535-1542. [PMID: 35425172 PMCID: PMC8978816 DOI: 10.1039/d1ra06264f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/21/2021] [Indexed: 11/21/2022] Open
Abstract
Herein we report high strength composites prepared by reaction of sulfur, plant oils (either canola oil or sunflower oil) and brown grease. Brown grease is a high-volume, low value animal fat rendering coproduct that represents one of the most underutilized products of agricultural animal processing. Chemically, brown grease is primarily comprised of triglycerides and fatty acids. The inverse vulcanization of the unsaturated units in triglycerides/fatty acids upon their reaction with sulfur yields CanBG x or SunBG x (x = wt% sulfur, varied from 85-90%). These composites were characterized by infrared spectroscopy, dynamic mechanical analysis (DMA), mechanical test stand analysis, elemental analysis, and powder X-ray diffraction. CanBG x and SunBG x composites exhibit impressive compressive strengths (28.7-35.9 MPa) when compared to other materials such as Portland cement, for which a compressive strength of ≥17 MPa is required for residential building. Stress-strain analysis revealed high flexural strengths of 6.5-8.5 MPa for CanBG x and SunBG x composites as well, again exceeding the range of ∼2-5 MPa for ordinary Portland cements. The thermal properties of the composites were assessed by thermogravimetric analysis, revealing decomposition temperatures ranging from 223-226 °C, and by differential scanning calorimetry. These composites represent a promising new application for low value animal coproducts having limited value to be used as organic crosslinkers in the atom-efficient inverse vulcanization process to yield high sulfur-content materials that have impressive mechanical properties.
Collapse
Affiliation(s)
- Claudia V Lopez
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | - Ashlyn D Smith
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | - Rhett C Smith
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| |
Collapse
|
22
|
Lundquist NA, Yin Y, Mann M, Tonkin SJ, Slattery AD, Andersson GG, Gibson CT, Chalker JM. Magnetic responsive composites made from a sulfur-rich polymer. Polym Chem 2022. [DOI: 10.1039/d2py00903j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A magnetic responsive composite was made from a sulfur-rich polymer and iron nanoparticles. Diverse applications in mercury remediation, microwave curing, and magnetic responsive actuators were demonstrated.
Collapse
Affiliation(s)
- Nicholas A. Lundquist
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Yanting Yin
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Maximilian Mann
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Samuel J. Tonkin
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Ashley D. Slattery
- Adelaide Microscopy, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Gunther G. Andersson
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Christopher T. Gibson
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Justin M. Chalker
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
23
|
Mann M, Zhang B, Tonkin SJ, Gibson CT, Jia Z, Hasell T, Chalker JM. Processes for coating surfaces with a copolymer made from sulfur and dicyclopentadiene. Polym Chem 2022. [DOI: 10.1039/d1py01416a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A copolymer made from sulfur and dicyclopentadiene was useful as a mercury sorbent, and also as a protective and repairable coating.
Collapse
Affiliation(s)
- Maximilian Mann
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park, South Australia 5042, Australia
| | - Bowen Zhang
- Department of Chemistry, University of Liverpool, L69 7ZD, UK
| | - Samuel J. Tonkin
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park, South Australia 5042, Australia
| | - Christopher T. Gibson
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - Zhongfan Jia
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park, South Australia 5042, Australia
| | - Tom Hasell
- Department of Chemistry, University of Liverpool, L69 7ZD, UK
| | - Justin M. Chalker
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park, South Australia 5042, Australia
| |
Collapse
|
24
|
Silvano S, Tritto I, Losio S, boggioni L. Sulfur-Dipentene polysulfides: from industrial waste to sustainable, low-cost materials. Polym Chem 2022. [DOI: 10.1039/d2py00095d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of poly(S-dipentene) with a sulfur content greater than 50 wt % by catalytic inverse vulcanization in the presence of zinc-based accelerators was investigated at 140 °C for the...
Collapse
|
25
|
Mann M, Pauling PJ, Tonkin SJ, Campbell JA, Chalker JM. Chemically Activated SS Metathesis for Adhesive‐Free Bonding of Polysulfide Surfaces. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maximilian Mann
- Institute for Nanoscale Science and Technology College of Science and Engineering Flinders University Bedford Park South Australia 5042 Australia
| | - Paris J. Pauling
- Institute for Nanoscale Science and Technology College of Science and Engineering Flinders University Bedford Park South Australia 5042 Australia
| | - Samuel J. Tonkin
- Institute for Nanoscale Science and Technology College of Science and Engineering Flinders University Bedford Park South Australia 5042 Australia
| | - Jonathan A. Campbell
- Institute for Nanoscale Science and Technology College of Science and Engineering Flinders University Bedford Park South Australia 5042 Australia
| | - Justin M. Chalker
- Institute for Nanoscale Science and Technology College of Science and Engineering Flinders University Bedford Park South Australia 5042 Australia
| |
Collapse
|
26
|
Kalair AR, Seyedmahmoudian M, Stojcevski A, Abas N, Khan N. Waste to energy conversion for a sustainable future. Heliyon 2021; 7:e08155. [PMID: 34729426 PMCID: PMC8545696 DOI: 10.1016/j.heliyon.2021.e08155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022] Open
Abstract
Air pollution, climate change, and plastic waste are three contemporary global concerns. Air pollutants affect the lungs, green gases trap heat radiation, and plastic waste contaminates the marine food chain. Two-thirds of climate change and air pollution drivers are emitted in the process of burning fossil fuels. Pollutants settle in months, green gases take centuries, and plastics take thousands of years. The most polluted regions on the planet are also the ones that are greatly affected by climate change. Air pollutants grow in most climate-change affected areas, contributing to the greenhouse effect. Smog affects local and regional transboundary countries. The biggest greenhouse gas (GHG) emitters may not be the worst-hit victims because wind and water flow distribute green gases and plastic waste worldwide. The major polluters are often rich and developed countries, and the worst affected countries are the underdeveloped poor communities. Technologically advanced countries may help the developing countries in research into removing particulate matter, green gases, and plastic waste. Intergovernmental Panel on Climate Change (IPCC) and Paris Accord have emphasized on immeasurable efforts to encourage the conversion of pollution, green gases, and plastic waste into energy. Conversion of CO2 into petrol, GHG gases into chemicals, biowaste into biofuels, plastic waste into building bricks, and concrete waste into construction materials fosters a circular economy. This work reviews existing waste to power, energy, and value-added product conversion technologies.
Collapse
Affiliation(s)
- Ali Raza Kalair
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University, Australia
| | - Mehdi Seyedmahmoudian
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University, Australia
| | - Alex Stojcevski
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University, Australia
| | - Naeem Abas
- Department of Electrical Engineering, University of Gujrat, Hafiz Hayat Campus, Pakistan
| | - Nasrullah Khan
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Pakistan
| |
Collapse
|
27
|
Influence of Component Ratio on Thermal and Mechanical Properties of Terpenoid-Sulfur Composites. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5100257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Terpenoids are potentially sustainable replacements for petrochemical olefins. Sulfur is a waste product produced in large quantities from fossil fuel refining. Several composites with attractive properties have recently been made from terpenoids and sulfur. This report details the extent to which the ratio of sulfur to terpenoid and the terpenoid olefin content influences the thermal and mechanical properties of such terpenoid-sulfur composites. The terpenoids selected were diunsaturated geraniol and triunsaturated farnesol that, upon their inverse vulcanization with elemental sulfur, yield composites GerSx and FarSx, respectively (x = wt % sulfur). The wt % sulfur in the monomer feed was varied from 30–95 for this study, providing twelve materials. Mechanical analysis of these materials was undertaken by compressive and tensile strength techniques. Differential scanning calorimetric analysis revealed both polymeric and orthorhombic sulfur present in the materials with glass transition temperatures (Tg) of −37 °C to −13 °C and melt temperatures (Tm) of 119 to 104 °C. The crystallinity of composites decreases as the weight fraction of sulfur decreases and composites having the highest olefin content exhibit no detectable crystalline microstructures. The compressive strength of the materials showed increasing strength for higher olefin-content materials for both GerSx (with compressive strength of up to 32 MPa) and FarSx (with compressive strength of up to 43 MPa). The improved strength with increasing olefin content levels off at around 80–85% of terpenoid, after which point both tensile and compressive strength diminish.
Collapse
|
28
|
Lyu Y, Hu Q, Chen L, Luo T, Liu J, Yin X. Using conjugated system from natural sources for the synthesis of sulfur copolymers by bi‐function catalysts at mild temperatures. J Appl Polym Sci 2021. [DOI: 10.1002/app.50925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ya Lyu
- School of Chemical Engineering East China University of Science and Technology Shanghai China
- International Joint Research Center of Green Energy Chemical Engineering East China University of Science and Technology Shanghai China
| | - Qing Hu
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Long Chen
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Tianxiang Luo
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Jianghui Liu
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Xiaoxiao Yin
- School of Chemical Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
29
|
Bu Najmah I, Lundquist NA, Stanfield MK, Stojcevski F, Campbell JA, Esdaile LJ, Gibson CT, Lewis DA, Henderson LC, Hasell T, Chalker JM. Insulating Composites Made from Sulfur, Canola Oil, and Wool*. CHEMSUSCHEM 2021; 14:2352-2359. [PMID: 33634605 DOI: 10.1002/cssc.202100187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/19/2021] [Indexed: 06/12/2023]
Abstract
An insulating composite was made from the sustainable building blocks wool, sulfur, and canola oil. In the first stage of the synthesis, inverse vulcanization was used to make a polysulfide polymer from the canola oil triglyceride and sulfur. This polymerization benefits from complete atom economy. In the second stage, the powdered polymer was mixed with wool, coating the fibers through electrostatic attraction. The polymer and wool mixture were then compressed with mild heating to provoke S-S metathesis in the polymer, which locks the wool in the polymer matrix. The wool fibers imparted tensile strength, insulating properties, and reduced the flammability of the composite. All building blocks are sustainable or derived from waste and the composite is a promising lead on next-generation insulation for energy conservation.
Collapse
Affiliation(s)
- Israa Bu Najmah
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Nicholas A Lundquist
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Melissa K Stanfield
- Institute for Frontier Materials, Deakin University, Pigdons Road Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - Filip Stojcevski
- Institute for Frontier Materials, Deakin University, Pigdons Road Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - Jonathan A Campbell
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Louisa J Esdaile
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Christopher T Gibson
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - David A Lewis
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, Pigdons Road Waurn Ponds Campus, Geelong, Victoria, 3216, Australia
| | - Tom Hasell
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
| | - Justin M Chalker
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| |
Collapse
|
30
|
Mercury capture with an inverse vulcanized polymer formed from garlic oil, a bioderived comonomer. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Abbasi A, Nasef MM, Yahya WZN, Moniruzzaman M, Ghumman ASM. Preparation and characterization of sulfur-vinylbenzyl chloride polymer under optimized reaction conditions using inverse vulcanization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Orme K, Fistrovich AH, Jenkins CL. Tailoring Polysulfide Properties through Variations of Inverse Vulcanization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kennalee Orme
- Department of Chemistry, Idaho State University, 921 South Eighth Ave., Pocatello, Idaho 83209, United States
| | - Alessandra H. Fistrovich
- Department of Chemistry, Ball State University, 2000 W. University Ave., Muncie, Indiana 47306, United States
| | - Courtney L. Jenkins
- Department of Chemistry, Idaho State University, 921 South Eighth Ave., Pocatello, Idaho 83209, United States
| |
Collapse
|
33
|
Thiounn T, Karunarathna MS, Slann LM, Lauer MK, Smith RC. Sequential crosslinking for mechanical property development in high sulfur content composites. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Timmy Thiounn
- Department of Chemistry Clemson University Clemson South Carolina USA
| | | | - Lauren M. Slann
- Department of Materials Science and Engineering Clemson University Clemson South Carolina USA
| | - Moira K. Lauer
- Department of Chemistry Clemson University Clemson South Carolina USA
| | - Rhett C. Smith
- Department of Chemistry Clemson University Clemson South Carolina USA
| |
Collapse
|